Studies in Advanced Mathematics

S.-T. Yau, Series Editor

Extensions of the Stability Theorem of the Minkowski Space in General Relativity

Lydia Bieri
Nina Zipser

Studies in Advanced Mathematics

Volume 45

Extensions of the Stability Theorem of the Minkowski Space in General Relativity

Part I: Solutions of the

Einstein Vacuum Equations
By Lydia Bieri
Part II: Solutions of the
Einstein-Maxwell Equations
By Nina Zipser

American Mathematical Society • International Press

Library of Congress Cataloging-in-Publication Data

Bieri, Lydia, 1972-
Extensions of the stability theorem of the Minkowski space in general relativity / Lydia Bieri, Nina Zipser.
p. cm. - (AMS/IP studies in advanced mathematics ; v. 45)

Includes bibliographical references and index.
ISBN 978-0-8218-4823-4

1. Generalized spaces. 2. Stability. 3. General relativity (Physics)—Mathematics. I. Zipser, Nina, 1972- II. Title.
QA689.B44 2009
$516.3^{\prime} 74-\mathrm{dc} 22 \times 2009008908$

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society and International Press. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.
© 2009 by the American Mathematical Society and International Press. All rights reserved. The American Mathematical Society and International Press retain all rights except those granted to the United States Government.

Printed in the United States of America.
© The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
Visit the International Press home page at URL: http://www.intlpress.com/

$$
10987654321 \quad 141312111009
$$

General Table of Contents

Part I: Solutions of the Einstein Vacuum Equations, Lydia Bieri 1
Chapter 1. Introduction 11
Chapter 2. Preliminary Tools 43
Chapter 3. Main Theorem 51
Chapter 4. Comparison 69
Chapter 5. Error Estimates 105
Chapter 6. Second Fundamental Form k : Estimates for the Components of k 167
Chapter 7. Second Fundamental Form χ : Estimating χ and ζ 189
Chapter 8. Uniformization Theorem 221
Chapter 9. χ on the Surfaces S - Changes in r and s 241
Chapter 10. The Last Slice 247
Appendix A. Curvature Tensor - Components 283
Appendix B. Uniformization Theorem: Standard Situation, Cases 1 and 2 285
Bibliography 291
Index 293
Part II: Solutions of the Einstein-Maxwell Equations, Nina Zipser 297
Chapter 1. Introduction 307
Chapter 2. Norms and Notation 321
Chapter 3. Existence Theorem 337
Chapter 4. The Electromagnetic Field 343
Chapter 5. Error Estimates for F 363
Chapter 6. Interior Estimates for F 413
Chapter 7. Comparison Theorem for the Weyl Tensor 425
Chapter 8. Error Estimates for W 439
Chapter 9. Second Fundamental Form 453
Chapter 10. The Lapse Function 465
Chapter 11. Optical Function 471
Chapter 12. Conclusion 485
Bibliography 491

General Introduction

1. Overview

This book consists of two independent works that prove different extensions of D. Christodoulou and S. Klainerman's stability theorem of the Minkowski space in General Relativity. The first part, by Lydia Bieri, discusses solutions of the Einstein vacuum equations (obtained in her Ph.D. thesis [2] in 2007), and the second part, by Nina Zipser, discusses solutions of the Einstein-Maxwell equations (obtained in her Ph.D. thesis [14] in 2000). To the authors' present knowledge, these are the only extensions of the celebrated results in 'The global nonlinear stability of the Minkowski space' [8].

In the first part of the book, Lydia Bieri solves the Cauchy problem for the Einstein vacuum (EV) equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behaviour. In particular, she assumes one less decay in the power of r and one less derivative than in [8]. She proves that also in this case, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. Contrary to the situation in [8], certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp. The main results of this work are stated in the 'Introduction', section 1.3, in Theorem 2, and in the chapter 'Main Theorem' in Theorem 3.

In 'The global nonlinear stability of the Minkowski space' [8], D. Christodoulou and S. Klainerman proved the following result: 'Every strongly asymptotically flat, maximal, initial data which is globally close to the trivial data gives rise to a solution which is a complete spacetime tending to the Minkowski spacetime at infinity along any geodesic.'

It is still an open question, what the optimal conditions are for nontrivial asymptotically flat initial data sets to give rise to a maximal complete development. L. Bieri's work contributes to answering this question, stating sharp conditions on the decay at spatial infinity. It addresses the global, nonlinear stability of solutions of the Einstein vacuum (EV) equations in General Relativity. Solutions of the EV equations

$$
R_{\mu \nu}=0
$$

are spacetimes (M, g), where M is a four-dimensional, oriented, differentiable manifold and g is a Lorentzian metric obeying the EV equations.

As a consequence of imposing fewer conditions on her data, the spacetime curvature in Bieri's case is no longer in $L^{\infty}(M)$. She only controls one derivative of the curvature (Ricci) in $L^{2}(H)$. By the trace lemma, the Gauss curvature K in the leaves of the u-foliation S is only in L^{4}. Contrary to that, in [8], the Ricci curvature is in $L^{\infty}(H)$, and in $L^{\infty}(S)$. Christodoulou and Klainerman control two derivatives of the curvature (Ricci) in $L^{2}(H)$.

The situation in Bieri's case is both a disadvantage and an advantage. First, as she does not have the curvature bounded in L^{∞}, certain steps of the proof become more subtle. On the other hand, she does not have to control the second derivatives of the curvature, which simplifies the proof. The fact that she does not use any rotational vectorfields in her proof is a major simplification. She gains control of the angular derivatives of the curvature directly from the Bianchi equations, whereas in [8], a difficult construction of rotational vectorfields was necessary. Another major difference to the situation studied in [8] by Christodoulou and Klainerman, and which arises from Bieri's relaxed assumptions, is the fact that she encounters borderline cases in view of decay in the power of r, indicating that the conditions in her main theorem on the decay at infinity on the initial data are sharp. Any further relaxation would make the corresponding integrals diverge and the argument would not close any more. Also in Bieri's situation, energy and linear momentum are well-defined and conserved, whereas the (ADM) angular momentum is not defined. This is different to the situation investigated in $[8]$, where all these quantities are well-defined and conserved.

In the second part of this book, Nina Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell (EM) equations. A nontrivial solution of the EM equations is a nontrivial Lorentzian manifold - or curved spacetime - with an electromagnetic field.

To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced in [8] and outlined below. To generalize Christodoulou and Klainerman's results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field F; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of F. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for F. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature.

Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field. To produce estimates for the electromagnetic field, Zipser uses the Maxwell equations together with the stress-energy tensor much like Christodoulou and Klainerman use the Bianchi equations and

Bel-Robinson tensor to produce global energy estimates. Also as in [8], she uses modified Lie derivatives of the electromagnetic field to obtain higherorder estimates. Once she produces good estimates for the electromagnetic field, she can bound the extra terms that appear in (i) the inhomogeneous equations for the Weyl tensor, (ii) the elliptic system for the parameters of the time foliation, and (iii) the Hessian of the optical function. After the extra terms are controlled, the results follow from generalizations of the proofs in [8].

In proving the stability of Minkowski space, Christodoulou and Klainerman rely on the invariant formulation of the EV equations. They cite two primary difficulties to overcome. The first difficulty is that a general spacetime has no symmetries, and therefore the conformal isometry group is trivial. Hence, the vectorfields needed to construct conserved quantities do not exist. The second is the highly non-linear nature of the hyperbolic equations, which makes it difficult to bound the asymptotic behavior of solutions.

To tackle these issues, Christodoulou and Klainerman rely on geometric constructions that are analogous to structures existing on Minkowski spacetime. These include the following: a time-foliation, whose hypersurfaces are defined as the level-sets of a time function; an optical function, whose level sets define the null-structure of the spacetime; and the definition of the action of the subgroup of the conformal isometry group of Minkowski spacetime corresponding to time translations, scale transformations, inverted time translations and the spatial rotation group $O(3)$. Whereas in the second part of the book, all these vectorfields play a crucial role, the first part relies on the first three but does not use rotational vectorfields.

These geometric constructions have three key applications. First, the structure equations of the time-foliation together with the condition that the surfaces are maximal give rise to an elliptic system of equations for the parameters of the foliation. Once Christodoulou and Klainerman produce good estimates for the spacetime Riemann curvature tensor, these parameters are fully determined by this elliptic system. Second, Christodoulou and Klainerman use the optical function to construct quasi-conformal Killing fields. Third, these vectorfields can be used to produce higher-order energy estimates of the curvature. In particular, instead of estimating derivatives of the curvature directly from the Bianchi identities, they apply modified Lie derivatives with respect to the quasi-conformal Killing fields.

The modified Lie derivatives applied to the traceless part of the Riemann curvature tensor retain the attributes of a Weyl tensor and satisfy inhomogeneous equations derived from the Bianchi equations. The norms for the global energy estimates are then constructed from the Bel-Robinson tensor, which is defined as a quadratic of a Weyl tensor.

To prove the main theorem in their work, Christodoulou and Klainerman employ a continuity argument. In essence, once they show the existence of a spacetime slab with appropriate conditions on the initial slice, they use
the global energy estimates discussed above to control the geometry of the spacetime slab. This allows them to prove that the geometry on the last slice can be bounded by the initial data and thus extend their solution.

These concepts are explained in detail in the introduction to the first part of this book.

Both works use the main approach of Christodoulou and Klainerman from [8]. This method has been elaborated and combined with new ideas by Christodoulou in order to study the formation of black holes in GR [6]. Our notation stays close to the notation in [8]. However, the two cases investigated here differ fundamentally from the original one and so do the details of the proofs. The differences are pointed out in the two introductions. As for the generalization in the EV case, the details of the proof are very different from the original result and require new ideas. In the EM case, the energymomentum tensor is equal to the stress-energy tensor of an electro-magnetic field, and therefore, additional curvature terms have to be controlled.

2. Former Work

In the framework of the Cauchy problem for the EV equations $R_{\mu \nu}=0$ the following question had been the subject of investigations by many authors for a long time: Is there any non-trivial, asymptotically flat initial data whose maximal development is complete?

In 1952, Y. Choquet-Bruhat focussed the question of local existence and uniqueness of solutions, in GR. In [3] she treated the Cauchy problem for the Einstein equations, locally in time, she showed existence and uniqueness of solutions, reducing the Einstein equations to wave equations, introducing harmonic (or wave) coordinates. We recall that for a Riemannian manifold (M, g) a function Φ is called harmonic if $\triangle_{g} \Phi=0$ with $\triangle_{g} \Phi=g^{\mu \nu} \nabla_{\mu}\left(\partial_{\nu} \Phi\right)$, where ∇ is the covariant derivative on M associated to g. If the metric g is Lorentzian, then the equation $\triangle_{g} \Phi=0$ is the wave equation. She proved the well-posedeness of the local Cauchy problem in these coordinates. The local result led to a global theorem proved by Y. Choquet-Bruhat and R. Geroch in [4], stating the existence of a unique maximal future development for each given initial data set. In a next step, it is natural to ask whether this maximal future development is complete. R. Penrose gave a negative answer in his incompleteness theorem [13]. See also [5].

The said theorem tells us that, if in the initial data set $(H, \bar{g}, k), H$ is noncompact but complete, if the positivity condition on the energy holds, and H contains a closed trapped surface S, the boundary of a compact domain in H, then the corresponding maximal future development is incomplete. An exposition of this theorem is given in [5].

Definition 1. A closed trapped surface S in a non-compact Cauchy hypersurface H is a two-dimensional surface in H, bounding a compact domain such that

$$
\operatorname{tr} \chi<0 \quad \text { on } S .
$$

Note that an infinitesimal displacement of S in M towards the future along the outgoing null geodesic congruence results in a pointwise decrease of the area element.

The theorem of Penrose and its extensions by S. Hawking and R. Penrose led directly to the question formulated above: Is there any non-trivial asymptotically flat initial data whose maximal development is complete?

The answer was given in the joint work of D . Christodoulou and S . Klainerman [8], 'The global nonlinear stability of the Minkowski space'. A rough version of the theorem is stated in the first monograph at the end of subsection 1.2 , whereas a more precise version is given in theorem 1. The problem studied by Christodoulou and Klainerman in [8] was suggested by S.-T. Yau to Klainerman in 1978. (Personal communication Yau, Christodoulou, 2008.)

Lately, a proof under stronger conditions for the global stability of Minkowski space for the EV equations and asymptotically flat Schwarzschild initial data was given by H. Lindblad and I. Rodnianski [11, 12], the latter for EV (scalar field) equations. They worked with a wave coordinate gauge, showing the wave coordinates to be stable globally. Concerning the asymptotic behaviour, the results are less precise than the ones of Christodoulou and Klainerman in [8]. Moreover, there are more conditions to be imposed on the data than in $[\mathbf{8}]$. There is a variant for the exterior part of the proof from [8] using a double-null foliation by S. Klainerman and F. Nicolò in [10]. Also a semiglobal result was given by H. Friedrich [9] with initial data on a spacelike hyperboloid.

A still open question is: What is the sharp criteria for non-trivial asymptotically flat initial data sets to give rise to a maximal development that is complete? Or, to what extent can the result of [8] be generalized?

The results of $[\mathbf{8}]$ as well as of $[\mathbf{1 4}]$ and $[\mathbf{2}]$ are much more general than the others cited above, as all the other works place stronger conditions on the data. In this book, we give the results of $[\mathbf{2}]$ and $[\mathbf{1 4}]$, proving two different generalizations of [8].

3. Mathematical and Physical Structures

In this section, we expose some fundamental mathematical and physical structures.
3.1. Spacetime and Curvature. Let (M, g) denote our spacetime, represented by a $3+1$ dimensional manifold M with Lorentzian metric g. The tangent space at each point of (M, g) is isomorphic to Minkowski spacetime.

We recall the following facts about the Riemannian curvature tensor R. For any given vectorfields X, Y, Z on (M, g), it is

$$
\begin{equation*}
R(X, Y) Z=D_{X} D_{Y} Z-D_{Y} D_{X} Z-D_{[X, Y]} Z \tag{1}
\end{equation*}
$$

Or in arbitrary local coordinates:

$$
\begin{equation*}
R_{\mu \lambda \nu}^{\alpha}=\partial_{\lambda} \Gamma_{\mu \nu}^{\alpha}-\partial_{\nu} \Gamma_{\mu \lambda}^{\alpha}+\Gamma_{\beta \lambda}^{\alpha} \Gamma_{\mu \nu}^{\beta}-\Gamma_{\beta \nu}^{\alpha} \Gamma_{\mu \lambda}^{\beta} . \tag{2}
\end{equation*}
$$

Also, recall the Christoffel symbols to be:

$$
\Gamma_{\alpha \beta}^{\mu}=\frac{1}{2} g^{\mu \nu}\left(\partial_{\alpha} g_{\beta \nu}+\partial_{\beta} g_{\alpha \nu}-\partial_{\nu} g_{\alpha \beta}\right)
$$

The Ricci tensor then reads:

$$
\begin{equation*}
R_{\mu \nu}=R_{\mu \alpha \nu}^{\alpha}=\partial_{\alpha} \Gamma_{\mu \nu}^{\alpha}-\partial_{\nu} \Gamma_{\mu \alpha}^{\alpha}+\Gamma_{\beta \alpha}^{\alpha} \Gamma_{\mu \nu}^{\beta}-\Gamma_{\beta \nu}^{\alpha} \Gamma_{\mu \alpha}^{\beta} . \tag{3}
\end{equation*}
$$

The Riemannian curvature tensor R of the spacetime M fulfills the following Bianchi identities:

$$
\begin{equation*}
D_{[\alpha} R_{\beta \gamma] \delta \epsilon}:=D_{\alpha} R_{\beta \gamma \delta \epsilon}+D_{\beta} R_{\gamma \alpha \delta \epsilon}+D_{\gamma} R_{\alpha \beta \delta \epsilon}=0 \tag{4}
\end{equation*}
$$

Now, the traceless part of the curvature tensor reads:

$$
\begin{align*}
C_{\alpha \beta \gamma \delta}= & R_{\alpha \beta \gamma \delta}-\frac{1}{2}\left(g_{\alpha \gamma} R_{\beta \delta}+g_{\beta \delta} R_{\alpha \gamma}-g_{\beta \gamma} R_{\alpha \delta}-g_{\alpha \delta} R_{\beta \gamma}\right) \\
& +\frac{1}{6}\left(g_{\alpha \gamma} g_{\beta \delta}-g_{\alpha \delta} g_{\beta \gamma}\right) R, \tag{5}
\end{align*}
$$

with R denoting the scalar curvature. Actually, C is called the conformal curvature tensor of the spacetime. This is a particular example of a Weyl tensor. In general, these tensors are defined as follows.

Definition 2. A Weyl tensor W is a 4-tensor satisfying all the symmetry properties of the curvature tensor and in addition being traceless.
W is said to fulfill the Bianchi equation, if it is:

$$
\begin{equation*}
D_{[\alpha} W_{\beta \gamma] \delta \epsilon}=0 \tag{6}
\end{equation*}
$$

We mainly work with the Weyl tensor and call it W. Note that, in general, a Weyl field is not required to satisfy the Bianchi equation. However, in our situation, W does indeed obey it, and it even plays a major role in the proof of our main result. To see it, we remark that splitting the Riemannian curvature tensor into a part given by the Ricci tensor and a part represented by the Weyl tensor, the Bianchi identities (4) then yield differential relations between the Ricci and the Weyl tensor. One takes the first and second contractions of (4) and rewrites this first contraction for the Weyl tensor, obtaining an equation which in dimension $n=4$ is equivalent to the Bianchi identities. In the EV case, the Weyl tensor satisfies the homogeneous equations

$$
D^{\alpha} W_{\alpha \beta \gamma \delta}=0,
$$

and in the EM case the inhomogeneous equations

$$
D^{\alpha} W_{\alpha \beta \gamma \delta}=\frac{1}{2}\left(D_{\gamma} R_{\beta \delta}-D_{\delta} R_{\beta \gamma}\right)
$$

Given a Weyl field W, we can define the left ${ }^{*} W$ and right W^{*} Hodge duals to be:

$$
\begin{align*}
{ }^{*} W_{\alpha \beta \gamma \delta} & =\frac{1}{2} \epsilon_{\alpha \beta \mu \nu} W^{\mu \nu}{ }_{\gamma \delta} \tag{7}\\
W_{\alpha \beta \gamma \delta}^{*} & =\frac{1}{2} W_{\alpha \beta}{ }^{\mu \nu} \epsilon_{\mu \nu \gamma \delta}, \tag{8}
\end{align*}
$$

where $\epsilon^{\alpha \beta \gamma \delta}$ are the components of the volume element of M. One can think of (7) as freezing the second pair of indices and considering W as a 2 -form relative to the first pair, correspondingly of (8) as freezing the first pair of indices and considering W as a 2 -form in the second pair. Note that these definitions of left and right Hodge duals are equivalent. It can easily be checked that ${ }^{*} W=W^{*}$ is also a Weyl tensorfield. Further, it is

$$
{ }^{*}\left({ }^{*} W\right)=-W
$$

As the volume element of M comes into play in defining the Hodge duals right above, and as it will be involved in future parts of this work, let us write down the multiplication properties of the coefficients. The second up to the fifth of the subsequent equations are obtained by corresponding contractions.

$$
\begin{aligned}
\epsilon^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}} \epsilon_{\nu_{1} \nu_{2} \nu_{3} \nu_{4}} & =-\operatorname{det}\left(\delta_{\nu_{j}}^{\mu_{i}}\right)_{i, j=1, \ldots, 4} \\
\epsilon^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}} \epsilon_{\mu_{1} \nu_{2} \nu_{3} \nu_{4}} & =-\operatorname{det}\left(\delta_{\nu_{j}}^{\mu_{i}}\right)_{i, j=2,3,4} \\
\epsilon^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}} \epsilon_{\mu_{1} \mu_{2} \nu_{3} \nu_{4}} & =-2 \operatorname{det}\left(\delta_{\nu_{j}}^{\mu_{i}}\right)_{i, j=3,4} \\
\epsilon^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}} \epsilon_{\mu_{1} \mu_{2} \mu_{3} \nu_{4}} & =-6 \delta_{\nu_{4}}^{\mu_{4}} \\
\epsilon^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}} \epsilon_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}} & =-24 .
\end{aligned}
$$

Next, we define the electric-magnetic decomposition of W to be the following contractions with X, where X is an arbitrary given vectorfield. The decomposition consists of the two 2-tensors:

$$
\begin{align*}
i i_{X}(W)_{\alpha \beta} & =W_{\mu \alpha \nu \beta} X^{\mu} X^{\nu} \tag{9}\\
i i_{X}\left({ }^{*} W\right)_{\alpha \beta} & ={ }^{*} W_{\mu \alpha \nu \beta} X^{\mu} X^{\nu} . \tag{10}
\end{align*}
$$

These tensors are symmetric, traceless and orthogonal to X. It can be shown that they completely determine W, if X is not null. (See also [7].)

As in our spacetime manifold (M, g), the metric g is Lorentzian, there exists a vector V in $T_{p} M$ such that $g_{p}(V, V)<0$. Then, its g_{p}-orthogonal complement is defined as $\Sigma_{V}=\left\{X: g_{p}(X, V)=0\right\}$ and g_{p} restricted to Σ_{V} is positive definite.

Then we can choose a positive orthonormal frame $\left(e_{0}, e_{1}, e_{2}, e_{3}\right)_{p}$ at each p in M continuously. That is, we obtain the positive orthonormal frame field consisting of $e_{0}, e_{1}, e_{2}, e_{3}$ with:

$$
\begin{equation*}
e_{0}=\frac{V}{\sqrt{-g(V, V)}} \tag{11}
\end{equation*}
$$

and e_{1}, e_{2}, e_{3} being an orthonormal basis for Σ_{V}.

Any given vector X in $T_{p} M$ can be expanded as

$$
\begin{aligned}
X & =X^{0} e_{0}+X^{1} e_{1}+X^{2} e_{2}+X^{3} e_{3} \\
& =\sum_{i} X^{i} e_{i} \quad(i=0,1,2,3) .
\end{aligned}
$$

Consequently, one has

$$
\begin{aligned}
g\left(e_{i}, e_{j}\right)=\eta_{i j} & =\operatorname{diag}(-1,+1,+1,+1) . \\
g(X, X) & =-\left(X^{0}\right)^{2}+\left(X^{1}\right)^{2}+\left(X^{2}\right)^{2}+\left(X^{3}\right)^{2} \\
& =\sum_{i j} \eta_{i j} X^{i} X^{j}
\end{aligned}
$$

At a point p in M, we can distinguish three types of vectors. Namely, null, timelike and spacelike vectors. The vectors of the first type form a double cone at p, while the vectors of the second type form an open set of two connected components, that is, the interior of this cone, and the vectors of the third type a connected open set being the exterior of the cone. They are defined as follows.

Definition 3. The null cone (or light cone) at p in M is

$$
N_{p}=\left\{X \neq 0 \in T_{p} M: g_{p}(X, X)=0\right\} .
$$

The double cone consists of N_{p}^{+}and $N_{p}^{-}: N_{p}=N_{p}^{+} \cup N_{p}^{-}$.
Denote by I_{p}^{+}the interior of N_{p}^{+}and by I_{p}^{-}the interior of N_{p}^{-}.
Definition 4. The set of timelike vectors at p in M is given by

$$
I_{p}:=I_{p}^{+} \cup I_{p}^{-}=\left\{X \in T_{p} M: g_{p}(X, X)<0\right\} .
$$

Definition 5. The set of spacelike vectors at p in M is defined to be

$$
S_{p}:=\left\{X \in T_{p} M: g_{p}(X, X)>0\right\} .
$$

Thus, S_{p} is the exterior of N_{p}.
For physical reasons, the spacetime should be time-orientable. Therefore, one assumes that it is possible to choose continuously a vector $V \in I_{p}^{+}$ at each point p in M. That is, one has a continuous timelike future directed vectorfield. Denote by e_{0} a continuous future-directed timelike vectorfield on M at unit magnitude $\sqrt{-g\left(e_{0}, e_{0}\right)}=1$. Thus, one is able to say what the causal future and past of any event (point) in spacetime means. To do so, we first give the definition of a causal curve.

Definition 6. A causal curve in M is a differentiable curve γ whose tangent vector $\dot{\gamma}$ at each point p in M belongs to $I_{p} \cup N_{p}$, i.e. is either timelike or null.

Remark: This means that either $\dot{\gamma}_{p} \in I_{p}^{+} \cup N_{p}^{+}$at each p along γ in which case γ is called future-directed, or $\dot{\gamma}_{p} \in I_{p}^{-} \cup N_{p}^{-}$at each p along γ in which case γ is called past-directed.

Definition 7. The causal future of a point p in M, denoted by $J^{+}(p)$, is the set of all points $q \in M$ for which there exists a future-directed causal curve initiating at p and ending at q.

Correspondingly, we can define $J^{-}(p)$, the causal past of p. To be more general, we also need the causal future of a set S in M :

Definition 8. The causal future $J^{+}(S)$ of any set $S \subset M$, in particular in the case that S is a closed set, is

$$
J^{+}(S)=\left\{q \in M: q \in J^{+}(p) \text { for some } p \in S\right\}
$$

Similarly, the definition is given for $J^{-}(S)$. The boundaries $\partial J^{+}(S)$ and $\partial J^{-}(S)$ of $J^{+}(S)$ and $J^{-}(S)$, respectively, for closed sets S are null hypersurfaces. They are generated by null geodesic segments. The null geodesics generating $J^{+}(S)$ have past end points only on S. These null hypersurfaces $\partial J^{+}(S)$ and $\partial J^{-}(S)$ are realized as level sets of functions u satisfying the eikonal equation $g^{\mu \nu} \partial_{\mu} u \partial_{\nu} u=0$.

Let us come back to a causal curve (definition 6) and say how distances are measured. For this, we define the arc length of this curve and the temporal distance of two points as follows:

Definition 9. The arc length of a causal curve γ between the points corresponding to the parameter values $\lambda=a, \lambda=b$ is

$$
L[\gamma](a, b)=\int_{a}^{b} \sqrt{-g(\dot{\gamma}(\lambda), \dot{\gamma}(\lambda))} d \lambda
$$

If $q \in J^{+}(p)$, we define the temporal distance of q from p by

$$
\tau(q, p)=\sup _{\text {all future-directed causal curves from } p \text { to } q} L[\gamma]
$$

Note that the arc length is independent of the parametrization.
Recall that in Riemannian geometry the following statement about minimizing geodesics holds.

Theorem 1. (Hopf-Rinow): For a complete Riemannian manifold any 2 points can be joined by a minimizing geodesic.

In Lorentzian geometry the analogous statement is, in general, false. However, it is true, if the spacetime admits a Cauchy hypersurface. If the supremum is achieved and the metric is C^{1}, the maximizing curve is a causal geodesic; after suitable reparametrization the tangent vector is parallelly transported along the curve.

For the next statement, let us first introduce another important quantity: The deformation tensor of X, namely ${ }^{(X)} \pi$, is given as

$$
\begin{align*}
{ }^{(X)} \pi_{\alpha \beta} & =\left(\mathcal{L}_{X} g\right)_{\alpha \beta} \tag{12}\\
-{ }^{(X)} \pi^{\alpha \beta} & =\left(\mathcal{L}_{X} g^{-1}\right)^{\alpha \beta} \tag{13}
\end{align*}
$$

Given a Weyl field W and a vectorfield X, the Lie derivative of W with respect to X is not, in general, a Weyl field. For, it has trace. In fact, it is:

$$
\begin{equation*}
g^{\alpha \gamma}\left(\mathcal{L}_{X} W_{\alpha \beta \gamma \delta}\right)=\pi^{\alpha \gamma} W_{\alpha \beta \gamma \delta} . \tag{14}
\end{equation*}
$$

In view of this, we define the following modified Lie derivative:

$$
\begin{equation*}
\hat{\mathcal{L}}_{X} W:=\mathcal{L}_{X} W-\frac{1}{2}^{(X)}[W]+\frac{3}{8} \operatorname{tr}^{(X)} \pi W \tag{15}
\end{equation*}
$$

with

$$
\begin{equation*}
{ }^{(X)}[W]_{\alpha \beta \gamma \delta}:=\pi_{\alpha}^{\mu} W_{\mu \beta \gamma \delta}+\pi_{\beta}^{\mu} W_{\alpha \mu \gamma \delta}+\pi_{\gamma}^{\mu} W_{\alpha \beta \mu \delta}+\pi_{\delta}^{\mu} W_{\alpha \beta \gamma \mu} . \tag{16}
\end{equation*}
$$

To a Weyl field one can associate a tensorial quadratic form, a 4-covariant tensorfield which is fully symmetric and trace-free; a generalization of one found previously by Bel and Robinson [1]. As in [8] it is called the BelRobinson tensor:

$$
\begin{equation*}
Q_{\alpha \beta \gamma \delta}=\frac{1}{2}\left(W_{\alpha \rho \gamma \sigma} W_{\beta}{ }^{\rho}{ }_{\delta}{ }^{\sigma}+{ }^{*} W_{\alpha \rho \gamma \sigma}{ }^{*} W_{\beta}{ }^{\rho}{ }_{\delta}{ }^{\sigma}\right) . \tag{17}
\end{equation*}
$$

It satisfies the following positivity condition:

$$
\begin{equation*}
Q\left(X_{1}, X_{2}, X_{3}, X_{4}\right) \geq 0 \tag{18}
\end{equation*}
$$

where X_{1}, X_{2}, X_{3} and X_{4} are future-directed timelike vectors. Moreover, if W satisfies the Bianchi equations then Q is divergence-free:

$$
\begin{equation*}
D^{\alpha} Q_{\alpha \beta \gamma \delta}=0 . \tag{19}
\end{equation*}
$$

Equation (19) is a certain property of the Bianchi equations. It is connected with their conformal behaviour. In fact, they are covariant under conformal isometries. To be precise, let Ω be a scalar. Then, if $\Phi: M \rightarrow M$ is a conformal isometry of the spacetime, i.e.,

$$
\Phi_{*} g=\Omega^{2} g,
$$

and if W is a solution, also $\Omega^{-1} \Phi_{*} W$ is a solution.
The Bel-Robinson tensor Q is an important tool in our work. We shall come back to it later in the two parts.

In view of the principal part of the Ricci curvature, let us say a few words about the symbol. The principal part of the Ricci curvature is

$$
\frac{1}{2} g^{\alpha \beta}\left\{\partial_{\mu} \partial_{\alpha} g_{\beta \nu}+\partial_{\nu} \partial_{\alpha} g_{\beta \mu}-\partial_{\mu} \partial_{\nu} g_{\alpha \beta}-\partial_{\alpha} \partial_{\beta} g_{\mu \nu}\right\}
$$

If we substitute in the principal part $\partial_{\mu} \partial_{\nu} g_{\alpha \beta}$ by $\xi_{\mu} \xi_{\nu} \dot{g}_{\alpha \beta}$, where ξ_{μ} are the components of a covector and $\dot{g}_{\alpha \beta}$ the components of a possible variation of g, then we obtain the symbol σ_{ξ} at a point $p \in M$ and a covector $\xi \in T_{p}^{*} M$ for a given metric g :

$$
\left(\sigma_{\xi} \cdot \dot{g}\right)_{\mu \nu}=\frac{1}{2} g^{\alpha \beta}\left(\xi_{\mu} \xi_{\alpha} \dot{g}_{\beta \nu}+\xi_{\nu} \xi_{\alpha} \dot{g}_{\beta \mu}-\xi_{\mu} \xi_{\nu} \dot{g}_{\alpha \beta}-\xi_{\alpha} \xi_{\beta} \dot{g}_{\mu \nu}\right)
$$

More generally, for a given metric g the symbol σ_{ξ} at a point p in M and a covector ξ at p is the linear operator on the space of 2 -covariant, symmetric tensors h at p, defined by:

$$
\begin{equation*}
\left(\sigma_{\xi} \cdot h\right)=\frac{1}{2}\left\{\xi \otimes i_{\xi} h+i_{\xi} h \otimes \xi-\operatorname{trh} \xi \otimes \xi-(\xi, \xi) h\right\} \tag{20}
\end{equation*}
$$

We use the following notation:

$$
\begin{aligned}
\left(i_{\xi} h\right)_{\nu} & =g^{\alpha \beta} \xi_{\alpha} h_{\beta \nu} \\
(\xi, \xi) & =g^{\alpha \beta} \xi_{\alpha} \xi_{\beta} \\
(\xi \otimes l)_{\mu \nu} & =\xi_{\mu} l_{\nu} \\
g^{\alpha \beta} h_{\alpha \beta} & =t r h
\end{aligned}
$$

One observes that for any given covector ξ and any $l \in T_{p}^{*} M$,

$$
h=\xi \otimes l+l \otimes \xi
$$

belongs to the null space.

$$
\sigma_{\xi} \cdot h=0
$$

This mirrors the general covariance of the EV equations. Whenever g is a solution of the EV equations, then the pullback of a diffeomorphism of the manifold onto itself of g is also a solution. For X being a vectorfield on M generating a 1-parameter group of diffeomorphisms on M, the symbol for the Lie derivative $\left(\mathcal{L}_{X} g\right)_{\mu \nu}=D_{\mu} X_{\nu}+D_{\nu} X_{\mu}$ is

$$
\xi_{\mu} \dot{X}_{\nu}+\xi_{\nu} \dot{X}_{\mu}
$$

whith \dot{X}_{μ} being the components of an arbitrary covector. Consider the following equivalence relation

$$
h_{1} \sim h_{2} \Leftrightarrow h_{2}-h_{1}=l \otimes \xi+\xi \otimes l
$$

for l in $T_{p}^{*} M$, which gives a quotient space Q. There are two possibilities in view of the null space of the symbol σ_{ξ}. It depends on the choice of the covector ξ with $(\xi, \xi) \neq 0$ or $(\xi, \xi)=0$, whether it is trivial or nontrivial. Let us consider the two situations:

First, $(\xi, \xi) \neq 0$: If ξ is not null, then σ_{ξ} has only trivial null space on Q.

Second, $(\xi, \xi)=0$: If ξ is null, we can choose ξ in the same component of the null cone N_{p}^{*} in $T_{p}^{*} M$ such that $(\xi, \underline{\xi})=-\overline{2}$. Then select a unique representative h out of each equivalence class $\{h\} \in Q$ such that

$$
i_{\underline{\xi}} h=0 .
$$

Then it follows that the null space of σ_{ξ} can be identified with the space of trace-free quadratic forms on the 2 -dimensional spacelike plane Π, the g-orthogonal complement of the linear span of ξ and $\underline{\xi}$. This is the space of gravitational degrees of freedom at a point.

If we suppose to be given a t-foliation and the EV equations, as explained in the introduction of the first monograph. Then the electric-magnetic decomposition of the curvature tensor R with respect to the future-oriented unit normal to the time foliation is denoted by E, H. They are symmetric, traceless 2-tensors tangent to the foliation. In terms of these quantities the equations (1.19) and (1.20) read:

$$
\begin{align*}
\nabla_{i} k_{j m}-\nabla_{j} k_{i m} & =\epsilon_{i j}^{l} H_{l m} \tag{21}\\
\bar{R}_{i j}+t r k k_{i j}-k_{i m} k_{j}^{m} & =E_{i j} . \tag{22}
\end{align*}
$$

4. Preliminary Tools

4.1. Hodge Theory. Throughout this book, we use many analytic and geometric tools. A major one is the Hodge theory. We mainly apply it to obtain estimates in 2 and 3 dimensions. Therefore, let us introduce Hodge systems and derive estimates for them. Most of the presented results have been proven by D. Christodoulou and S. Klainerman in [8] for their setting. We give the proofs for certain of the following results, and refer to $[\mathbf{8}]$ for the others stating the difference of our proofs from theirs.
4.1.1. Hodge Systems on S. In the sequel we assume (S, γ) to be a compact, 2-dimensional Riemannian manifold. In the first monograph, L. Bieri shows that the Gauss-Bonnet theorem as well as the uniformization theorem hold in this case with L^{4} bounds on the curvature in S. In the second monograph, N. Zipser works with the correspondingly same assumptions on the curvature as D. Christodoulou and S. Klainerman in [8]. By K we denote the Gauss curvature of S. Also, let S have strictly positive curvature, that is $k_{m}>0$ with $k_{m}=\min _{S} r^{2} K$.

We shall first introduce different types of Hodge systems, and afterwards we will state the corresponding theorems for these systems. So, recall now the following definition of a Hodge dual.

Definition 10. Let ξ be a given vectorfield on S, then its Hodge dual * ξ is defined by

$$
{ }^{*} \xi_{A}=\epsilon_{A B} \xi^{B},
$$

where $\epsilon_{A B}$ denote the components of the area element relative to an arbitrary frame e_{A} with $A=1,2$.

If ξ is a symmetric, traceless 2-tensor, its left, ${ }^{*} \xi$, and right, ξ^{*}, Hodge duals are defined as

$$
{ }^{*} \xi_{A B}=\epsilon_{A C} \xi_{B}^{C}, \quad \xi_{A B}^{*}=\xi_{A}^{C} \epsilon_{C B} .
$$

Remark: Note that the tensors ${ }^{*} \xi$ and ξ^{*} are also symmetric and traceless. Also, one easily verifies that

$$
{ }^{*} \xi=-\xi^{*} .
$$

We denote by difu the divergence operator on S and by curl the curl operator on S. For any $(k+1)$-dimensional tensor ξ these are given by

$$
\begin{align*}
\text { difu } \xi_{A_{1} \cdots A_{k}} & =\not \nabla^{B} \xi_{A_{1} \cdots A_{k} B} \tag{23}\\
\operatorname{curl} \xi_{A_{1} \cdots A_{k}} & =\epsilon^{B C} \nabla_{B} \xi_{A_{1} \cdots A_{k} C} . \tag{24}
\end{align*}
$$

Also, recall that the trace operator on S is

$$
\begin{equation*}
\operatorname{tr} \xi_{A_{1} \cdots A_{k-1}}=\gamma^{B C} \xi_{A_{1} \cdots A_{k-1} B C} \tag{25}
\end{equation*}
$$

Next, we are going to present the types of Hodge systems, that we will always use throughout this work.

H1 Let ξ be a vector on S that verifies

$$
\begin{align*}
\operatorname{dik} \xi & =f \tag{26}\\
\operatorname{c\psi rl} \xi & =g \tag{27}
\end{align*}
$$

with f and g being given scalar functions on S.
H2 Let ξ be a symmetric, traceless 2 -tensor on S that verifies

$$
\begin{equation*}
\operatorname{di} / v \xi=f \tag{28}
\end{equation*}
$$

with f being a given vector.
H0 This is a special case of H1. Namely, we consider the scalar Poisson equation on S. So, let Φ be a scalar function on S that verifies

$$
\begin{equation*}
\not \Delta \Phi=f \tag{29}
\end{equation*}
$$

with f being an arbitrary scalar function on S.
$\mathbf{H}(\mathbf{k}+\mathbf{1})$ Let ξ be a symmetric, traceless $(\mathrm{k}+1)$-tensor that verifies

$$
\begin{align*}
\operatorname{di} / v \xi & =f \tag{30}\\
\operatorname{curl} \xi & =g \tag{31}
\end{align*}
$$

with f and g being given k covariant, symmetric tensors on S.
Further on, we will study properties of results of the Hodge systems above, and derive corresponding estimates. First, we state the following:

Proposition 1. Let (S, γ) be a 2-dimensional, compact Riemannian manifold.

1. Assume that the vectorfield ξ is a solution of $\mathbf{H 1}$. Then it is

$$
\begin{equation*}
\int_{S}|\not \nabla \xi|^{2}+K|\xi|^{2}=\int_{S}|f|^{2}+|g|^{2} \tag{32}
\end{equation*}
$$

2. Assume that the symmetric, traceless 2-tensor ξ is a solution of H2. Then it is

$$
\begin{equation*}
\int_{S}|\not \nabla \xi|^{2}+2 K|\xi|^{2}=2 \int_{S}|f|^{2} \tag{33}
\end{equation*}
$$

3. This is a particular case of the first item of this proposition. Assume that Φ is a solution of $\mathbf{H 0}$. Then it is

$$
\int_{S}\left|\not \nabla^{2} \Phi\right|^{2}+K|\Phi|^{2}=\int_{S}|f|^{2}
$$

Proof. This proof follows from the proof of proposition 2.
Proposition 2. Assume that ξ is an arbitrary, ($k+1$) covariant, totally symmetric tensor that verifies the following generalized Hodge system:
$H^{\prime}(k+1)$:

$$
\begin{align*}
\operatorname{div} \xi & =f \tag{35}\\
\operatorname{c\psi rl} \xi & =g \tag{36}\\
\operatorname{tr} \xi & =h \tag{37}
\end{align*}
$$

with f and g given k covariant, symmetric tensors and h a covariant symmetric tensor of rank $(k-1)$. Then it is

$$
\begin{equation*}
\int_{S}|\not \nabla \xi|^{2}+(k+1) K|\xi|^{2}=\int_{S}|f|^{2}+|g|^{2}+k K|h|^{2} . \tag{38}
\end{equation*}
$$

Note that if $k=0$, then we take $\operatorname{tr\xi }=0$. That is

$$
\begin{equation*}
\int_{S}|\not \nabla \xi|^{2}+K|\xi|^{2}=\int_{S}|f|^{2}+|g|^{2} \tag{39}
\end{equation*}
$$

Proof of Proposition 2: Writing out the curl equation (36), we obtain

$$
\begin{equation*}
\not \nabla_{C} \xi_{A_{1} \cdots A_{k} B}=\not \nabla_{B} \xi_{A_{1} \cdots A_{k} C}-\epsilon_{B C} g_{A_{1} \cdots A_{k}} \tag{40}
\end{equation*}
$$

Now, differentiate (40) and recall the fact that

$$
\begin{aligned}
& \not \nabla_{B} \nabla_{D} \xi_{A_{1} \cdots A_{k} C}-\nabla_{D} \nabla_{B} \xi_{A_{1} \cdots A_{k} C} \\
& \quad=\sum_{j=1}^{k} R_{A_{j} M B D} \xi_{A_{1} \cdots \hat{A}_{j} \cdots A_{k} C}^{M}+R_{C M B D} \xi_{A_{1} \cdots A_{k}}^{M}
\end{aligned}
$$

the commutator for the corresponding tensors ξ being zero. We obtain

$$
\begin{aligned}
\ddot{X}_{D} \not{ }_{C} \xi_{A_{1} \cdots A_{k} B}= & \not \nabla_{D} \not_{B} \xi_{A_{1} \cdots A_{k} C}-\epsilon_{B C} \not_{D} g_{A_{1} \cdots A_{k}} \\
= & \not{ }_{B} \not_{D} \xi_{A_{1} \cdots A_{k} C}+\sum_{j=1}^{k} R_{A_{j} M B D} \xi_{A_{1} \cdots \hat{A}_{j} \cdots A_{k} C}^{M} \\
& +R_{C M B D} \xi_{A_{1} \cdots A_{k}}^{M}-\epsilon_{B C} \not_{D} g_{A_{1} \cdots A_{k}} .
\end{aligned}
$$

Taking the trace relative to C and D yields

$$
\begin{aligned}
\triangle \xi_{A_{1} \cdots A_{k} B}= & \not{ }_{B}\left(\not \nabla^{C} \xi_{A_{1} \cdots A_{k} C}\right)-\epsilon_{B C} \not \nabla^{C} g_{A_{1} \cdots A_{k}} \\
& +\sum_{j=1}^{k} R_{A_{j} M B}{ }^{C} \xi_{A_{1} \cdots \hat{A}_{j} \cdots A_{k} C}-R_{M B} \xi_{A_{1} \cdots A_{k}}^{M} \\
= & \not{ }_{B} f_{A_{1} \cdots A_{k}}-\epsilon_{B C} \not \nabla^{C} g_{A_{1} \cdots A_{k}} \\
& +\sum_{j=1}^{k} \gamma_{M}^{C} \gamma_{A_{j} B} \gamma^{A_{j} B} R_{A_{j} C B}{ }^{C} \xi^{M}{ }_{A_{1} \cdots \hat{A}_{j} \cdots A_{k} C}-R \xi_{A_{1} \cdots A_{k} B} \\
= & \nabla_{B} f_{A_{1} \cdots A_{k}}-\epsilon_{B C} \not 一^{C} g_{A_{1} \cdots A_{k}} \\
& +\sum_{j=1}^{k} \gamma_{A_{j} B} R h_{A_{1} \cdots \hat{A}_{j} \cdots A_{k}}-R \xi_{A_{1} \cdots A_{k} B} .
\end{aligned}
$$

In view of the formula relating the Gauss curvature K to the Riemannian curvature $R_{a b c d}$, multiplying the last equation by $\xi^{A_{1} \cdots A_{k} B}$ and integrating on S, we deduce that

$$
\begin{aligned}
\int_{S} \xi^{A_{1} \cdots A_{k} B} \Delta \xi_{A_{1} \cdots A_{k} B}= & \int_{S} \xi^{A_{1} \cdots A_{k} B} \nabla_{B} f_{A_{1} \cdots A_{k}}-\int_{S} \xi^{A_{1} \cdots A_{k} B} \epsilon_{B C} \nabla^{C} g_{A_{1} \cdots A_{k}} \\
& +\int_{S}(k+1) K \xi^{A_{1} \cdots A_{k} B} \xi_{A_{1} \cdots A_{k} B} \\
& -\int_{S} \sum_{j=1}^{k} \gamma_{A_{j} B} K \xi^{A_{1} \cdots A_{k} B} h_{A_{1} \cdots \hat{A}_{i} \cdots A_{k}} .
\end{aligned}
$$

That is

$$
\int_{S}|\not \nabla \xi|^{2}=\int_{S}|f|^{2}+\int_{S}|g|^{2}-\int_{S}(k+1) K|\xi|^{2}+\int_{S} k K|h|^{2} .
$$

This closes the proof.
Then the next proposition follows directly.
Proposition 3. Under the same assumptions as in proposition 2, there exists a constant c such that

$$
\begin{equation*}
\int_{S}|\not \nabla \xi|^{2}+K|\xi|^{2} \leq c \int_{S}|f|^{2}+|g|^{2}+K|h|^{2} \tag{41}
\end{equation*}
$$

We immediately deduce the following proposition.
Proposition 4. Let ξ be as in proposition 2 and traceless in addition. Then there are constants C_{1} and C_{2} such that

$$
\begin{aligned}
& \int_{S}|\nabla \nabla \xi|^{2} \leq C_{1} \int_{S}|f|^{2}+|g|^{2} \\
& \int_{S} K|\xi|^{2} \leq C_{2} \int_{S}|f|^{2}+|g|^{2}
\end{aligned}
$$

As a consequence of these, one has the following.
Proposition 5. Assume that $k_{m}>0$. Let ξ be a solution of either $\mathbf{H 1}$ or $\mathbf{H} 2$. Then the next statements are valid.

1. There exists a constant $c_{1}(K)$, such that

$$
\begin{equation*}
\int_{S}\left\{|\not \nabla \xi|^{2}+r^{-2}|\xi|^{2}\right\} \leq c_{1} \int_{S}|f|^{2} \tag{42}
\end{equation*}
$$

2. There exists a constant $c_{2}(K)$, such that

$$
\begin{equation*}
\int_{S}\left\{\left|\not \nabla^{2} \xi\right|^{2}+r^{-2}|\xi|^{2}\right\} \leq c_{2} \int_{S}\left\{|\not \nabla f|^{2}+r^{-2}|f|^{2}\right\} . \tag{43}
\end{equation*}
$$

The analogue, namely L^{p} estimates, can be shown for any $2 \leq p<\infty$. We will make use of them as well. The corresponding proof applies the classical Calderon-Zygmund inequalities and the uniformization theorem. As shown in a separate chapter of the first monograph, the uniformization theorem is also valid for the case with $K \in L^{p}$ for any $2 \leq p<\infty$. Now, we have the following result.

Proposition 6. Let (S, γ) be a 2-dimensional, compact Riemannian manifold. Assume that $k_{m}>0$, and let ξ be a solution of either $\mathbf{H 1}$ or $\mathbf{H} 2$. Then the following estimates hold:

1. There exists a constant $c(K, p)$ such that for all $2 \leq p<\infty$, it is

$$
\begin{equation*}
\int_{S}\left\{|\not \subset \xi|^{p}+r^{-p}|\xi|^{p}\right\} \leq c \int_{S}\left\{|f|^{p}+|g|^{p}\right\} . \tag{44}
\end{equation*}
$$

2. There exists a constant $c(K, p)$ such that for all $2 \leq p<\infty$, it is

$$
\begin{equation*}
\int_{S}\left|\not \nabla^{2} \xi\right|^{p} \leq c \int_{S}\left\{|\not \nabla f|^{p}+r^{-p}|f|^{p}+|\not \nabla g|^{p}+r^{-p}|g|^{p}\right\} . \tag{45}
\end{equation*}
$$

4.1.2. Hodge Systems on \boldsymbol{H}. Throughout this chapter, we will denote by (H, g) a 3 -dimensional Riemannian manifold diffeomorphic to \mathbb{R}^{3}, on which there exists a generalized radial function u with second fundamental form θ and Gaussian curvature K. We will require that u is quasiconvex, which means that

$$
\operatorname{tr} \theta>0, \quad K>0
$$

We shall work with Hodge systems on H_{t} in the first monograph in the Chapter 6.2 'Estimating the Components $\delta, \epsilon, \hat{\eta}$ of the Second Fundamental Form', where we will state and prove the estimates for the considered Hodge systems in detail. In the second monograph, we shall use the L^{p} theory for 2 -d Hodge systems developed in [8] to produce estimates for the second fundamental form of the time foliation.

Here, let us consider the following: Starting from a Hodge system for a 1 -form A on H, we shall now give results for A and its corresponding
derivatives. So, let us introduce the following Hodge system for a smooth, compactly supported symmetric 1-tensor A on H :

$$
\begin{array}{r}
\operatorname{div} A=\nabla^{j} A_{j}=f \\
(\operatorname{curl} A)_{i}=\frac{1}{2} \epsilon_{i}^{j k} \nabla_{j} A_{k}=g . \tag{47}
\end{array}
$$

Now, we state the following proposition.
Proposition 7. Let A be a smooth, compactly supported, symmetric 1 -tensor on H. Then the following identity holds:

$$
\begin{equation*}
\int_{H}|\nabla A|^{2}=\int_{H}|f|^{2}+\int_{H}|g|^{2}-\int_{H} R|A|^{2} \tag{48}
\end{equation*}
$$

where R is the magnitude of the Ricci curvature of H.
Proof. We have

$$
(\operatorname{curl} A)_{i}=\frac{1}{2} \epsilon_{i}^{j k} \nabla_{j} A_{k} .
$$

Then, we calculate

$$
\begin{align*}
|\operatorname{curl} A|^{2} & =\frac{1}{2}\left(\nabla_{j} A_{k}-\nabla_{k} A_{j}\right)\left(\nabla^{j} A^{k}-\nabla^{k} A^{j}\right) \\
& =|\nabla A|^{2}-\left(\nabla_{j} A_{k}\right)\left(\nabla^{k} A^{j}\right) . \tag{49}
\end{align*}
$$

Integrating this on H, we obtain for the last term, using integration by parts and commuting derivatives:

$$
\begin{align*}
\int_{H}\left(\nabla_{j} A_{k}\right)\left(\nabla^{k} A^{j}\right) & =-\int_{H} A_{k} \nabla_{j} \nabla^{k} A^{j}=-\int_{H} A^{j} \nabla^{k} \nabla_{j} A_{k} \\
& =-\int_{H}\left(A^{j} \nabla_{j} d i v A+A^{j} R^{k}{ }_{j k l} A^{l}\right) \\
& =-\int_{H} A^{j} \nabla_{j} \operatorname{div} A-\int_{H} R_{j l} A^{j} A^{l} \\
& =\int_{H}|\operatorname{div} A|^{2}-\int_{H} R|A|^{2} . \tag{50}
\end{align*}
$$

Thus, we now see that

$$
\begin{equation*}
\int_{H}|\operatorname{curl} A|^{2}=\int_{H}|\nabla A|^{2}-\int_{H}|\operatorname{div} A|^{2}+\int_{H} R|A|^{2}, \tag{51}
\end{equation*}
$$

which proves the proposition.
Remark: Take equation (48) and write it as follows:

$$
\begin{equation*}
\int_{H}|\nabla A|^{2}+\int_{H} R|A|^{2}=\int_{H}|f|^{2}+\int_{H}|g|^{2} \tag{52}
\end{equation*}
$$

Note that, if the right-hand side of (1.52) is finite, that is if $\|\operatorname{curl} A\|_{L^{2}}<\infty$ and $\|\operatorname{div} A\|_{L^{2}}<\infty$, then it is $\int_{H}|\nabla A|^{2}+\int_{H} R|A|^{2}<\infty$.

Next, we will state two propositions concerning the first and second derivatives of a symmetric, 2-tensor on H. So, let V be a symmetric 2tensor on H. Consider the Hodge system

$$
\begin{align*}
\operatorname{div} V & =\rho \tag{53}\\
\operatorname{curl} V & =\sigma \tag{54}\\
\operatorname{tr} V & =0, \tag{55}
\end{align*}
$$

where ρ is a given 1 -form and σ a given symmetric, traceless, 2-covariant tensor. We can now formulate the following.

Proposition 8. Let V be a smooth, compactly supported 2-symmetric tensor on H, that verifies the Hodge system ((53)-(55)).

Then it is

$$
\begin{equation*}
\int_{H}\left(|\nabla V|^{2}+3 R_{m n} V^{i m} V_{i}^{n}-\frac{1}{2} R|V|^{2}\right)=\int_{H}\left(|\sigma|^{2}+\frac{1}{2}|\rho|^{2}\right) . \tag{56}
\end{equation*}
$$

We can also derive the next statement, estimating the second derivative of V.

Proposition 9. Let the assumptions of proposition 8 hold.
Then there exists a constant c such that

$$
\begin{equation*}
\int_{H}\left|\nabla^{2} V\right|^{2} \leq c \int_{H}\left(|\nabla \sigma|^{2}+|\nabla \rho|^{2}+\mid \text { Ric }\left.| | \nabla V\right|^{2}+\mid \text { Ric }\left.\right|^{2}|V|^{2}\right) . \tag{57}
\end{equation*}
$$

Bibliography

[1] L. Bel. Introduction d'un tenseur du quatrieme ordre. C.R.Acad.Sci. Paris 247. (1959). 1094.
[2] L. Bieri. An Extension of the Stability Theorem of the Minkowski Space in General Relativity. ETH Zurich, Ph.D. thesis. 17178. Zurich. (2007).
[3] Y. Choquet-Bruhat. Théorème d'existence pour certain systèmes d'equations aux dérivées partielles nonlinéaires. Acta Math. 88. (1952). 141-225.
[4] Y. Choquet-Bruhat, R. Geroch. Global Aspects of the Cauchy Problem in General Relativity. Comm.Math.Phys. 14. (1969). 329-335.
[5] D. Christodoulou. Mathematical problems of general relativity theory I and II. Volume 1: EMS publishing house ETH Zürich. (2008). Volume 2 to appear: EMS publishing house ETH Zürich.
[6] D. Christodoulou. The Formation of Black Holes in General Relativity. EMS publishing house ETH Zürich. (2009). ISBN 978-3-03719-067-8.
[7] D. Christodoulou, S. Klainermann. Asymptotic properties of linear field equations in Minkowski space. Comm. Pure Appl. Math. 43. (1990). 137-199.
[8] D. Christodoulou, S. Klainerman. The global nonlinear stability of the Minkowski space. Princeton Math.Series 41. Princeton University Press. Princeton. NJ. (1993).
[9] H. Friedrich. On the Existence of n-Geodesically Complete or Future Complete Solutions of Einstein's Field Equations with Smooth Asymptotic Structure. Comm.Math.Phys. 107. (1986). 587-609.
[10] S. Klainerman, F. Nicolò. The Evolution Problem in General Relativity. Progress in Math.Phys. 25. Birkhäuser. Boston. (2003).
[11] H. Lindblad, I. Rodnianski. Global Existence for the Einstein Vacuum Equations in Wave Coordinates. Comm.Math.Phys. 256. (2005). 43-110.
[12] H. Lindblad, I. Rodnianski. The global stability of Minkowski space-time in harmonic gauge. To appear.
[13] R. Penrose. Gravitational collapse and space-time singularities. Phys. Rev. Letters. 14. (1965). 57-59.
[14] N. Zipser. The Global Nonlinear Stability of the Trivial Solution of the EinsteinMaxwell Equations. Ph.D. thesis. Harvard Univ. Cambridge MA. (2000).

Bibliography

[1] C. Bruhat. Recent Results on the Cauchy Problem for Gravitation and Yang-Mills Fields. Proceedings of the second marcel Grossmann meeting on General Relativity, 1982.
[2] C. Bruhat and J. York. Geometrical well posed systems for the Einstein equations. Acad. Sci. Paris, t. 321, Série I, pp. 1089-1095, 1995.
[3] D. Christodoulou. Nonlinear Nature of Gravitation and Gravitational-Wave Experiments. Physical Review Letters, vol. 67, number 12, pp. 1486-1489, 1991.
[4] D. Christodoulou-S. Klainerman. Asymptotic properties of linear field equations in Minkowski space. Comm. Pure Appl. Math. 43,1990, 137-199.
[5] D. Christodoulou-S. Klainerman. The Global Nonlinear Stability of the Minkowski Space. Princeton University Press 1993.
[6] J. Leray. Hyperbolic differential equations. IAS, Princeton, 1952.
[7] M. Taylor. Partial Differential Equations III: Nonlinear Equations. Springer, 1996.

Titles in This Series

45 Lydia Bieri and Nina Zipser, Extensions of the Stability Theorem of the Minkowski Space in General Relativity, 2009
44 Eric Sharpe and Arthur Greenspoon, Editors, Advances in String Theory, 2008
43 Lizhen Ji, Editor, Arithmetic Groups and Their Generalizations, 2008
42.1 Ka-Sing Lau, Zhou-Ping Xin, and Shing-Tung Yau, Editors, Third International Congress of Chinese Mathematicians, 2008
41 Wen-Ching Winnie Li, Editor, Recent Trends in Coding Theory and its Applications, 2007
40 Ovidiu Caliin, Der-Chen Chang, and Peter Greiner, Editors, Geometric Analysis on the Heisenberg Group and Its Generalizations, 2007
39 Zhijie Chen, Sheng-Li Tan, Jianpan Wang, and Stephen S.-T. Yau, Editors, Proceedings of the International Conference on Complex Geometry and Related Fields, 2007
38 Noriko Yui, Shing-Tung Yau, and James D. Lewis, Editors, Mirror Symmetry V, 2006
37 Lizhen Ji, Jian-Shu Li, H. W. Xu, and Shing-Tung Yau, Editors, Lie Groups and Automorphic Forms, 2006
36 Chuu-Lian Terng, Editor, Integrable Systems, Geometry, and Topology, 2006
35 Felix Finster, The Principle of the Fermionic Projector, 2006
34 Ren-Hong Wong, Editor, Computational Geometry, 2003
33 Eric D'Hoker, Duong Phong, and Shing-Tung Yau, Mirror Symmetry IV, 2002
32 Xi-Ping Zhu, Lectures on Mean Curvature Flows, 2002
31 Kiyoshi Igusa, Higher Franz-Reidemeister Torsion, 2002
30 Weiman Han and Mircea Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, 2002

29 S. T. Yau and Shuxing Chen, Editors, Geometry and Nonlinear Partial Differential Equations, 2002

28 Valentin Afraimovich and Sze-Bi Hsu, Lectures on Chaotic dynamical Systems, 2002
27 M. Ram Murty, Introduction to p-adic Analytic Number Theory, 2002
26 Raymond Chan, Yue-Kuen Kwok, David Yao, and Qiang Zhang, Editors, Applied Probability, 2002
25 Donggao Deng, Daren Huang, Rong-Qing Jia, Wei Lin, and Jian Zhong Wong, Editors, Wavelet Analysis and Applications, 2002
24 Jane Gilman, William W. Menasco, and Xiao-Song Lin, Editors, Knots, Braids, and Mapping Class Groups-Papers Dedicated to Joan S. Birman, 2001
23 Cumrun Vafa and S.-T. Yau, Editors, Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds, 2001
22 Carlos Berenstein, Der-Chen Chang, and Jingzhi Tie, Laguerre Calculus and Its Applications on the Heisenberg Group, 2001
21 Jürgen Jost, Bosonic Strings: A Mathematical Treatment, 2001
20 Lo Yang and S.-T. Yau, Editors, First International Congress of Chinese Mathematicians, 2001
19 So-Chin Chen and Mei-Chi Shaw, Partial Differential Equations in Several Complex Variables, 2001
18 Fangyang Zheng, Complex Differential Geometry, 2000
17 Lei Guo and Stephen S.-T. Yau, Editors, Lectures on Systems, Control, and Information, 2000
16 Rudi Weikard and Gilbert Weinstein, Editors, Differential Equations and Mathematical Physics, 2000

TITLES IN THIS SERIES

15 Ling Hsiao and Zhouping Xin, Editors, Some Current Topics on Nonlinear Conservation Laws, 2000
14 Jun-ichi Igusa, An Introduction to the Theory of Local Zeta Functions, 2000
13 Vasilios Alexiades and George Siopsis, Editors, Trends in Mathematical Physics, 1999
12 Sheng Gong, The Bieberbach Conjecture, 1999
11 Shinichi Mochizuki, Foundations of p-adic Teichmüller Theory, 1999
10 Duong H. Phong, Luc Vinet, and Shing-Tung Yau, Editors, Mirror Symmetry III, 1999
9 Shing-Tung Yau, Editor, Mirror Symmetry I, 1998
8 Jürgen Jost, Wilfrid Kendall, Umberto Mosco, Michael Röckner, and Karl-Theodor Sturm, New Directions in Dirichlet Forms, 1998
7 D. A. Buell and J. T. Teitelbaum, Editors, Computational Perspectives on Number Theory, 1998
6 Harold Levine, Partial Differential Equations, 1997
5 Qi-keng Lu, Stephen S.-T. Yau, and Anatoly Libgober, Editors, Singularities and Complex Geometry, 1997
4 Vyjayanthi Chari and Ivan B. Penkov, Editors, Modular Interfaces: Modular Lie Algebras, Quantum Groups, and Lie Superalgebras, 1997
3 Xia-Xi Ding and Tai-Ping Liu, Editors, Nonlinear Evolutionary Partial Differential Equations, 1997
2.2 William H. Kazez, Editor, Geometric Topology, 1997
2.1 William H. Kazez, Editor, Geometric Topology, 1997

1 B. Greene and S.-T. Yau, Editors, Mirror Symmetry II, 1997

A famous result of Christodoulou and Klainerman is the global nonlinear stability of Minkowski spacetime. In this book, Bieri and Zipser provide two extensions to this result. In the first part, Bieri solves the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behavior. In particular, she assumes less decay in the power of r and one less derivative than in the Christodoulou-Klainerman result. She proves that in this case, too, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. In contrast to the original situation, certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp.
In the second part, Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell equations. A nontrivial solution of these

> American Mathematical Society www.ams.org

International
Press
www.intlpress.com equations is a curved spacetime with an electromagnetic field. To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced by Christodoulou and Klainerman. To generalize the original results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field F; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of F. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for F. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature. Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field.

AMSIP/45

