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Preface

Phenomena of contact between deformable bodies or between deformable and
rigid bodies abound in industry and everyday life. Contact of braking pads
with wheels, tires with roads, pistons with skirts are just a few simple examples.
Common industrial processes such as metal forming, metal extrusion, involve
contact evolutions. Because of the importance of contact processes in structural
and mechanical systems, a considerable effort has been made in its modeling
and numerical simulations. The engineering literature concerning this topic is
extensive. Owing to their inherent complexity, contact phenomena are modeled
by nonlinear evolutionary problems that are difficult to analyze.

In early mathematical publications it was invariably assumed that the de-
formable bodies were linearly elastic and the processes were static. However, a
long time ago it was recognized the need to consider contact problems involv-
ing viscoelastic and viscoplastic materials as well as a large variety of contact
and frictional boundary conditions, which lead to time dependent models. The
mathematical theory of contact problems, that can predict reliably the evolu-
tion of the contact process in different situations and under various conditions, is
emerging currently. It deals with rigorous modeling of the contact phenomena,
based on the fundamental physical principles, as well as with the variational and
numerical analysis of the models. A thorough treatment of contact problems re-
quire knowledge from functional analysis, modern partial differential equations,
numerical approximations and error analysis.

The purpose of this book is to introduce the reader to a mathematical the-
ory of contact problems involving deformable bodies. The contents cover the
mechanical modeling, mathematical formulations, variational analysis, and the
numerical solution of the associated formulations. Our intention is to give a
complete treatment of some contact problems by presenting arguments and re-
sults in modeling, analysis, and numerical simulations.

In the book we treat quasistatic contact processes in the infinitesimal strain
theory. Quasistatic processes arise when the applied forces vary slowly in time,
and therefore the system response is relatively slow so that the inertial terms
in the equations of motion can be neglected. We model the material behavior
with elastic, viscoelastic or viscoplastic constitutive laws; some of our results
are extended to materials with internal state variables and to perfectly plastic
materials. The contact is modeled with various conditions, including Signorini
nonpenetration condition, normal compliance and normal damped response con-
ditions. The friction is modeled with versions of Coulomb’s and Tresca’s friction
laws or with laws involving a dissipative frictional potential. We also consider
problems with friction and wear and we use a version of the Archard law to
model the evolution of wear.

xi



xii PREFACE

Variational analysis of the models includes existence and uniqueness results
of weak solutions as well as results of continuous dependence of the solution
on the data and parameters. Links between different mechanical models are
discussed; for example, elasticity as a limiting case of viscoelasticity, perfect
plasticity as a limiting case of viscoplasticity, Signorini nonpenetration condition
as a limiting case of the normal compliance contact condition. In carrying out
the variational analysis we systematically use results on elliptic and evolutionary
variational inequalities, convex analysis, nonlinear equations with monotone
operators and fixed points of operators.

Two kinds of approximation schemes are introduced and analyzed. When
only the spatial variables are discretized, we obtain semi-discrete schemes. If
both the spatial and temporal variables are discretized, we arrive at fully discrete
schemes. For both kinds of schemes we prove existence and uniqueness results.
We show convergence of the discrete solutions under the basic solution regularity
available from the well-posedness results of the variational problems. We also
present optimal order error estimates under additional regularity assumption on
the solution.

To demonstrate the performance of the numerical schemes, a number of nu-
merical simulations are discussed. The test problems range from one to three
dimensional geometries. The finite element method is used to discretize the spa-
tial domain and finite differences are used for the time derivatives. We describe
in the book numerical results in the study of some model contact problems for
elastic, viscoelastic and viscoplastic materials.

The book is intended to be self-contained and accessible to a large number
of readers. It is divided into four parts, as described in the following.

Part I is devoted to the basic notions and results which are fundamen-
tal to the development later in this book. We review here the background
on functional analysis, function spaces, finite difference approximations and fi-
nite element method. Then we apply these results in the study of elliptic and
evolutionary variational inequalities. The material presented in this part is self-
contained. It does not need any knowledge in Contact Mechanics and could be
aimed at graduate students and researchers interested in a general treatment of
variational problems and their numerical approximations.

Part II presents preliminary material in Contact Mechanics. We summarize
here basic notions and general principles of Mechanics of Continua. Then we
introduce contact boundary conditions with or without friction as well as consti-
tutive laws which are used in the rest of the book. We also present preliminary
results on variational and numerical analysis in contact problems and we apply
these results in the study of models involving elastic bodies. The material in
Part II is aimed at those readers who are interested in the mechanical back-
ground of contact problems and mathematical theory of some contact problems
in elasticity.

Parts III and IV represent the main parts of the book. They deal with
the study of quasistatic problems for Kelvin-Voigt viscoelastic materials and
rate-type viscoplastic materials, respectively. These parts are written based on
our original research. We consider here a number of problems with various
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contact and frictional or frictionless boundary conditions, for which we provide
variational analysis and numerical approximations. For some of the contact
problems, we include results of numerical simulations to show the performance
of the numerical schemes. These two parts of the book would interest mainly
researchers for an in-depth knowledge of the mathematical theory of quasistatic
contact problems.

" The list of the references at the end of the book is by no means exhaustive.
It only includes papers or books that were used for or are directly connected
with the subjects treated in this book. Each part is concluded with a section
entitled Bibliographical Notes that discusses references on the principal results
treated, as well as information on important topics related to, but not included
in, the body of the text.

Each of the four parts of the book is divided into several chapters. All the
chapters are numbered consecutively. Mathematical relations (equalities or in-
equalities) are numbered by chapter and their order of occurrence. For example,
(5.3) is the third numbered mathematical relation in Chapter 5. Definitions,
examples, problems, theorems, lemmas, corollaries, propositions and remarks
are numbered consecutively within each chapter. For example, in Chapter 10,
Problem 10.1 is followed by Theorem 10.2.

The present book is the result of three years of cooperation between the two
authors. In writing it we have drawn on the results of our joint collaboration
with numerous colleagues and friends to whom we address our thanks. We
express our gratitude to Professor Meir Shillor for our beneficial cooperation
as well as for the interesting discussions on the models treated in the book.
We particularly thank Dr. J.R. Ferndndez-Garcia who provided the numerical
simulations included in Parts III and IV of the book. We extend our thanks to
Dr. M. Barboteu who realized the numerical results in Part II of the book. We
especially thank Professor Shing-Tung Yau for his support and encouragement
of our work.

The work of W.H. was supported by NSF/DARPA under Grant DMS-
9874015, James Van Allen Natural Science Fellowship, Faculty Development
Award at the University of Iowa, and K.C. Wong Education Foundation. Part
of the book manuscript was prepared when W.H. was visiting the State Key
Laboratory of Scientific and Engineering Computing, Chinese Academy of Sci-
ences, during the summer of 2000 through the support of the K.C. Wong Ed-
ucation Foundation. He particularly thanks Professor Lie-heng Wang for the
warm hospitality.

W.H. M.S.
Towa City Perpignan
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Sets

List of Symbols

N: the set of positive integers

Z: the set of non-negative integers

R: the real line

R = RU {#00}: extended real line

Ry : the set of non-negative numbers

R9: the d-dimensional Euclidean space

S%: the space of second order symmetric tensors on R¢

Qi: the set of orthogonal matrices of order d with determinant 1

Sg: the unit sphere in R¢

Q: an open, bounded, connected set in R? with a Lipschitz boundary I"

I': the boundary of the domain €, that is decomposed as I' = T'; UT, UT'3
with I';, I's and I'3 relatively open with respect to I'

I';: the part of the boundary where displacement condition is specified;
meas (I'1) > 0 is assumed throughout the book

I'5: the part of the boundary where traction condition is specified
I'3: the part of the boundary for contact

I =[0,T): time interval of interest

I=(0,7)

Xv



xvi LIST OF SYMBOLS

Operators

e: deformation operator, i.e. e(u) = (g;5(u)),
eij(w)=5(ui; +uj;:) (page 97)

Div: divergence operator, i.e. Dive = (05 ;) (page 100)

I1*: finite element interpolation operator (page 52)

Px: projection operator onto a set K (page 16)

P": finite element projection operator (pages 77, 181)

Pgn: finite element projection on Q" (page 154)

Function spaces
L?(Q): the Lebesgue space of p-integrable functions, with the usual mod-
ification if p = oo (page 28)

C™(9Q): the space of functions whose derivatives up to and including
order m are continuous up to the boundary I' (page 26)

C§°(€2): the space of infinitely differentiable functions with compact sup-
port in ) (page 26)

WkP(€): the Sobolev space of functions whose weak derivatives of orders
less than or equal to k are p-integrable on 2 (page 30)

H*(Q) = Wk2(Q) (page 30)
W:’p(Q): the closure of C§°(Q2) in W*P(Q) (page 30)
HE(Q) = W32(Q) (page 30)
H~1(Q): the dual of H}(Q) (page 34)
H3 (T"): a Sobolev space on T', defined as the range of the trace operator
on H'(9) (page 36)
H~%(T): the dual of H%(T) (page 36)
Hp = Hz ()4 (page 143)
Hi: dual of Hr (page 144)
H={v=(vy,...,v))T : v; € L3(Q), 1 <i<d}=L*Q)Y,
inner product (u,v)y = [, ui(x) vi(x) dr (page 142)
Q = {‘7’ = (Ti]*) L Tig = Tyi € LQ(Q), 1 S i, ] < d} = L2(Q)g><d,
inner product (o, 7)g = [, 04;(x) 75 (x) dr (page 142)
Qi={7€Q:Divr e H},
inner product (o, 7)g, = (o, 7)g + (Dive,Divr)y (page 145)
V={ve H(Q)?: v=0ae onl;},
inner product (u,v)y = (e(u),e(v))q (page 144)



LIST OF SYMBOLS xvii

Vi ={veV:uv =0ae onls} with the inner product (u,v)y

(page 144)

Vo, ={v €V : v <0 ae onl3} with the inner product (u,v)y
(page 144)

X: a Hilbert space or its subset with inner product (-,-)x, or a Banach
space or its subset with norm || - || x

C™(I;X)={veC;X): v0) € C(T;X), j=1,...,m} (page 37)
LP(I; X) = {v: I — X measurable : ||v||»(1;x) < o0} (page 38)
We(I;X) = {0 € L0, T X) ¢ o9l zox) < 00 ¥j <k} (age 39)
H*(I; X) = W*2(I; X) (page 40)

Other symbols

d: a positive integer taking the values 1,2, 3 in applications

c: a generic positive constant

r+ = max{0,r}: positive part of r

v: unit outward normal on the boundary of 2

(-,-): the duality pairing between Hz (I') and H~2(T') (page 36)
(-,-)r: the duality pairing between Hr and H[. (page 144)

V: for any

3: there exist(s)

A: closure of the set A

int A or ;1: interior of the set A

0A: boundary of the set A

di;: the Kronecker delta

s.t.: such that

a.e.: almost everywhere

iff: if and only if

O(h): for some constant ¢ > 0 independent of h such that |O(h)| < ch
Aw, = w, — wp_1: backward difference

dnwyn = Awy, /ky: backward divided difference
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