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General Introduction

1. Overview

This book consists of two independent works that prove different ex-
tensions of D. Christodoulou and S. Klainerman’s stability theorem of the
Minkowski space in General Relativity. The first part, by Lydia Bieri, dis-
cusses solutions of the Einstein vacuum equations (obtained in her Ph.D.
thesis [2] in 2007), and the second part, by Nina Zipser, discusses solu-
tions of the Einstein-Maxwell equations (obtained in her Ph.D. thesis [14]
in 2000). To the authors’ present knowledge, these are the only extensions
of the celebrated results in ‘The global nonlinear stability of the Minkowski
space’ [8].

In the first part of the book, Lydia Bieri solves the Cauchy problem for
the Einstein vacuum (EV) equations with more general, asymptotically flat
initial data, and describes precisely the asymptotic behaviour. In particular,
she assumes one less decay in the power of r and one less derivative than in
[8]. She proves that also in this case, the initial data, being globally close
to the trivial data, yields a solution which is a complete spacetime, tending
to the Minkowski spacetime at infinity along any geodesic. Contrary to
the situation in [8], certain estimates in this proof are borderline in view
of decay, indicating that the conditions in the main theorem on the decay
at infinity on the initial data are sharp. The main results of this work are
stated in the ‘Introduction’, section 1.3, in Theorem 2, and in the chapter
‘Main Theorem’ in Theorem 3.

In ‘The global nonlinear stability of the Minkowski space’ [8],
D. Christodoulou and S. Klainerman proved the following result: ‘Every
strongly asymptotically flat, maximal, initial data which is globally close to
the trivial data gives rise to a solution which is a complete spacetime tending
to the Minkowski spacetime at infinity along any geodesic.’

It is still an open question, what the optimal conditions are for non-
trivial asymptotically flat initial data sets to give rise to a maximal complete
development. L. Bieri’s work contributes to answering this question, stating
sharp conditions on the decay at spatial infinity. It addresses the global,
nonlinear stability of solutions of the Einstein vacuum (EV) equations in
General Relativity. Solutions of the EV equations

Rµν = 0

v
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are spacetimes (M, g), where M is a four-dimensional, oriented, differen-
tiable manifold and g is a Lorentzian metric obeying the EV equations.

As a consequence of imposing fewer conditions on her data, the spacetime
curvature in Bieri’s case is no longer in L∞(M). She only controls one
derivative of the curvature (Ricci) in L2(H). By the trace lemma, the Gauss
curvature K in the leaves of the u-foliation S is only in L4. Contrary to
that, in [8], the Ricci curvature is in L∞(H), and in L∞(S). Christodoulou
and Klainerman control two derivatives of the curvature (Ricci) in L2(H).

The situation in Bieri’s case is both a disadvantage and an advantage.
First, as she does not have the curvature bounded in L∞, certain steps of
the proof become more subtle. On the other hand, she does not have to con-
trol the second derivatives of the curvature, which simplifies the proof. The
fact that she does not use any rotational vectorfields in her proof is a major
simplification. She gains control of the angular derivatives of the curvature
directly from the Bianchi equations, whereas in [8], a difficult construction
of rotational vectorfields was necessary. Another major difference to the
situation studied in [8] by Christodoulou and Klainerman, and which arises
from Bieri’s relaxed assumptions, is the fact that she encounters borderline
cases in view of decay in the power of r, indicating that the conditions in
her main theorem on the decay at infinity on the initial data are sharp. Any
further relaxation would make the corresponding integrals diverge and the
argument would not close any more. Also in Bieri’s situation, energy and
linear momentum are well-defined and conserved, whereas the (ADM) angu-
lar momentum is not defined. This is different to the situation investigated
in [8], where all these quantities are well-defined and conserved.

In the second part of this book, Nina Zipser proves the existence of
smooth, global solutions to the Einstein-Maxwell (EM) equations. A non-
trivial solution of the EM equations is a nontrivial Lorentzian manifold – or
curved spacetime – with an electromagnetic field.

To prove the existence of solutions to the Einstein-Maxwell equations,
Zipser follows the argument and methodology introduced in [8] and outlined
below. To generalize Christodoulou and Klainerman’s results, she needs to
contend with the additional curvature terms that arise due to the presence
of the electromagnetic field F ; in her case the Ricci curvature of the space-
time is not identically zero but rather represented by a quadratic in the
components of F . In particular the Ricci curvature is a constant multi-
ple of the stress-energy tensor for F . Furthermore, the traceless part of
the Riemann curvature tensor no longer satisfies the homogeneous Bianchi
equations but rather inhomogeneous equations including components of the
spacetime Ricci curvature.

Therefore, the second part of this book focuses primarily on the deriva-
tion of estimates for the new terms that arise due to the presence of the
electromagnetic field. To produce estimates for the electromagnetic field,
Zipser uses the Maxwell equations together with the stress-energy tensor
much like Christodoulou and Klainerman use the Bianchi equations and
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Bel-Robinson tensor to produce global energy estimates. Also as in [8], she
uses modified Lie derivatives of the electromagnetic field to obtain higher-
order estimates. Once she produces good estimates for the electromagnetic
field, she can bound the extra terms that appear in (i) the inhomogeneous
equations for the Weyl tensor, (ii) the elliptic system for the parameters of
the time foliation, and (iii) the Hessian of the optical function. After the
extra terms are controlled, the results follow from generalizations of the
proofs in [8].

In proving the stability of Minkowski space, Christodoulou and Klain-
erman rely on the invariant formulation of the EV equations. They cite
two primary difficulties to overcome. The first difficulty is that a general
spacetime has no symmetries, and therefore the conformal isometry group
is trivial. Hence, the vectorfields needed to construct conserved quantities
do not exist. The second is the highly non-linear nature of the hyperbolic
equations, which makes it difficult to bound the asymptotic behavior of
solutions.

To tackle these issues, Christodoulou and Klainerman rely on geometric
constructions that are analogous to structures existing on Minkowski space-
time. These include the following: a time-foliation, whose hypersurfaces
are defined as the level-sets of a time function; an optical function, whose
level sets define the null-structure of the spacetime; and the definition of the
action of the subgroup of the conformal isometry group of Minkowski space-
time corresponding to time translations, scale transformations, inverted time
translations and the spatial rotation group O(3). Whereas in the second part
of the book, all these vectorfields play a crucial role, the first part relies on
the first three but does not use rotational vectorfields.

These geometric constructions have three key applications. First, the
structure equations of the time-foliation together with the condition that
the surfaces are maximal give rise to an elliptic system of equations for the
parameters of the foliation. Once Christodoulou and Klainerman produce
good estimates for the spacetime Riemann curvature tensor, these parame-
ters are fully determined by this elliptic system. Second, Christodoulou and
Klainerman use the optical function to construct quasi-conformal Killing
fields. Third, these vectorfields can be used to produce higher-order energy
estimates of the curvature. In particular, instead of estimating derivatives
of the curvature directly from the Bianchi identities, they apply modified
Lie derivatives with respect to the quasi-conformal Killing fields.

The modified Lie derivatives applied to the traceless part of the Rie-
mann curvature tensor retain the attributes of a Weyl tensor and satisfy
inhomogeneous equations derived from the Bianchi equations. The norms
for the global energy estimates are then constructed from the Bel-Robinson
tensor, which is defined as a quadratic of a Weyl tensor.

To prove the main theorem in their work, Christodoulou and Klainerman
employ a continuity argument. In essence, once they show the existence of
a spacetime slab with appropriate conditions on the initial slice, they use
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the global energy estimates discussed above to control the geometry of the
spacetime slab. This allows them to prove that the geometry on the last
slice can be bounded by the initial data and thus extend their solution.

These concepts are explained in detail in the introduction to the first
part of this book.

Both works use the main approach of Christodoulou and Klainerman
from [8]. This method has been elaborated and combined with new ideas by
Christodoulou in order to study the formation of black holes in GR [6]. Our
notation stays close to the notation in [8]. However, the two cases investi-
gated here differ fundamentally from the original one and so do the details of
the proofs. The differences are pointed out in the two introductions. As for
the generalization in the EV case, the details of the proof are very different
from the original result and require new ideas. In the EM case, the energy-
momentum tensor is equal to the stress-energy tensor of an electro-magnetic
field, and therefore, additional curvature terms have to be controlled.

2. Former Work

In the framework of the Cauchy problem for the EV equations Rµν = 0
the following question had been the subject of investigations by many authors
for a long time: Is there any non-trivial, asymptotically flat initial data
whose maximal development is complete?

In 1952, Y. Choquet-Bruhat focussed the question of local existence and
uniqueness of solutions, in GR. In [3] she treated the Cauchy problem for
the Einstein equations, locally in time, she showed existence and uniqueness
of solutions, reducing the Einstein equations to wave equations, introducing
harmonic (or wave) coordinates. We recall that for a Riemannian manifold
(M, g) a function Φ is called harmonic if △gΦ = 0 with △gΦ = gµν ∇µ(∂νΦ),
where ∇ is the covariant derivative on M associated to g. If the metric g is
Lorentzian, then the equation △gΦ = 0 is the wave equation. She proved
the well-posedeness of the local Cauchy problem in these coordinates. The
local result led to a global theorem proved by Y. Choquet-Bruhat and R.
Geroch in [4], stating the existence of a unique maximal future development
for each given initial data set. In a next step, it is natural to ask whether
this maximal future development is complete. R. Penrose gave a negative
answer in his incompleteness theorem [13]. See also [5].

The said theorem tells us that, if in the initial data set (H, ḡ, k), H is non-
compact but complete, if the positivity condition on the energy holds, and
H contains a closed trapped surface S, the boundary of a compact domain
in H, then the corresponding maximal future development is incomplete.
An exposition of this theorem is given in [5].

Definition 1. A closed trapped surface S in a non-compact Cauchy
hypersurface H is a two-dimensional surface in H, bounding a compact do-
main such that

trχ < 0 on S.
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Note that an infinitesimal displacement of S in M towards the future
along the outgoing null geodesic congruence results in a pointwise decrease
of the area element.

The theorem of Penrose and its extensions by S. Hawking and R. Pen-
rose led directly to the question formulated above: Is there any non-trivial
asymptotically flat initial data whose maximal development is complete?

The answer was given in the joint work of D. Christodoulou and S.
Klainerman [8], ‘The global nonlinear stability of the Minkowski space’.
A rough version of the theorem is stated in the first monograph at the
end of subsection 1.2, whereas a more precise version is given in theorem
1. The problem studied by Christodoulou and Klainerman in [8] was sug-
gested by S.-T. Yau to Klainerman in 1978. (Personal communication Yau,
Christodoulou, 2008.)

Lately, a proof under stronger conditions for the global stability of
Minkowski space for the EV equations and asymptotically flat Schwarzschild
initial data was given by H. Lindblad and I. Rodnianski [11, 12], the latter
for EV (scalar field) equations. They worked with a wave coordinate gauge,
showing the wave coordinates to be stable globally. Concerning the asymp-
totic behaviour, the results are less precise than the ones of Christodoulou
and Klainerman in [8]. Moreover, there are more conditions to be imposed
on the data than in [8]. There is a variant for the exterior part of the proof
from [8] using a double-null foliation by S. Klainerman and F. Nicolò in [10].
Also a semiglobal result was given by H. Friedrich [9] with initial data on a
spacelike hyperboloid.

A still open question is: What is the sharp criteria for non-trivial asymp-
totically flat initial data sets to give rise to a maximal development that is
complete? Or, to what extent can the result of [8] be generalized?

The results of [8] as well as of [14] and [2] are much more general than
the others cited above, as all the other works place stronger conditions on
the data. In this book, we give the results of [2] and [14], proving two
different generalizations of [8].

3. Mathematical and Physical Structures

In this section, we expose some fundamental mathematical and physical
structures.

3.1. Spacetime and Curvature. Let (M, g) denote our spacetime,
represented by a 3 + 1 dimensional manifold M with Lorentzian metric
g. The tangent space at each point of (M, g) is isomorphic to Minkowski
spacetime.

We recall the following facts about the Riemannian curvature tensor R.
For any given vectorfields X, Y, Z on (M, g), it is

(1) R(X, Y )Z = DXDY Z − DY DXZ − D[X,Y ]Z.
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Or in arbitrary local coordinates:

(2) Rα
µλν = ∂λΓα

µν − ∂νΓα
µλ + Γα

βλΓβ
µν − Γα

βνΓ
β
µλ.

Also, recall the Christoffel symbols to be:

Γµ
αβ =

1
2
gµν(∂αgβν + ∂βgαν − ∂νgαβ).

The Ricci tensor then reads:

(3) Rµν = Rα
µαν = ∂αΓα

µν − ∂νΓα
µα + Γα

βαΓβ
µν − Γα

βνΓ
β
µα.

The Riemannian curvature tensor R of the spacetime M fulfills the fol-
lowing Bianchi identities:

(4) D[αRβγ]δϵ := DαRβγδϵ + DβRγαδϵ + DγRαβδϵ = 0.

Now, the traceless part of the curvature tensor reads:

Cαβγδ = Rαβγδ − 1
2
(gαγRβδ + gβδRαγ − gβγRαδ − gαδRβγ)

+
1
6
(gαγgβδ − gαδgβγ)R,(5)

with R denoting the scalar curvature. Actually, C is called the conformal
curvature tensor of the spacetime. This is a particular example of a Weyl
tensor. In general, these tensors are defined as follows.

Definition 2. A Weyl tensor W is a 4-tensor satisfying all the symme-
try properties of the curvature tensor and in addition being traceless.

W is said to fulfill the Bianchi equation, if it is:

(6) D[αWβγ]δϵ = 0.

We mainly work with the Weyl tensor and call it W . Note that, in
general, a Weyl field is not required to satisfy the Bianchi equation. However,
in our situation, W does indeed obey it, and it even plays a major role
in the proof of our main result. To see it, we remark that splitting the
Riemannian curvature tensor into a part given by the Ricci tensor and a
part represented by the Weyl tensor, the Bianchi identities (4) then yield
differential relations between the Ricci and the Weyl tensor. One takes the
first and second contractions of (4) and rewrites this first contraction for the
Weyl tensor, obtaining an equation which in dimension n = 4 is equivalent
to the Bianchi identities. In the EV case, the Weyl tensor satisfies the
homogeneous equations

DαWαβγδ = 0,

and in the EM case the inhomogeneous equations

DαWαβγδ =
1
2
(DγRβδ − DδRβγ).
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Given a Weyl field W , we can define the left ∗W and right W ∗ Hodge
duals to be:

∗Wαβγδ =
1
2
ϵαβµνW

µν
γδ(7)

W ∗
αβγδ =

1
2
Wαβ

µνϵµνγδ,(8)

where ϵαβγδ are the components of the volume element of M . One can think
of (7) as freezing the second pair of indices and considering W as a 2-form
relative to the first pair, correspondingly of (8) as freezing the first pair of
indices and considering W as a 2-form in the second pair. Note that these
definitions of left and right Hodge duals are equivalent. It can easily be
checked that ∗W = W ∗ is also a Weyl tensorfield. Further, it is

∗(∗W ) = −W.

As the volume element of M comes into play in defining the Hodge
duals right above, and as it will be involved in future parts of this work, let
us write down the multiplication properties of the coefficients. The second
up to the fifth of the subsequent equations are obtained by corresponding
contractions.

ϵµ1µ2µ3µ4ϵν1ν2ν3ν4 = −det(δµi
νj

)i,j=1,...,4

ϵµ1µ2µ3µ4ϵµ1ν2ν3ν4 = −det(δµi
νj

)i,j=2,3,4

ϵµ1µ2µ3µ4ϵµ1µ2ν3ν4 = −2det(δµi
νj

)i,j=3,4

ϵµ1µ2µ3µ4ϵµ1µ2µ3ν4 = −6δµ4
ν4

ϵµ1µ2µ3µ4ϵµ1µ2µ3µ4 = −24.

Next, we define the electric-magnetic decomposition of W to be the
following contractions with X, where X is an arbitrary given vectorfield.
The decomposition consists of the two 2-tensors:

iiX(W )αβ = WµανβXµXν(9)
iiX(∗W )αβ =∗ WµανβXµXν .(10)

These tensors are symmetric, traceless and orthogonal to X. It can be
shown that they completely determine W , if X is not null. (See also [7].)

As in our spacetime manifold (M, g), the metric g is Lorentzian, there
exists a vector V in TpM such that gp(V, V ) < 0. Then, its gp-orthogonal
complement is defined as ΣV = {X : gp(X, V ) = 0} and gp restricted to ΣV

is positive definite.
Then we can choose a positive orthonormal frame (e0, e1, e2, e3)p at each

p in M continuously. That is, we obtain the positive orthonormal frame
field consisting of e0, e1, e2, e3 with:

(11) e0 =
V√

−g(V, V )
and e1, e2, e3 being an orthonormal basis for ΣV .
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Any given vector X in TpM can be expanded as

X = X0e0 + X1e1 + X2e2 + X3e3

=
∑

i

Xiei (i = 0, 1, 2, 3).

Consequently, one has

g(ei, ej) = ηij = diag(−1, +1, +1, +1).

g(X, X) = −(X0)2 + (X1)2 + (X2)2 + (X3)2

=
∑

ij

ηijX
iXj

At a point p in M , we can distinguish three types of vectors. Namely,
null, timelike and spacelike vectors. The vectors of the first type form a
double cone at p, while the vectors of the second type form an open set of
two connected components, that is, the interior of this cone, and the vectors
of the third type a connected open set being the exterior of the cone. They
are defined as follows.

Definition 3. The null cone (or light cone) at p in M is

Np = {X ̸= 0 ∈ TpM : gp(X, X) = 0}.

The double cone consists of N+
p and N−

p : Np = N+
p ∪ N−

p .

Denote by I+
p the interior of N+

p and by I−
p the interior of N−

p .

Definition 4. The set of timelike vectors at p in M is given by

Ip := I+
p ∪ I−

p = {X ∈ TpM : gp(X, X) < 0}.

Definition 5. The set of spacelike vectors at p in M is defined to be

Sp := {X ∈ TpM : gp(X, X) > 0}.

Thus, Sp is the exterior of Np.
For physical reasons, the spacetime should be time-orientable. There-

fore, one assumes that it is possible to choose continuously a vector V ∈ I+
p

at each point p in M . That is, one has a continuous timelike future directed
vectorfield. Denote by e0 a continuous future-directed timelike vectorfield
on M at unit magnitude

√
−g(e0, e0) = 1. Thus, one is able to say what

the causal future and past of any event (point) in spacetime means. To do
so, we first give the definition of a causal curve.

Definition 6. A causal curve in M is a differentiable curve γ whose
tangent vector γ̇ at each point p in M belongs to Ip ∪ Np, i.e. is either
timelike or null.

Remark: This means that either γ̇p ∈ I+
p ∪ N+

p at each p along γ in
which case γ is called future-directed, or γ̇p ∈ I−

p ∪ N−
p at each p along γ in

which case γ is called past-directed.
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Definition 7. The causal future of a point p in M , denoted by J+(p),
is the set of all points q ∈ M for which there exists a future-directed causal
curve initiating at p and ending at q.

Correspondingly, we can define J−(p), the causal past of p. To be more
general, we also need the causal future of a set S in M :

Definition 8. The causal future J+(S) of any set S ⊂ M , in particular
in the case that S is a closed set, is

J+(S) = {q ∈ M : q ∈ J+(p)for some p ∈ S}.

Similarly, the definition is given for J−(S). The boundaries ∂J+(S)
and ∂J−(S) of J+(S) and J−(S), respectively, for closed sets S are null
hypersurfaces. They are generated by null geodesic segments. The null
geodesics generating J+(S) have past end points only on S. These null
hypersurfaces ∂J+(S) and ∂J−(S) are realized as level sets of functions u
satisfying the eikonal equation gµν∂µu∂νu = 0.

Let us come back to a causal curve (definition 6) and say how distances
are measured. For this, we define the arc length of this curve and the
temporal distance of two points as follows:

Definition 9. The arc length of a causal curve γ between the points
corresponding to the parameter values λ = a, λ = b is

L[γ](a, b) =
∫ b

a

√
−g(γ̇(λ), γ̇(λ))dλ.

If q ∈ J+(p), we define the temporal distance of q from p by

τ(q, p) = sup
all future-directed causal curves from p to q

L[γ].

Note that the arc length is independent of the parametrization.
Recall that in Riemannian geometry the following statement about min-

imizing geodesics holds.

Theorem 1. (Hopf-Rinow): For a complete Riemannian manifold any
2 points can be joined by a minimizing geodesic.

In Lorentzian geometry the analogous statement is, in general, false.
However, it is true, if the spacetime admits a Cauchy hypersurface. If the
supremum is achieved and the metric is C1, the maximizing curve is a causal
geodesic; after suitable reparametrization the tangent vector is parallelly
transported along the curve.

For the next statement, let us first introduce another important quantity:
The deformation tensor of X, namely (X)π, is given as

(X)παβ = (LXg)αβ(12)

−(X)παβ = (LXg−1)αβ .(13)
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Given a Weyl field W and a vectorfield X, the Lie derivative of W with
respect to X is not, in general, a Weyl field. For, it has trace. In fact, it is:

(14) gαγ(LXWαβγδ) = παγWαβγδ.

In view of this, we define the following modified Lie derivative:

(15) L̂XW := LXW − 1
2

(X)
[W ] +

3
8
tr(X)πW

with

(16) (X)[W ]αβγδ := πµ
αWµβγδ + πµ

βWαµγδ + πµ
γ Wαβµδ + πµ

δ Wαβγµ.

To a Weyl field one can associate a tensorial quadratic form, a 4-covariant
tensorfield which is fully symmetric and trace-free; a generalization of one
found previously by Bel and Robinson [1]. As in [8] it is called the Bel-
Robinson tensor:

(17) Qαβγδ =
1
2
(WαργσWβ

ρ
δ
σ + ∗Wαργσ

∗Wβ
ρ
δ
σ).

It satisfies the following positivity condition:

(18) Q(X1, X2, X3, X4) ≥ 0

where X1, X2, X3 and X4 are future-directed timelike vectors. Moreover, if
W satisfies the Bianchi equations then Q is divergence-free:

(19) DαQαβγδ = 0.

Equation (19) is a certain property of the Bianchi equations. It is con-
nected with their conformal behaviour. In fact, they are covariant under
conformal isometries. To be precise, let Ω be a scalar. Then, if Φ : M → M
is a conformal isometry of the spacetime, i.e.,

Φ∗g = Ω2g,

and if W is a solution, also Ω−1Φ∗W is a solution.
The Bel-Robinson tensor Q is an important tool in our work. We shall

come back to it later in the two parts.
In view of the principal part of the Ricci curvature, let us say a few

words about the symbol. The principal part of the Ricci curvature is

1
2
gαβ{∂µ∂αgβν + ∂ν∂αgβµ − ∂µ∂νgαβ − ∂α∂βgµν}.

If we substitute in the principal part ∂µ∂νgαβ by ξµξν ġαβ , where ξµ are
the components of a covector and ġαβ the components of a possible variation
of g, then we obtain the symbol σξ at a point p ∈ M and a covector ξ ∈ T ∗

p M
for a given metric g:

(σξ · ġ)µν =
1
2
gαβ(ξµξαġβν + ξνξαġβµ − ξµξν ġαβ − ξαξβ ġµν).
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More generally, for a given metric g the symbol σξ at a point p in M and
a covector ξ at p is the linear operator on the space of 2-covariant, symmetric
tensors h at p, defined by:

(20) (σξ · h) =
1
2
{ξ ⊗ iξh + iξh ⊗ ξ − trhξ ⊗ ξ − (ξ, ξ)h}.

We use the following notation:

(iξh)ν = gαβξαhβν ,

(ξ, ξ) = gαβξαξβ,

(ξ ⊗ l)µν = ξµlν ,

gαβhαβ = trh.

One observes that for any given covector ξ and any l ∈ T ∗
p M ,

h = ξ ⊗ l + l ⊗ ξ

belongs to the null space.
σξ · h = 0.

This mirrors the general covariance of the EV equations. Whenever g
is a solution of the EV equations, then the pullback of a diffeomorphism of
the manifold onto itself of g is also a solution. For X being a vectorfield on
M generating a 1-parameter group of diffeomorphisms on M , the symbol
for the Lie derivative (LXg)µν = DµXν + DνXµ is

ξµẊν + ξνẊµ,

whith Ẋµ being the components of an arbitrary covector. Consider the
following equivalence relation

h1 ∼ h2 ⇔ h2 − h1 = l ⊗ ξ + ξ ⊗ l

for l in T ∗
p M , which gives a quotient space Q. There are two possibilities

in view of the null space of the symbol σξ. It depends on the choice of the
covector ξ with (ξ, ξ) ̸= 0 or (ξ, ξ) = 0, whether it is trivial or nontrivial.
Let us consider the two situations:

First, (ξ, ξ) ̸= 0: If ξ is not null, then σξ has only trivial null space
on Q.

Second, (ξ, ξ) = 0: If ξ is null, we can choose ξ in the same component
of the null cone N∗

p in T ∗
p M such that (ξ, ξ) = −2. Then select a unique

representative h out of each equivalence class {h} ∈ Q such that

iξh = 0.

Then it follows that the null space of σξ can be identified with the space
of trace-free quadratic forms on the 2-dimensional spacelike plane Π, the
g-orthogonal complement of the linear span of ξ and ξ. This is the space of
gravitational degrees of freedom at a point.
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If we suppose to be given a t-foliation and the EV equations, as explained
in the introduction of the first monograph. Then the electric-magnetic
decomposition of the curvature tensor R with respect to the future-oriented
unit normal to the time foliation is denoted by E, H. They are symmetric,
traceless 2-tensors tangent to the foliation. In terms of these quantities the
equations (1.19) and (1.20) read:

∇ikjm − ∇jkim = ϵij
lHlm(21)

R̄ij + trkkij − kimkm
j = Eij .(22)

4. Preliminary Tools

4.1. Hodge Theory. Throughout this book, we use many analytic and
geometric tools. A major one is the Hodge theory. We mainly apply it to
obtain estimates in 2 and 3 dimensions. Therefore, let us introduce Hodge
systems and derive estimates for them. Most of the presented results have
been proven by D. Christodoulou and S. Klainerman in [8] for their setting.
We give the proofs for certain of the following results, and refer to [8] for
the others stating the difference of our proofs from theirs.

4.1.1. Hodge Systems on S. In the sequel we assume (S, γ) to be a
compact, 2-dimensional Riemannian manifold. In the first monograph, L.
Bieri shows that the Gauss-Bonnet theorem as well as the uniformization
theorem hold in this case with L4 bounds on the curvature in S. In the
second monograph, N. Zipser works with the correspondingly same assump-
tions on the curvature as D. Christodoulou and S. Klainerman in [8]. By
K we denote the Gauss curvature of S. Also, let S have strictly positive
curvature, that is km > 0 with km = minS r2K.

We shall first introduce different types of Hodge systems, and afterwards
we will state the corresponding theorems for these systems. So, recall now
the following definition of a Hodge dual.

Definition 10. Let ξ be a given vectorfield on S, then its Hodge dual
∗ξ is defined by

∗ξA = ϵABξB,

where ϵAB denote the components of the area element relative to an arbitrary
frame eA with A = 1, 2.

If ξ is a symmetric, traceless 2-tensor, its left, ∗ξ, and right, ξ∗, Hodge
duals are defined as

∗ξAB = ϵACξC
B , ξ∗

AB = ξC
AϵCB.

Remark: Note that the tensors ∗ξ and ξ∗ are also symmetric and
traceless. Also, one easily verifies that

∗ξ = −ξ∗.
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We denote by div/ the divergence operator on S and by curl/ the curl
operator on S. For any (k + 1)-dimensional tensor ξ these are given by

div/ ξA1···Ak = ∇/ BξA1···AkB(23)

curl/ ξA1···Ak = ϵBC∇/BξA1···AkC .(24)

Also, recall that the trace operator on S is

(25) trξA1···Ak−1 = γBCξA1···Ak−1BC .

Next, we are going to present the types of Hodge systems, that we will
always use throughout this work.

H1 Let ξ be a vector on S that verifies

div/ ξ = f(26)
curl/ ξ = g(27)

with f and g being given scalar functions on S.
H2 Let ξ be a symmetric, traceless 2-tensor on S that verifies

(28) div/ ξ = f

with f being a given vector.
H0 This is a special case of H1. Namely, we consider the scalar Poisson

equation on S. So, let Φ be a scalar function on S that verifies

(29) △/ Φ = f

with f being an arbitrary scalar function on S.
H(k+1) Let ξ be a symmetric, traceless (k+1)-tensor that verifies

div/ ξ = f(30)
curl/ ξ = g(31)

with f and g being given k covariant, symmetric tensors on S.
Further on, we will study properties of results of the Hodge systems

above, and derive corresponding estimates. First, we state the following:

Proposition 1. Let (S, γ) be a 2-dimensional, compact Riemannian
manifold.

1. Assume that the vectorfield ξ is a solution of H1. Then it is

(32)
∫

S
| ∇/ ξ |2 + K | ξ |2 =

∫

S
| f |2 + | g |2 .

2. Assume that the symmetric, traceless 2-tensor ξ is a solution of
H2. Then it is

(33)
∫

S
| ∇/ ξ |2 + 2K | ξ |2 = 2

∫

S
| f |2 .
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3. This is a particular case of the first item of this proposition. Assume
that Φ is a solution of H0. Then it is

(34)
∫

S
| ∇/ 2Φ |2 + K | Φ |2 =

∫

S
| f |2 .

Proof. This proof follows from the proof of proposition 2.

Proposition 2. Assume that ξ is an arbitrary, (k+1) covariant, totally
symmetric tensor that verifies the following generalized Hodge system:

H’(k+1):

div/ ξ = f(35)
curl/ ξ = g(36)

trξ = h(37)

with f and g given k covariant, symmetric tensors and h a covariant sym-
metric tensor of rank (k − 1). Then it is

(38)
∫

S
| ∇/ ξ |2 + (k + 1)K | ξ |2 =

∫

S
| f |2 + | g |2 + kK | h |2 .

Note that if k = 0, then we take trξ = 0. That is

(39)
∫

S
| ∇/ ξ |2 + K | ξ |2 =

∫

S
| f |2 + | g |2 .

Proof of Proposition 2: Writing out the curl equation (36), we obtain

(40) ∇/CξA1···AkB = ∇/BξA1···AkC − ϵBCgA1···Ak .

Now, differentiate (40) and recall the fact that

∇/B∇/DξA1···AkC − ∇/D∇/BξA1···AkC

=
k∑

j=1

RAjMBDξM
A1···Âj ···AkC

+ RCMBDξM
A1···Ak

,

the commutator for the corresponding tensors ξ being zero. We obtain

∇/D∇/CξA1···AkB = ∇/D∇/BξA1···AkC − ϵBC∇/DgA1···Ak

= ∇/B∇/DξA1···AkC +
k∑

j=1

RAjMBDξM
A1···Âj ···AkC

+ RCMBDξM
A1···Ak

− ϵBC∇/DgA1···Ak .
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Taking the trace relative to C and D yields

△/ ξA1···AkB = ∇/B(∇/ CξA1···AkC) − ϵBC∇/ CgA1···Ak

+
k∑

j=1

RAjMB
CξM

A1···Âj ···AkC
− RMBξM

A1···Ak

= ∇/BfA1···Ak − ϵBC∇/ CgA1···Ak

+
k∑

j=1

γM
CγAjBγAjB RAjCB

CξM
A1···Âj ···AkC − RξA1···AkB

= ∇/BfA1···Ak − ϵBC∇/ CgA1···Ak

+
k∑

j=1

γAjBRhA1···Âj ···Ak
− RξA1···AkB.

In view of the formula relating the Gauss curvature K to the Riemannian
curvature Rabcd, multiplying the last equation by ξA1···AkB and integrating
on S, we deduce that
∫

S
ξA1···AkB△/ ξA1···AkB =

∫

S
ξA1···AkB∇/BfA1···Ak −

∫

S
ξA1···AkBϵBC∇/ CgA1···Ak

+
∫

S
(k + 1)KξA1···AkBξA1···AkB

−
∫

S

k∑

j=1

γAjBKξA1···AkB hA1···Âi···Ak
.

That is∫

S
| ∇/ ξ |2 =

∫

S
| f |2 +

∫

S
| g |2 −

∫

S
(k + 1)K | ξ |2 +

∫

S
kK | h |2 .

This closes the proof.
Then the next proposition follows directly.

Proposition 3. Under the same assumptions as in proposition 2, there
exists a constant c such that

(41)
∫

S
| ∇/ ξ |2 + K | ξ |2 ≤ c

∫

S
| f |2 + | g |2 + K | h |2 .

We immediately deduce the following proposition.

Proposition 4. Let ξ be as in proposition 2 and traceless in addition.
Then there are constants C1 and C2 such that

∫

S
| ∇/ ξ |2 ≤ C1

∫

S
| f |2 + | g |2

∫

S
K | ξ |2 ≤ C2

∫

S
| f |2 + | g |2 .
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As a consequence of these, one has the following.

Proposition 5. Assume that km > 0. Let ξ be a solution of either H1
or H2. Then the next statements are valid.

1. There exists a constant c1(K), such that

(42)
∫

S
{| ∇/ ξ |2 + r−2 | ξ |2} ≤ c1

∫

S
| f |2 .

2. There exists a constant c2(K), such that

(43)
∫

S
{| ∇/ 2ξ |2 + r−2 | ξ |2} ≤ c2

∫

S
{| ∇/ f |2 + r−2 | f |2}.

The analogue, namely Lp estimates, can be shown for any 2 ≤ p < ∞.
We will make use of them as well. The corresponding proof applies the
classical Calderon-Zygmund inequalities and the uniformization theorem.
As shown in a separate chapter of the first monograph, the uniformization
theorem is also valid for the case with K ∈ Lp for any 2 ≤ p < ∞. Now, we
have the following result.

Proposition 6. Let (S, γ) be a 2-dimensional, compact Riemannian
manifold. Assume that km > 0, and let ξ be a solution of either H1 or H2.
Then the following estimates hold:

1. There exists a constant c(K, p) such that for all 2 ≤ p < ∞, it is

(44)
∫

S
{| ∇/ ξ |p + r−p | ξ |p} ≤ c

∫

S
{| f |p + | g |p}.

2. There exists a constant c(K, p) such that for all 2 ≤ p < ∞, it is

(45)
∫

S
| ∇/ 2ξ |p ≤ c

∫

S
{| ∇/ f |p + r−p | f |p + | ∇/ g |p + r−p | g |p}.

4.1.2. Hodge Systems on H. Throughout this chapter, we will de-
note by (H, g) a 3-dimensional Riemannian manifold diffeomorphic to R3, on
which there exists a generalized radial function u with second fundamental
form θ and Gaussian curvature K. We will require that u is quasiconvex,
which means that

trθ > 0, K > 0.

We shall work with Hodge systems on Ht in the first monograph in the
Chapter 6.2 ‘Estimating the Components δ, ϵ, η̂ of the Second Fundamental
Form’, where we will state and prove the estimates for the considered Hodge
systems in detail. In the second monograph, we shall use the Lp theory for
2-d Hodge systems developed in [8] to produce estimates for the second
fundamental form of the time foliation.

Here, let us consider the following: Starting from a Hodge system for
a 1-form A on H, we shall now give results for A and its corresponding
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derivatives. So, let us introduce the following Hodge system for a smooth,
compactly supported symmetric 1-tensor A on H:

div A = ∇jAj = f(46)

(curlA)i =
1
2
ϵjk
i ∇jAk = g.(47)

Now, we state the following proposition.

Proposition 7. Let A be a smooth, compactly supported, symmetric
1-tensor on H. Then the following identity holds:

(48)
∫

H
| ∇A |2 =

∫

H
| f |2 +

∫

H
| g |2 −

∫

H
R | A |2,

where R is the magnitude of the Ricci curvature of H.

Proof. We have

(curlA)i =
1
2
ϵjk
i ∇jAk.

Then, we calculate

| curlA |2 =
1
2
(∇jAk − ∇kAj)(∇jAk − ∇kAj)

= | ∇A |2 − (∇jAk)(∇kAj).(49)

Integrating this on H, we obtain for the last term, using integration by
parts and commuting derivatives:

∫

H
(∇jAk)(∇kAj) = −

∫

H
Ak∇j∇kAj = −

∫

H
Aj∇k∇jAk

= −
∫

H

(
Aj∇jdivA + AjRk

jklA
l
)

= −
∫

H
Aj∇jdivA −

∫

H
RjlA

jAl

=
∫

H
| divA |2 −

∫

H
R | A |2 .(50)

Thus, we now see that

(51)
∫

H
| curlA |2 =

∫

H
| ∇A |2 −

∫

H
| divA |2 +

∫

H
R | A |2,

which proves the proposition.

Remark: Take equation (48) and write it as follows:

(52)
∫

H
| ∇A |2 +

∫

H
R | A |2 =

∫

H
| f |2 +

∫

H
| g |2 .

Note that, if the right-hand side of (1.52) is finite, that is if
∥curlA∥L2 <∞ and ∥divA∥L2 <∞, then it is

∫
H | ∇A |2 +

∫
H R |A |2 <∞.



xxii GENERAL INTRODUCTION

Next, we will state two propositions concerning the first and second
derivatives of a symmetric, 2-tensor on H. So, let V be a symmetric 2-
tensor on H. Consider the Hodge system

div V = ρ(53)
curl V = σ(54)

tr V = 0,(55)

where ρ is a given 1-form and σ a given symmetric, traceless, 2-covariant
tensor. We can now formulate the following.

Proposition 8. Let V be a smooth, compactly supported 2-symmetric
tensor on H, that verifies the Hodge system ((53)–(55)).

Then it is

(56)
∫

H

(
| ∇V |2 + 3RmnV imV n

i − 1
2
R | V |2

)
=

∫

H

(
| σ |2 +

1
2

| ρ |2
)

.

We can also derive the next statement, estimating the second derivative
of V .

Proposition 9. Let the assumptions of proposition 8 hold.
Then there exists a constant c such that

(57)∫

H
| ∇2V |2≤ c

∫

H

(
| ∇σ |2 + | ∇ρ |2 + | Ric || ∇V |2 + | Ric |2| V |2

)
.
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lishing house ETH Zürich. (2009). ISBN 978-3-03719-067-8.

[7] D. Christodoulou, S. Klainermann. Asymptotic properties of linear field equations
in Minkowski space. Comm. Pure Appl. Math. 43. (1990). 137–199.

[8] D. Christodoulou, S. Klainerman. The global nonlinear stability of the Minkowski
space. Princeton Math.Series 41. Princeton University Press. Princeton. NJ.
(1993).

[9] H. Friedrich. On the Existence of n-Geodesically Complete or Future Com-
plete Solutions of Einstein’s Field Equations with Smooth Asymptotic Structure.
Comm.Math.Phys. 107. (1986). 587–609.



BIBLIOGRAPHY xxiii
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A famous result of Christodoulou and Klainerman is the global nonlinear 
stability of Minkowski spacetime. In this book, Bieri and Zipser provide 
two extensions to this result. In the first part, Bieri solves the Cauchy 
problem for the Einstein vacuum equations with more general, asymp-
totically flat initial data, and describes precisely the asymptotic behavior. 
In particular, she assumes less decay in the power of r  and one less 
derivative than in the Christodoulou–Klainerman result. She proves 
that in this case, too, the initial data, being globally close to the trivial 
data, yields a solution which is a complete spacetime, tending to the 
Minkowski spacetime at infinity along any geodesic. In contrast to the 
original situation, certain estimates in this proof are borderline in view of 
decay, indicating that the conditions in the main theorem on the decay at 
infinity on the initial data are sharp.

In the second part, Zipser proves the existence of smooth, global solu-
tions to the Einstein–Maxwell equations. A nontrivial solution of these 
equations is a curved spacetime with an electromagnetic field. To prove 
the existence of solutions to the Einstein–Maxwell equations, Zipser 
follows the argument and methodology introduced by Christodoulou 
and Klainerman. To generalize the original results, she needs to contend 
with the additional curvature terms that arise due to the presence of the 
electromagnetic field F ; in her case the Ricci curvature of the spacetime 
is not identically zero but rather represented by a quadratic in the 
components of F . In particular the Ricci curvature is a constant multiple 
of the stress-energy tensor for F . Furthermore, the traceless part of the 
Riemann curvature tensor no longer satisfies the homogeneous Bianchi 
equations but rather inhomogeneous equations including components of 
the spacetime Ricci curvature. Therefore, the second part of this book 
focuses primarily on the derivation of estimates for the new terms that 
arise due to the presence of the electromagnetic field.

For additional information 
and updates on this book, visit

!!!"#$%"&'()*&&+,#(-%)#$%.,/01


