Lagrangian Intersection
Floer Theory
Anomaly and Obstruction, Part II

Kenji Fukaya
Yong-Geun Oh
Hiroshi Ohta
Kaoru Ono
Lagrangian Intersection
Floer Theory
Contents

Volume I

Preface xi

Chapter 1. Introduction 1
 1.1 What is Floer (co)homology 1
 1.2 General theory of Lagrangian Floer cohomology 5
 1.3 Applications to symplectic geometry 13
 1.4 Relation to mirror symmetry 16
 1.5 Chapter-wise outline of the main results 25
 1.6 Acknowledgments 35
 1.7 Conventions 36

Chapter 2. Review: Floer cohomology 39
 2.1 Bordered stable maps and the Maslov index 39
 2.1.1 The Maslov index: the relative first Chern number 39
 2.1.2 The moduli space of bordered stable maps 43
 2.2 The Novikov covering and the action functional 49
 2.2.1 The Γ-equivalence 50
 2.2.2 The action functional and the Maslov-Morse index 51
 2.3 Review of Floer cohomology I: without anomaly 53
 2.3.1 The L^2-gradient equation of A 53
 2.3.2 Floer’s definition: \mathbb{Z}_2-coefficients. 57
 2.4 Review of Floer cohomology II: anomaly appearance 60
 2.4.1 The Floer cochain module 61
 2.4.2 The Floer moduli space 62
 2.4.3 The Novikov ring $\Lambda^R(L)$ 66
 2.4.4 Monotone Lagrangian submanifolds 69
 2.4.5 Appearance of the primary obstruction 71

Chapter 3. The A_∞ algebra associated to a Lagrangian submanifold 77
 3.1 Outline of Chapter 3 77
 3.2 Algebraic framework on filtered A_∞ algebras 86
 3.2.1 A_∞ algebras and homomorphisms 86
 3.2.2 Filtered A_∞ algebras and homomorphisms 89
 3.3 Algebraic framework on the homotopy unit 94
 3.3.1 Definition of the homotopy unit 94
 3.3.2 Unital (resp. homotopy unital) A_∞ homomorphisms 97
 3.4 A_∞ deformation of the cup product 97
3.5 The filtered A_∞ algebra associated to a Lagrangian submanifold
3.6 Bounding cochains and the A_∞ Maurer-Cartan equation.
 3.6.1 Bounding cochains and deformations
 3.6.2 Obstruction for the existence of bounding cochain
 3.6.3 Weak unobstructedness and existence of Floer cohomology
 3.6.4 The superpotential and $\tilde{\mathcal{M}}(C)$
3.7 A_∞ bimodules and Floer cohomology
 3.7.1 Algebraic framework
 3.7.2 A_∞ bimodule homomorphisms
 3.7.3 Weak unobstructedness and deformations
 3.7.4 The filtered A_∞ bimodule $C(L^{(1)}, L^{(0)}; \Lambda_{0,\text{nov}})$
 3.7.5 The Bott-Morse case
 3.7.6 Examples
 3.7.7 The multiplicative structure on Floer cohomology
3.8 Inserting marked points in the interior
 3.8.1 The operator p
 3.8.2 Applications to vanishing of the obstruction classes $o_k(L)$
 3.8.3 Outline of the construction of the operator p
 3.8.4 The operator q
 3.8.5 Bulk deformation of filtered A_∞ structures
 3.8.6 Outline of the construction of the operator q
 3.8.7 The operator r and the A_∞ bimodule
 3.8.8 Construction of the operator r
 3.8.9 Generalization of the operator p
 3.8.10 Proof of parts of Theorems B, C and G

Chapter 4. Homotopy equivalence of A_∞ algebras
 4.1 Outline of Chapters 4 and 5
 4.2 Homotopy equivalence of A_∞ algebras: the algebraic framework
 4.2.1 Models of $[0, 1] \times C$
 4.2.2 Homotopies between A_∞ homomorphisms
 4.2.3 The unital or homotopy-unital cases
 4.3 Gauge equivalence of bounding cochains
 4.3.1 Basic properties and the category $\mathcal{B}A_{\infty}$
 4.3.2 $\mathcal{M}_{\text{weak}}(C)$ and its homotopy invariance
 4.3.3 $\mathcal{M}_{\text{weak,def}}(L)$ and its homotopy invariance
 4.4 Uniqueness of the model of $[0, 1] \times C$
 4.4.1 Induction on the number filtration I
 4.4.2 A_K structures and homomorphisms
 4.4.3 Induction on the number filtration II
 4.4.4 Unital case I: the unfiltered version
 4.4.5 Coderivation and Hochschild cohomology
 4.4.6 Induction on the energy filtration
 4.4.7 Unital case II: the filtered version
 4.5 Whitehead theorem in A_∞ algebras
 4.5.1 Extending A_K homomorphisms to A_{K+1} homomorphisms
 4.5.2 Proof of Theorem 4.2.45 I: the number filtration
 4.5.3 Unital case: the unfiltered version
4.5.4 Extending filtered A_∞ homomorphism modulo T^{λ_i} to modulo $T^{\lambda_{i+1}}$ 239
4.5.5 Proof of Theorem 4.2.45 II: the energy filtration 241
4.6 Homotopy equivalence of A_∞ algebras: the geometric realization 242
4.6.1 Construction of A_∞ homomorphisms 242
4.6.2 Homotopies between A_∞ homomorphisms 249
4.6.3 Compositions 257
4.6.4 Homotopy equivalence and the operator q I: changing the cycle in the interior 259
4.6.5 Homotopy equivalence and the operator q II: invariance of symplectic diffeomorphisms 1 261
4.6.6 Homotopy equivalence and the operator q III: invariance of symplectic diffeomorphisms 2 264

Chapter 5. Homotopy equivalence of A_∞ bimodules 267
5.1 Novikov rings 267
5.1.1 Reduction to universal Novikov ring 267
5.1.2 Hamiltonian independence of the Novikov ring 270
5.1.3 Floer cohomologies over $\Lambda(L(0), L(1), \ell_0)$ and Λ_{nov} 272
5.2 Homotopy equivalences of A_∞ bimodules: the algebraic framework 275
5.2.1 Weakly filtered A_∞ bimodule homomorphisms 275
5.2.2 Deformations of A_∞ bimodule homomorphisms 276
5.2.3 Homotopies between A_∞ bimodule homomorphisms 282
5.2.4 Gauge invariance and the category $\mathfrak{M}_\infty(C_1, C_0)$ 288
5.2.5 Obstructions to defining A_∞ bimodule homomorphisms I 291
5.2.6 Whitehead theorem for A_∞ bimodule homomorphisms 292
5.2.7 Obstructions to defining A_∞ bimodule homomorphisms II 294
5.3 Homotopy equivalences of A_∞ bimodules: the geometric realization 296
5.3.1 Construction of filtered A_∞ bimodule homomorphisms 296
5.3.2 Moving Lagrangian submanifolds by Hamiltonian isotopies 306
5.3.3 Homotopies between bimodule homomorphisms 313
5.3.4 Compositions of Hamiltonian isotopies and of bimodule homomorphisms 319
5.3.5 An energy estimate. 321
5.3.6 The operators q, r and homotopy equivalence 326
5.3.7 Wrap-up of the proof of invariance of Floer cohomologies 327
5.4 Canonical models, formal super schemes and Kuranishi maps 330
5.4.1 Canonical models, Kuranishi maps and bounding cochains 330
5.4.2 The canonical models of filtered A_∞ bimodules 336
5.4.3 Filtered A_∞ bimodules and complex of coherent sheaves 337
5.4.4 Construction of the canonical model 339
5.4.5 Including the operator q 347
5.4.6 Wrap-up of the proofs of Theorems F, G, M, N and Corollaries O, P 349

Chapter 6. Spectral sequences 355
6.1 Statement of the results in Chapter 6 355
6.1.1 The spectral sequence 355
6.1.2 Non-vanishing theorem and a Maslov class conjecture 357
6.1.3 Applications to Lagrangian intersections 360
6.2 A toy model: rational Lagrangian submanifolds 362
6.3 The algebraic construction of the spectral sequence 366
 6.3.1 c.f.z. 367
 6.3.2 d.g.c.f.z. (differential graded c.f.z.) 369
 6.3.3 Construction and convergence 371
6.4 The spectral sequence associated to a Lagrangian submanifold 375
 6.4.1 Construction 375
 6.4.2 A condition for degeneration: proof of (D.3) 375
 6.4.3 Non-vanishing theorem: proof of Theorem 6.1.9. 377
 6.4.4 Application to the Maslov class conjecture: proofs of Theorems 6.1.15 and 6.1.17 381
 6.4.5 Compatibility with the product structure 382
6.5 Applications to Lagrangian intersections 385
 6.5.1 Proof of Theorem H 385
 6.5.2 Proof of Theorem I 385
 6.5.3 Torsion of the Floer cohomology and Hofer distance: Proof of Theorem J 388
 6.5.4 Floer cohomologies of Lagrangian submanifolds that do not intersect cleanly 393
 6.5.5 Unobstructedness modulo T^E 395

Chapter 7. Transversalilty

7.1 Construction of the Kuranishi structure 398
 7.1.1 Statement of the results in Section 7.1 398
 7.1.2 Kuranishi charts on $\mathcal{M}_{k+1}^{\text{main,reg}}(\beta)$: Fredholm theory 401
 7.1.3 Kuranishi charts in the complement of $\mathcal{M}_{k+1}^{\text{main,reg}}(\beta)$: gluing 404
 7.1.4 Wrap-up of the proof of Propositions 7.1.1 and 7.1.2 418
 7.1.5 The Kuranishi structure of $\mathcal{M}_{k+1}^{\text{main}}(M',L',\{J_\rho\}_{\rho: \text{top}(\rho)}$: A_∞ map analog of Stasheff cells 425
7.2 Multisections and choice of a countable set of chains 435
 7.2.1 Transversality at the diagonal 436
 7.2.2 Inductive construction of compatible system of multisections in the Bott-Morse case 437
 7.2.3 Perturbed moduli space running out of the Kuranishi neighborhood I 444
 7.2.4 Statement of results 445
 7.2.5 Proof of Proposition 7.2.35 449
 7.2.6 Filtered $A_{n,k}$ structures 458
 7.2.7 Construction of filtered $A_{n,K}$ structures 461
 7.2.8 Perturbed moduli space running out of the Kuranishi neighborhood II 466
 7.2.9 Construction of filtered $A_{n,K}$ homomorphisms 468
8.7 Orientation of the moduli space of connecting orbits 716
8.8 The Bott-Morse case 719
8.9 Orientations of the top-moduli spaces and the twp-moduli spaces 731
8.9.1 Orientation of $\mathcal{M}_{k+1}^{\text{main}}(M', L', \{J_\rho\}; \beta; \text{top}(\rho))$ 731
8.9.2 Orientation of $\mathcal{M}_{k+1}^{\text{main}}(\{J_\rho\}; \beta; \text{twp}(\rho); P_1, \ldots, P_k)$ 735
8.10 Homotopy units, the operators p, q, continuous families of perturbations, etc. 738
8.10.1 Homotopy unit 738
8.10.2 Operators p, q 738
8.10.3 Continuous families of perturbations 749

Appendices 753
A1 Kuranishi structures 753
A1.1 Review of the definition of the Kuranishi structure and multisections 754
A1.2 Fiber products 764
A1.3 Finite group actions and the quotient space 766
A1.4 A remark on smoothness of coordinate transforms 768
A1.5 Some counter examples 778
A1.6 Some errors in the earlier versions and corrections thereof 779
A2 Singular chains with local coefficients 780
A3 Filtered L_∞ algebras and symmetrization of filtered A_∞ algebras 782
A4 The differential graded Lie algebra homomorphism in Theorem 7.4.132 787

Bibliography 791
Index 801
Preface

With the advent of the method of pseudo-holomorphic curves developed by Gromov in the 80’s and the subsequent Floer’s invention of elliptic Morse theory resulted in Floer cohomology, the landscape of symplectic geometry has changed drastically. Many previously intractable problems in symplectic geometry were solved by the techniques of pseudo-holomorphic curves, and the concept of symplectic topology gradually began to take shape. This progress was accompanied by parallel developments in physics most notably in closed string theory.

In 1993, partially motivated by Donaldson’s pants product construction in Floer cohomology, the first named author introduced the structure of an A_∞-category in symplectic geometry whose objects are Lagrangian submanifolds and whose morphisms are the Floer cohomologies (or complexes). Based on this algebraic framework, Kontsevich proposed the celebrated homological mirror symmetry between the derived category of coherent sheaves and the Fukaya category of Lagrangian submanifolds in his 1994 ICM talk in Zürich. Enhanced by the later development in open string theory of D-branes, this homological mirror symmetry has been a source of many new insights and progresses in both algebraic geometry and symplectic geometry as well as in physics. However the rigorous formulation of homological mirror symmetry has not been made, largely due to lack of understanding the Floer theory of Lagrangian submanifolds itself.

In this book, we explain how the obstruction to and anomaly in the construction of Floer cohomology arise, provide a precise formulation of the obstructions and then carry out detailed algebraic and analytic study of deformation theory of Floer cohomology. It turns out that even a description of such an obstruction (in a mathematically precise way) requires new homological algebra of filtered A_∞-algebras. In addition, verification of existence of such an algebraic structure in the geometric context of Lagrangian submanifolds requires non-trivial analytic study of the corresponding moduli space of pseudo-holomorphic discs. We also provide various immediate applications of the so constructed Floer cohomology to problems in symplectic topology. Many of these improve the previously known results obtained via Floer theory and some firsthand applications to homological mirror symmetry are new. We expect more nontrivial applications of the theory will soon follow as its true potential is unveiled and then realized.

While we have been preparing this book, there have been several important developments in symplectic geometry and in related fields. The relationship between topological strings, D-branes and pseudo-holomorphic curves and symplectic Floer theory is now more clearly understood. The usage of higher algebraic structures in Floer theory, which we have been promoting while writing this book, has now become a popular and essential area of research. Furthermore advances of the techniques handling various moduli spaces of solutions to nonlinear PDE’s,
intertwined with the formalism of higher algebraic structures, has now made the geometric picture more transparent. This will help facilitate the further progression of the geometric theory. In this book we take full advantage of these developments and provide the Floer theory of Lagrangian submanifolds in the most general form available at this time. We hope that this book will be a stepping stone for future advancements in symplectic geometry and homological mirror symmetry.

Our collaboration which has culminated in completion of this book started during the 1996 (8 July–12 July) conference held in Ascona, Switzerland. We hardly imagined then that our project would continue to span more than 10 years. We have greatly enjoyed this collaboration and hope to continue it into the coming decades. In fact our second journey into newly landscaped field of symplectic topology and mirror symmetry has already begun, and we hope to garner more fruits of collaboration: The scene in front looks very different and much more exciting than the one we left behind 13 years ago!

Bibliography

BIBLIOGRAPHY

[OzSa96] S. Piunikhin, Quantum and Floer cohomology has the same ring structure, preprint (1994).

Index

Action functional 51
 - connecting orbits 55
 - L^2-gradient equation 54
Adapted singular simplex 252, 485, 541.
Arnold’s conjecture 1, 13
Audin’s question 359, 383
A_∞ algebra 5, 87, 91
 - A_∞ formula 5
 - bounding cochain 8, 81, 109
 - deformation 94, 109
 - energy filtration 90
 - filtered A_∞ algebra 91
 - associated to Lagrangian submanifolds 105-106
 - G-gapped filtered A_∞ algebras 92
 - weakly unobstructed over G 116
 - Floer cohomology 110, 115, 174
 - G-gapped 80, 92
 - homotopy unit 94-95
 - isomorphic 331
 - Maurer-Cartan equation 81, 109, 628
 - obstructions 111
 - R-reduction 91
 - spectral sequence 10, 356
 - strict 91
 - unit 91
 - unobstructed 81, 109, 111
 - unobstructed modulo T^E 396
 - weakly unobstructed 82, 114, 116
 - (weakly) unobstructed after bulk deformations 83, 169
A_∞ bimodule 122
 - deformed A_∞ bimodule 125
 - filtered A_∞ bimodule 122, 127
 - Floer cohomology 136, 151, 180
 - G-gapped filtered 122
 - isomorphic 331
 - pull-back 277
 - R-reduction 122
 - unital, homotopy unital 122
A_∞ bimodule homomorphism 123
 - c-weakly filtered A_∞ bimodule homomorphism 275
 - deformation 280
 - filtered A_∞ bimodule homomorphism modulo T^λ 295
 - G-gapped 124, 276
 - homotopic 286
 - pull-back 278
 - strict 328
 - unital, homotopy unital filtered A_∞ bimodule homomorphism 124-125
A_∞ category 16, 19, 22, 31, 632, 637
A_∞ deformation of cup product 97
A_∞ (algebra) homomorphism 88
 - composition 88, 93
 - deformation 280
 - filtered A_∞ homomorphisms 93
 - filtered A_∞ homomorphisms modulo T^λ 239
 - G-gapped 93
 - strict 93
 - unital (resp. homotopy unital) 97
A_∞ map 433
A_∞ space 432
A_K algebra 219
 - A_K homomorphism 220
 - A_K homotopy 220
 - A_K homotopy equivalence 220
$A_{K,L}$ bimodule 291
 - homomorphism 292
$A_{n,K}$ algebra 459

801
INDEX

– geometric realization 462
\(A_{n,K}\) homomorphism 459
– geometric realization 468
\(A_{n,K}\) homotopy 459
– geometric realization 483

\(B\)-field 20
Bar complex 6-7, 91
– cyclic bar complex 157, 645
– partially reduced bar complex 223
– partially reduced bar complex for
filtered version 232
– symmetrization 92, 166, 784
Bifurcation versus cobordism 569
Bott-Morse theory 59-60, 439-444
Bounding cochain 8, 81, 109
– weak bounding cochain 114
Bulk deformations 9, 168
– bulk-deformed Floer cohomology 174, 180
– (weakly) unobstructed after bulk
decomposition 83, 169
Bundle pair 41
Calabi-Yau manifolds 14, 20
– maximally degenerating family 20
Canonical model 331
– of filtered \(A_\infty\) algebra 331
– of filtered \(A_\infty\) bimodule 336
C.c.f.z. 367
Clifford torus 68
Coalgebra isomorphisms 278
Coderivation 87, 90, 226
– bi-coderivation 121, 295
Coproduct 36, 87
Commuting error homotopy
– of homotopies 514
– of morphisms 507
– of the promotion 507
Compatibility conditions 447, 449,
473, 474, 580, 581
Constructible set 504
Countable set of smooth singular sim-
plices 437, 440, 446
Counting problem 14-15
Cyclic
– bar complex 157, 645
– symmetry 118, 162, 592-593, 705
Decoration 446

Deformation
– of \(A_\infty\) algebra homomorphisms 280
– of \(A_\infty\) bimodule homomorphisms 280
Degenerate simplex 575
de Rham
– complex 30
– presentation of virtual fundamental
chain 653
Derived category of coherent sheaves
21, 23, 338
Directed system
– of equivalences 505
– morphism of 505
d.g.c.f.z 369

Energy estimate 321
Energy filtration 90, 230, 241
Eval 197, 282, 501, 508-509
\(E_*\) 166, 782

Filtered \(A_{n,K}\) algebra 458-459
– definition 458-459
– filtered \(A_{n,K}\) homomorphism 459
– filtered \(A_{n,K}\) homotopy 459
– of Lagrangian submanifolds 462
Filtered \(L_\infty\) bimodule 644
Floer (co)chain module 61
Floer (co)homology 1
– anomaly appearance 60
– Bott-Morse version 59, 137
– definition in \(\mathbb{Z}_2\)-case 57
– invariance 194-196, 327
– multiplicative structures 155
– obstruction classes 81-83, 111, 117,
171
– of pair of Lagrangian submanifolds
11, 137, 180
– over \(\Lambda(L^{(0)}, L^{(1)}; \ell_0)\) 272
– spectral sequence 10, 356
– torsion 13, 360, 388
Floer moduli space 62
– compactification 130-133
– marked stable broken trajectories
128
– submonoid \(G(L^{(1)}, L^{(0)})\) 135
Forgetful map 419, 421, 575, 577, 777
Formal scheme 16, 338
 – formal map 16, 334
Fredholm theory 401

Gapped cochain map 374
Gapped condition 372
Gauge equivalence 211
 – between the pairs \((b_0, b_0), (b_1, b_1)\) 216, 260
 – invariance of potential function 215, 217
 – invariance of Floer cohomology 214, 288
 – of bounding cochains 211
 – of weak bounding cochains 215
 – \(G\)-gauge equivalent 628
Generation 446
Gluing 404
Gromov’s compactness theorem 48, 80, 135, 420
Gromov-Witten invariant 82-83, 157
Gysin homomorphism 156
\(G\cdot A_{\infty} ; K_1, K_0\)-structure 641
\(G\)-set 276

Hochschild cohomology 226
 – of \(A_{\infty}\) bimodule 295
 – of \(A_{\infty}\) homomorphism 228, 240
 – of homotopy equivalence 228
Hofer distance 361, 388
Hofer length 321
 – of Hamiltonian isotopy 321
Homological mirror symmetry 15, 21
Homotopy 205, 282
 – between \(A_{\infty}\) bimodule homomorphisms 282, 313
 – between \(A_{\infty}\) homomorphisms 205, 249
Homotopy equivalence of \(A_{\infty}\) algebra 207
 – \((C^{[0,1], f}_k)\) 203
 – geometric realization 242
 – homotopy-unitally homotopic 209
 – model of \([0,1] \times C\) 197
 – strict homotopy equivalence 209
 – unitally homotopic 209, 575
 – weak homotopy equivalence 94
Homotopy equivalence of \(A_{\infty}\) bimodule 287, 296
 – energy loss 276
 – geometric realization 296
 – strict homotopy equivalence 287
Homotopy of homotopies 514, 536
Homotopy relative to the boundary 287
Homotopy unit 94, 574
Incl 197, 282, 501, 508-509, 517
 – geometric realization 495, 573-578
Iteration formula 694

Kuranishi map 333, 754
Kuranishi neighborhood 754
Kuranishi structure 4, 29, 755
 – fiber product 764
 – finite group action 766
 – good coordinate system 757
 – obstruction bundle 754
 – of \(\mathcal{M}^{\text{main}}_{k+1}(\beta)\) 398, 401
 – orientation 759
 – tangent bundle 758
 – virtual fundamental chain 397, 652, 762

Lagrangian submanifold 1
 – displaceable Lagrangian submanifolds 359
 – monotone Lagrangian submanifolds 69
 – rational Lagrangian submanifold 19, 23, 363
 – unobstructed 81-82, 111
 – weakly unobstructed 82
 – (weakly) unobstructed after bulk deformations 83, 169
\(L_{\infty}\) algebra 91-92, 596, 644, 783
\(L_{\infty}\) bimodule 644
\(L_{\infty}\) homomorphism 596, 785

Maslov class conjecture 14, 357, 381
Maslov index 39, 43, 50
 – Bott-Morse version 11, 141-142, 146
 – Lagrangian Grassmanian 39, 52
 – Maslov-Morse index 51, 146
 – minimal Maslov number 69
 – totally real subspace 40
Maurer-Cartan equation 81, 109, 628
Minimal model 332
Minimal path 608
Model of $[0,1] \times C$
 - A_∞ algebra 197, 501(modified version)
 - A_∞ bimodule 282-283
Model of $[0,1]^2 \times C$ 508
Moduli space of bordered stable maps 47-48
 - genus zero stable map 47
 - main component 46, 48
 - real marked semi-stable curve 43
 - virtual fundamental chain 103
Multisection 759-760
 - liftable multisection 759-760
Novikov covering space 49
Novikov homology 443
Novikov ring 51, 66, 267
 - independence under Hamiltonian isotopy 270
 - universal Novikov ring 5, 37
Number filtration 90, 218, 220, 236, 292
Obstruction
 - obstruction bundle (of Kuranishi structure) 754
 - obstruction classes for Floer cohomology 81-83, 111, 117, 171
 - primary obstruction 71
 - to constructing filtered A_∞ bimodule homomorphisms 292, 295
 - to extending to A_{K+1} homomorphism 234
 - to extending to moddulo $T^{\lambda_{i+1}}$ 240
 - to extending to a filtered $A_{n',K'}$ homomorphism 461
 - to extending to a filtered $A_{n',K'}$ homotopy 481
 - to extending to a filtered $A_{n',K'}$ structure 460
 - unobstructed A_∞ algebras 81, 109, 111
 - weakly unobstructed 82, 114
 - (weakly) unobstructed after bulk deformations 83, 169
Operator p 156, 158, 375, 589
 - cyclic bar complex 157, 644
 - $GW_{(0,1)}(M)(L)$ 157, 159, 186
 - generalization 182
Operator q 33, 165-167, 347, 595
 - changing the cycle in the interior 259, 627-628
 - definition 165-167, 175-176, 595, 621, 625
 - homotopy equivalence of bimodule 326
 - invariance under symplectic diffeomorphisms 261, 264, 625
 - outline of construction 175
Operator r 178, 631
 - construction 181
 - definition 178, 181
 - homotopy equivalence of bimodules 326, 601, 638
Opposite 598, 601
Orientation 675
 - Bott-Morse cases 719
 - boundary 691-692
 - continuous family of perturbations 749
 - fiber product 693
 - homotopy unit 738
 - moduli space of connecting orbits 716
 - moduli space of constant maps 713
 - moduli space of pesudo-holomorphic disc 675
 - orientation bundle 722
 - quotient space 692
 - top and twp moduli spaces 731
Oriented isomorphism 694
Poly 198, 283, 786
Potential function 84, 115, 169
Prism decomposition 485, 544
Promotion 506
Quantum cup-product 22
Rational Lagrangian submanifold 19, 23, 362-363
Rationaly unobstructed 363
Relatively spin 6, 78
 - structure 675
Relatively spin pair 6, 78
Ribbon tree 98, 399, 603, 603, 606
Shifted degree 5, 34, 87
Singular chains with local coefficients 780
Somewhere injective 72
Spectral sequence 355
- associated Lagrangian submanifolds 375
- convergence 374
- degeneration 10, 375
- Oh’s spectral sequence 355, 383
Stasheff cells 425
Strictly convergent power series ring 199
Strominger-Yau-Zaslow proposal 23
Strongly continuous 758
Super commutator 612
Superpotential 117-120
Tad pole 340
Time allocation 426
Time ordered product (top) 245
Time wise product (twp) 245, 253
Topology of the moduli space of bordered stable maps 420
Toric manifolds 15
- balanced torus fibers 15
Torsion 13, 360-361, 388
t-rank 365
Transversality at diagonal 436
2-category 779
Unobstructed modulo T^E 395-396
Virtual fundamental chain 397, 652, 762
Virtual fundamental cochain 653
Weakly filtered A_∞ bimodule homomorphism 124, 275
Weakly filtered $G'-A_{n;K_1,K_0}$ bimodule homomorphism 642
Weakly finite 374
Weakly submersive 758, 765-766
Whitehead theorem
- for A_∞ algebras 208, 233
- for A_∞ bimodules 287, 292
- for L_∞ algebras 786
Yukawa coupling 22
<table>
<thead>
<tr>
<th>Title</th>
<th>Editors/Authors</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title in This Series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.2 Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono</td>
<td>Lagrangian Intersection Floer Theory</td>
<td>2009</td>
</tr>
<tr>
<td>46.1 Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono</td>
<td>Lagrangian Intersection Floer Theory</td>
<td>2009</td>
</tr>
<tr>
<td>45 Lydia Bieri and Nina Zipser</td>
<td>Extensions of the Stability Theorem of the Minkowski Space in General Relativity</td>
<td>2009</td>
</tr>
<tr>
<td>44 Eric Sharpe and Arthur Greenspoon, Editors</td>
<td>Advances in String Theory</td>
<td>2008</td>
</tr>
<tr>
<td>43 Lizhen Ji, Editor</td>
<td>Arithmetic Groups and Their Generalizations</td>
<td>2008</td>
</tr>
<tr>
<td>42.1 Ka-Sing Lau, Zhou-Ping Xin, and Shing-Tung Yau, Editors</td>
<td>Third International Congress of Chinese Mathematicians</td>
<td>2008</td>
</tr>
<tr>
<td>41 Wen-Ching Winnie Li, Editor</td>
<td>Recent Trends in Coding Theory and its Applications</td>
<td>2007</td>
</tr>
<tr>
<td>40 Ovidiu Calin, Der-Chen Chang, and Peter Greiner, Editors</td>
<td>Geometric Analysis on the Heisenberg Group and Its Generalizations</td>
<td>2007</td>
</tr>
<tr>
<td>38 Noriko Yui, Shing-Tung Yau, and James D. Lewis, Editors</td>
<td>Mirror Symmetry V</td>
<td>2006</td>
</tr>
<tr>
<td>37 Lizhen Ji, Jian-Shu Li, H. W. Xu, and Shing-Tung Yau, Editors</td>
<td>Lie Groups and Automorphic Forms</td>
<td>2006</td>
</tr>
<tr>
<td>36 Chuu-Lian Terng, Editor</td>
<td>Integrable Systems, Geometry, and Topology</td>
<td>2006</td>
</tr>
<tr>
<td>35 Felix Finster,</td>
<td>The Principle of the Fermionic Projector</td>
<td>2006</td>
</tr>
<tr>
<td>34 Ren-Hong Wong, Editor</td>
<td>Computational Geometry</td>
<td>2003</td>
</tr>
<tr>
<td>33 Eric D’Hoker, Duong Phong, and Shing-Tung Yau, Editors</td>
<td>Mirror Symmetry IV</td>
<td>2002</td>
</tr>
<tr>
<td>32 Xi-Ping Zhu,</td>
<td>Lectures on Mean Curvature Flows</td>
<td>2002</td>
</tr>
<tr>
<td>31 Kiyoshi Igusa,</td>
<td>Higher Franz-Reidemeister Torsion</td>
<td>2002</td>
</tr>
<tr>
<td>30 Weiman Han and Mircea Sofonea,</td>
<td>Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity</td>
<td>2002</td>
</tr>
<tr>
<td>29 S. T. Yau and Shuxing Chen, Editors</td>
<td>Geometry and Nonlinear Partial Differential Equations</td>
<td>2002</td>
</tr>
<tr>
<td>28 Valentin Afrimovich and Sze-Bi Hsu</td>
<td>Lectures on Chaotic dynamical Systems</td>
<td>2002</td>
</tr>
<tr>
<td>27 M. Ram Murty,</td>
<td>Introduction to p-adic Analytic Number Theory</td>
<td>2002</td>
</tr>
<tr>
<td>26 Raymond Chan, Yue-Kuen Kwok, David Yao, and Qiang Zhang, Editors</td>
<td>Applied Probability</td>
<td>2002</td>
</tr>
<tr>
<td>25 Donggao Deng, Daren Huang, Rong-Qing Jia, Wei Lin, and Jian Zhong Wong, Editors</td>
<td>Wavelet Analysis and Applications</td>
<td>2002</td>
</tr>
<tr>
<td>24 Jane Gilman, William W. Menasco, and Xiao-Song Lin, Editors</td>
<td>Knots, Braids, and Mapping Class Groups—Papers Dedicated to Joan S. Birman</td>
<td>2001</td>
</tr>
<tr>
<td>23 Cumrun Vafa and S.-T. Yau, Editors</td>
<td>Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds</td>
<td>2001</td>
</tr>
<tr>
<td>22 Carlos Berenstein, Der-Chen Chang, and Jingzhi Tie,</td>
<td>Laguerre Calculus and Its Applications on the Heisenberg Group</td>
<td>2001</td>
</tr>
<tr>
<td>21 Jürgen Jost,</td>
<td>Bosonic Strings: A Mathematical Treatment</td>
<td>2001</td>
</tr>
<tr>
<td>19 So-Chin Chen and Mei-Chi Shaw,</td>
<td>Partial Differential Equations in Several Complex Variables</td>
<td>2001</td>
</tr>
<tr>
<td>18 Fangyang Zheng,</td>
<td>Complex Differential Geometry</td>
<td>2000</td>
</tr>
</tbody>
</table>
TITLES IN THIS SERIES

17 Lei Guo and Stephen S.-T. Yau, Editors, Lectures on Systems, Control, and Information, 2000
16 Rudi Weikard and Gilbert Weinstein, Editors, Differential Equations and Mathematical Physics, 2000
15 Ling Hsiao and Zhouping Xin, Editors, Some Current Topics on Nonlinear Conservation Laws, 2000
14 Jun-ichi Igusa, An Introduction to the Theory of Local Zeta Functions, 2000
13 Vasilios Alexiades and George Siopsis, Editors, Trends in Mathematical Physics, 1999
12 Sheng Gong, The Bieberbach Conjecture, 1999
11 Shinichi Mochizuki, Foundations of p-adic Teichmüller Theory, 1999
10 Duong H. Phong, Luc Vinet, and Shing-Tung Yau, Editors, Mirror Symmetry III, 1999
 9 Shing-Tung Yau, Editor, Mirror Symmetry I, 1998
 8 Jürgen Jost, Wilfrid Kendall, Umberto Mosco, Michael Röckner, and Karl-Theodor Sturm, New Directions in Dirichlet Forms, 1998
 7 D. A. Buell and J. T. Teitelbaum, Editors, Computational Perspectives on Number Theory, 1998
 6 Harold Levine, Partial Differential Equations, 1997
 5 Qi-keng Lu, Stephen S.-T. Yau, and Anatoly Libgober, Editors, Singularities and Complex Geometry, 1997
 4 Vyjayanthi Chari and Ivan B. Penkov, Editors, Modular Interfaces: Modular Lie Algebras, Quantum Groups, and Lie Superalgebras, 1997
 3 Xia-Xi Ding and Tai-Ping Liu, Editors, Nonlinear Evolutionary Partial Differential Equations, 1997
 2.2 William H. Kazez, Editor, Geometric Topology, 1997
 2.1 William H. Kazez, Editor, Geometric Topology, 1997
 1 B. Greene and S.-T. Yau, Editors, Mirror Symmetry II, 1997
This is a two-volume series research monograph on the general Lagrangian Floer theory and on the accompanying homological algebra of filtered A_∞-algebras. This book provides the most important step towards a rigorous foundation of the Fukaya category in general context. In Volume I, general deformation theory of the Floer cohomology is developed in both algebraic and geometric contexts. An essentially self-contained homotopy theory of filtered A_∞ algebras and A_∞ bimodules and applications of their obstruction-deformation theory to the Lagrangian Floer theory are presented. Volume II contains detailed studies of two of the main points of the foundation of the theory: transversality and orientation. The study of transversality is based on the virtual fundamental chain techniques (the theory of Kuranishi structures and their multisections) and chain level intersection theories. A detailed analysis comparing the orientations of the moduli spaces and their fiber products is carried out. A self-contained account of the general theory of Kuranishi structures is also included in the appendix of this volume.