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Preface

The development of Mathematics in the past few decades has witnessed
an unprecedented rise in the usage of the notion of heat kernel in the diverse
and seemingly remote sections of Mathematics. In the paper [217], titled
“The ubiquitous heat kernel”, Jay Jorgenson and Serge Lang called the heat
kernel “... a universal gadget which is a dominant factor practically every-
where in mathematics, also in physics, and has very simple and powerful
properties.”

Already in a first Analysis course, one sees a special role of the exponen-
tial function t �→ eat. No wonder that a far reaching generalization of the
exponential function – the heat semigroup

{
e−tA
}
t≥0

, where A is a positive

definite linear operator, plays similarly an indispensable role in Mathemat-
ics and Physics, not the least because it solves the associated heat equation
u̇ + Au = 0. If the operator A acts in a function space then frequently the
action of the semigroup e−tA is given by an integral operator, whose kernel
is called then the heat kernel of A.

Needless to say that any knowledge of the heat kernel, for example,
upper and/or lower estimates, can help in solving various problems related
to the operator A and its spectrum, the solutions to the heat equation, as
well as to the properties of the underlying space. If in addition the operator
A is Markovian, that is, generates a Markov process (for example, this is
the case when A is a second order elliptic differential operator), then one
can use information about the heat kernel to answer questions concerning
the process itself.

This book is devoted to the study of the heat equation and the heat
kernel of the Laplace operator on Riemannian manifolds. Over 140 years
ago, in 1867, Eugenio Beltrami [29] introduced the Laplace operator for a
Riemannian metric, which is also referred to as the Laplace-Beltrami op-
erator. The next key step towards analysis of this operator was made in
1954 by Matthew Gaffney [126], who showed that on geodesically complete
manifolds the Laplace operator is essentially self-adjoint in L2. Gaffney also
proved in [127] the first non-trivial sufficient condition for the stochastic
completeness of the heat semigroup, that is, for the preservation of the L1-
norm by this semigroup. Nearly at the same time S. Minakshisundaram
[275] constructed the heat kernel on compact Riemannian manifolds using
the parametrix method.
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However, it was not until the mid-1970s when the geometric analysis
of the Laplace operator and the heat equation was revolutionized in the
groundbreaking work of Shing-Tung Yau, which completely reshaped the
area. The culmination of this work was the proof by Li and Yau [258] in 1986
of the parabolic Harnack inequality and the heat kernel two-sided estimates
on complete manifolds of non-negative Ricci curvature, which stimulated
further research on heat kernel estimates by many authors. Apart from
the general wide influence on geometric analysis, the gradient estimates
of Li and Yau motivated Richard Hamilton in his program on Ricci flow
that eventually lead to the resolution of the Poincaré conjecture by Grigory
Perel’man, which can be viewed as a most spectacular application of heat
kernels in geometry1.

Another direction in heat kernel research was developed by Brian Davies
[96] and Nick Varopoulos [353], [355], who used primarily function-analytic
methods to relate heat kernel estimates to certain functional inequalities.

The purpose of this book is to provide an accessible for graduate students
introduction to the geometric analysis of the Laplace operator and the heat
equation, which would bridge the gap between the foundations of the subject
and the current research. The book focuses on the following aspects of these
notions, which form separate chapters or groups of chapters.

I. Local geometric background. A detailed introduction to Riemannian
geometry is given, with emphasis on construction of the Riemannian measure
and the Riemannian Laplace operator as an elliptic differential operator of
second order, whose coefficients are determined by the Riemannian metric
tensor.

II. Spectral-theoretic properties. It is a crucial observation that the
Laplace operator can be extended to a self-adjoint operator in L2 space,
which enables one to invoke the spectral theory and functional calculus of
self-adjoint operator and, hence, to construct the associated heat semigroup.
To treat properly the domains of the self-adjoint Laplacian and that of the
associated energy form, one needs the Sobolev function spaces on manifolds.
A detailed introduction to the theory of distributions and Sobolev spaces is
given in the setting of Rn and Riemannian manifolds.

III. Markovian properties and maximum principles. The above spectral-
theoretic aspect of the Laplace operator exploits its ellipticity and symme-
try. The fact that its order is 2 leads to the so-called Markovian properties,
that is, to maximum and minimum principles for solutions to the Laplace
equation and the heat equation. Various versions of maximum/minimum
principles are presented in different parts of the book, in the weak, normal,
and strong forms. The Markovian properties are tightly related to the dif-
fusion Markov process associated with the Laplacian, where is reflected in

1Another striking application of heat kernels is the heat equation approach to the
Atiyah-Singer index theorem – see [12], [132], [317].
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the terminology. However, we do not treat stochastic processes here, leaving
this topic for a prospective second volume.

IV. Smoothness properties. As it is well-known, elliptic and parabolic
equations feature an added regularity phenomenon, when the degree of
smoothness of solutions is higher than a priori necessary. A detailed account
of the local regularity theory in R

n (and consequently on manifolds) is given
for elliptic and parabolic operators with smooth coefficients. This includes
the study of the smoothness of solutions in the scale of Sobolev spaces of
positive and negative orders, as well as the embedding theorems of Sobolev
spaces into Ck. The local estimates of solutions are used, in particular, to
prove the existence of the heat kernel on an arbitrary manifold.

V. Global geometric aspects. These are those properties of solutions
which depend on the geometry of the manifold in the large, such as the
essential self-adjointness of the Laplace operator (that is, the uniqueness of
the self-adjoint extension), the stochastic completeness of the heat kernel,
the uniqueness in the bounded Cauchy problem for the heat equation, and
the quantitative estimates of solutions, in particular, of the heat kernel. A
special attention is given to upper bounds of the heat kernel, especially the
on-diagonal upper bounds with the long-time dependence, and the Gaussian
upper bounds reflecting the long-distance behavior. The lower bounds as
well as the related uniform Harnack inequalities and gradient estimates are
omitted and will be included in the second volume.

The prerequisites for reading of this books are Analysis in R
n and the ba-

sics of Functional Analysis, including Measure Theory, Hilbert spaces, and
Spectral Theorem for self-adjoint operators (the necessary material from
Functional Analysis is briefly surveyed in Appendix). The book can be used
as a source for a number of graduate lecture courses on the following topics:
Riemannian Geometry, Analysis on Manifolds, Sobolev Spaces, Partial Dif-
ferential Equations, Heat Semigroups, Heat Kernel Estimates, and others.
In fact, it grew up from a graduate course “Analysis on Manifolds” that was
taught by the author in 1995-2005 at Imperial College London and in 2002,
2005 at Chinese University of Hong Kong.

The book is equipped with over 400 exercises whose level of difficulty
ranges from “general nonsense” to quite involved. The exercises extend and
illustrate the main text, some of them are used in the main text as lemmas.
The detailed solutions of the exercises (about 200 pages) as well as their
LATEX sources are available on the web page of the AMS

http : //www.ams.org/bookpages/amsip-47

where also additional material on the subject of the book will be posted.
The book has little intersection with the existing monographs on the

subject. The above mentioned upper bounds of heat kernels, which were
obtained mostly by the author in 1990s, are presented for the first time in a
book format. However, the background material is also significantly different
from the previous accounts. The main distinctive feature of the foundation

x iii



xiv PREFACE

part of this book is a new method of construction of the heat kernel on
an arbitrary Riemannian manifold. Since the above mentioned work by
Minakshisundaram, the traditional method of constructing the heat kernel
was by using the parametrix method (see, for example, [36], [37], [51],
[317], [326]). However, a recent development of analysis on metric spaces,
including fractals (see [22], [186], [187], [224]), has lead to emergence of
other methods that are not linked so much to the local Euclidean structure
of the underlying space.

Although singular spaces are not treated here, we still employ whenever
possible those methods that could be applied also on such spaces. This
desire has resulted in the abandonment of the parametrix method as well
as the tools using smooth hypersurfaces such as the coarea formula and the
boundary regularity of solutions, sometimes at expense of more technical
arguments. Consequently, many proofs in this book are entirely new, even
for the old well-known properties of the heat kernel and the Green function.
A number of key theorems are presented with more than one proof, which
should provide enough flexibility for building lecture courses for audiences
with diverse background.

The material of Chapters 1 - 10, the first part of Chapter 11, and Chapter
13, belongs to the foundation of the subject. The rest of the book – the
second part of Chapter 11, Chapters 12 and 14 - 16, contains more advanced
results, obtained in the 1980s -1990s.

Let us briefly describe the contents of the individual chapters.
Chapters 1, 2, 6 contain the necessary material on the analysis in R

n

and the regularity theory of elliptic and parabolic equations in R
n. They do

not depend on the other chapters and can be either read independently or
used as a reference source on the subject.

Chapter 3 contains a rather elementary introduction to Riemannian ge-
ometry, which focuses on the Laplace-Beltrami operator and the Green for-
mula.

Chapter 4 introduces the Dirichlet Laplace operator as a self-adjoint
operator in L2, which allows then to define the associated heat semigroup
and to prove its basic properties. The spectral theorem is the main tool in
this part.

Chapter 5 treats the Markovian properties of the heat semigroup, which
amounts to the chain rule for the weak gradient, and the weak maximum
principle for elliptic and parabolic problems. The account here does not use
the smoothness of solutions; hence, the main tools are the Sobolev spaces.

Chapter 7 introduces the heat kernel on an arbitrary manifold as the
integral kernel of the heat semigroup. The main tool is the regularity theory
of Chapter 6, transplanted to manifolds. The existence of the heat kernel
is derived from a local L2 → L∞ estimate of the heat semigroup, which in
turn is a consequence of the Sobolev embedding theorem and the regularity
theory. The latter implies also the smoothness of the heat kernel.
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Chapter 8 deals with a number of issues related to the positivity or
boundedness of solutions to the heat equation, which can be regarded as an
extension of Chapter 5 using the smoothness of the solutions. It contains the
results on the minimality of the heat semigroup and resolvent, the strong
minimum principle for positive supersolutions, and some basic criteria for
the stochastic completeness.

Chapter 9 treats the heat kernel as a fundamental solution. Based on
that, some useful tools are introduced for verifying that a given function is
the heat kernel, and some examples of heat kernels are given.

Chapter 10 deals with basic spectral properties of the Dirichlet Lapla-
cian. It contains the variational principle for the bottom of the spectrum λ1,
the positivity of the bottom eigenfunction, the discreteness of the spectrum
and the positivity of λ1 in relatively compact domains, and the characteri-
zation of the long time behavior of the heat kernel in terms of λ1.

Chapter 11 contains the material related to the use of the geodesic dis-
tance. It starts with the properties of Lipschitz functions, in particular,
their weak differentiability, which allows then to use Lipschitz functions as
test functions in various proofs. The following results are proved using the
distance function: the essential self-adjointness of the Dirichlet Laplacian
on geodesically complete manifolds, the volume tests for the stochastic com-
pleteness and parabolicity, and the estimates of the bottom of the spectrum.

Chapter 12 is the first of the four chapters dealing with upper bounds of
the heat kernel. It contains the results on the integrated Gaussian estimates
that are valid on an arbitrary manifold: the integrated maximum principle,
the Davies-Gaffney inequality, Takeda’s inequality, and some consequences.
The proofs use the carefully chosen test functions based on the geodesic
distance.

Chapter 13 is devoted to the Green function of the Laplace operator,
which is constructed by integrating the heat kernel in time. Using the Green
function together with the strong minimum principle allows to prove the
local Harnack inequality for α-harmonic functions and its consequences –
convergence theorems. As an example of application, the existence of the
ground state on an arbitrary manifold is proved. Logically this Chapter
belongs to the foundations of the subject and should have been placed much
earlier in the sequence of the chapters. However, the proof of the local
Harnack inequality requires one of the results of Chapter 12, which has
necessitated the present order.

Chapter 14 deals with the on-diagonal upper bounds of the heat kernel,
which requires additional hypothesis on the manifold in question. Normally
such hypotheses are stated in terms of some isoperimetric or functional in-
equalities. We use here the approach based on the Faber-Krahn inequality
for the bottom eigenvalue, which creates useful links with the spectral prop-
erties. The main result is that, to a certain extent, the on-diagonal upper
bounds of the heat kernel are equivalent to the Faber-Krahn inequalities.
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Chapter 15 continues the topic of the Gaussian estimates. The main
technical result is Moser’s mean-value inequality for solutions of the heat
equation, which together with the integrated maximum principle allows to
obtain pointwise Gaussian upper bounds of the heat kernel. We consider
such estimates in the following three settings: arbitrary manifolds, the man-
ifolds with the global Faber-Krahn inequality, and the manifolds with the
relative Faber-Krahn inequality that leads to the Li-Yau estimates of the
heat kernel.

Chapter 16 introduces alternative tools to deal with the Gaussian esti-
mates. The main point is that the Gaussian upper bounds can be deduced
directly from the on-diagonal upper bounds, although in a quite elaborate
manner. As an application of these techniques, some on-diagonal lower es-
timates are proved.

Finally, Appendix A contains some reference material as was already
mentioned above.

Acknowledgments. The book was typeset in LATEX using an excel-
lent editor Scientific Workplace by TCI Software Research and MacKichan
Software.

In the process of writing this book I was affiliated (permanently or tem-
porarily) with the following institutions: Imperial College London, Institute
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Lecture Notes Math. 194, Springer, 1971.

37. Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators,
Grundlehren der mathematischen Wissenschaften 298, Springer, 1992.

38. Bers L., John F., Schechter M., “Partial differential equations”, John Wiley &
Sons (Interscience), 1964.

39. Beurling A., Deny J., Dirichlet spaces, Proc. Nat. Acad. Sci. USA, 45 (1959)
208-215.

40. Biroli M., Mosco U., Sobolev and isoperimetric inequalities for Dirichlet forms on
homogeneous spaces, Rend. Mat. Acc. Lincei, s.9, 6 (1995) 37-44.

41. Blumental R.M., Getoor R.K., “Markov processes and potential theory”, Aca-
demic Press, New York, 1968.
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Some notation

• R+ ≡ (0,+∞)
• esup – the essential supremum
• einf – the essential infimum
• f+ ≡ 1

2 (|f |+ f) - the positive part

• f− ≡ 1
2 (|f | − f) - the negative part

• [f ]ba ≡ f (b)− f (a)
• log+ x ≡ (log x)+
• � “comparable to”; namely, f (x) � g (x) if there exists a constant
C > 0 such that C−1g (x) ≤ f (x) ≤ Cg (x) for all x from a specified
domain.
• Br (x) – a ball in R

n, that is, Br (x) = {y ∈ R
n : |x− y| < r}

• Br ≡ Br (0) = {y ∈ R
n : |y| < r} .

• ωn – the area of the unit (n− 1)-sphere in R
n.

• 1A – the indicator function of a set A, that is, 1A (x) = 1 if x ∈ A
and 1A (x) = 0 otherwise.
• � “compact inclusion”; A � B means that the closure A of the set
A is compact and A ⊂ B.
• H – a Hilbert space
• ⇀ the sign of the weak convergence (in a Hilbert space)
• M – a Riemannian manifold
• x→∞ – a sequence of points on a manifold eventually leaving any
compact set.
• g – the Riemannian metric on M
• µ – a reference measure on M
• ∆µ – the weighted Laplace operator on M
• L – the Dirichlet Laplace operator on M
• Lp (M,µ) – the Lebesgue function space
• ‖ · ‖p ≡ ‖ · ‖Lp

• u ≤ v modW 1
0 means that u ≤ v + w where w ∈W 1

0 .
• d – the geodesic distance on M
• B (x, r) – a geodesic ball onM with respect to the geodesic distance
d (x, y).
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476 SOME NOTATION

Conventions.

• Summation is assumed over repeated indices. For example,

ξix
i =

n∑
i=1

ξix
i, aijuj =

n∑
j=1

aijuj , gijv
ivj =

n∑
i,j=1

gijv
ivj ,

etc.
• Letters c, C, c′, C ′, etc denote positive constants (depending on spec-
ified parameters) whose value may change at each occurrence.
• positive≡strictly positive, negative≡strictly negative, decreasing≡non-
increasing, increasing≡non-decreasing
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|α| - order of multiindex, 15

[α] - the weighted order, 170

B (M) - the class of Borel measurable
functions on M , 59

B (x, r) - the geodesic ball, 89

Br (x) - the Euclidean ball, 17

C (Ω), 15

Cb (M), 202

Cb (Ω), 120

Cb (R
n), 40

Ck (M), 51

Ck (Ω), 15

Ck
0 (M), 51

Ck
b (Rn), 41

C∞ (Ω), 16

C∞
0 (Ω), 16

↪→, 16

�, 16, 49

�, 36, 93
C∞
−→, 186
D−→, 24, 97
D′
−→, 24, 97
W∞

loc−→ , 186

D′ (M), 97

D′ (Ω), 24

D (M), 97

D (Ω), 23
�D′ (M), 98
�D (M), 98

δij - the Kroneker delta, 56

∆ - the Laplace operator, 1

∆µ - the weighted Laplace operator, 68

diag, 260

d (x, y) - the geodesic distance, 86

dJ - the tangent map, 92

ED (t, x), 399

EU - the spectral measure of U , 266

Eλ - a spectral resolution, 111, 113, 132,
190, 266, 449, 452

f ∗ g - convolution, 7, 17
ϕε - mollifier, 18
G - the Green operator, 341
g (x, y) - the Green function, 342
gΩ (x, y) - the Green function in Ω, 342
g - a Riemannian metric, 56
g−1, 58
gHn - the canonical metric on H

n, 77
gRn - the canonical metric on R

n, 57
gSn - the canonical metric on S

n, 72
Γ-function, 455
Γ - a function class, 372
Γδ - a function class, 376

Γ̃δ - a function class, 376
Gf , 341
GΩf , 341
gij , 57
gij , 58
〈·, ·〉 - inner product of tangent vectors,

57
〈·, ·〉 - pairing of vectors and covectors,

56
(f, g)L2 - the inner product in L2, 440
J∗ - pullback operator, 92
L - the Dirichlet Laplace operator, 105
LΩ - the Dirichlet Laplace operator in Ω,

144
Λ - a Faber-Krahn function, 367
Λ (M) - the class of Lebesgue measurable

functions on M , 59
λk (Ω), 277
λmin (A), 265
λmin (M), 111, 271
L - a function class, 371
Lδ - a function class, 376

L̃δ - a function class, 376
� (γ) - the length of a path, 86
Lip (M), 296
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Lip0 (M), 299
Liploc (M), 299
log+, 378
Lp (M), 98, 440
Lp

loc (M), 98
Lp (Ω), 16
�Lp (M), 98
�Lp
loc (M), 99

m (U), 267
∇, 6, 43, 58
‖ · ‖Ck , 16
‖ · ‖Lp , 440
‖ · ‖p, 439
‖ · ‖V k , k < 0, 171
‖ · ‖V k , k ≥ 0, 170
‖ · ‖W1 , 100
‖ · ‖Wk , k < 0, 37
‖ · ‖Wk , k ≥ 0, 34
‖ · ‖W2k , 183
‖ · ‖p→q, 365
‖ · ‖Lip, 296
Pt - the heat semigroup

= e−tL, 115, 117, 130
a convolution operator, 40
a smooth version of e−tL, 191
an integral operator, 201

PΩ
t - the heat semigroup in Ω, 144

pt (x) - the heat kernel in R
n, 4

pt (x, y) - the heat kernel, 198
pt,x (y), 191
R (f) - the Rayleigh quotient, 272
Rα - the resolvent, 106, 130, 219
RΩ

α - the resolvent in Ω, 144
rα (x, y) - the resolvent kernel, 262

Rk - the iterated resolvent, 133
supp - support

of a continuous function, 3, 51
of a distribution, 26, 97
of a function from L1

loc, 98
u = w modW 1

0 (M), 135
u ≤ w modW 1

0 (M), 135⊔
, 61

V (x, r), 303, 409

V k (Ω) , k < 0, 171

V k (Ω) , k ≥ 0, 170

V k
loc (Ω), 171

W 1 (M), 100
W 1

0 (M), 104
W 1

c (M), 127
W 1

loc (M), 128
W 2(M), 104
W 2

0 (M), 104

W 2
loc (M), 130

W k (Ω) , k < 0, 37

W k (Ω) , k ≥ 0, 34
W 1

0 (Ω), 36, 158
W∞ (Ω), 152
W∞

loc (Ω), 152

W k
loc (Ω) , k < 0, 38

W k
loc (Ω) , k ≥ 0, 34

Ws
0 (M), 188

W2k (M), 183

W2k
loc (M), 183

W∞
loc (M), 186

ωn, 3, 82, 83

σ-Algebra, 435
Almost everywhere, 438
Anisotropic Sobolev spaces, 170
Area function, 82
Aronson, Donald G., 215, 339, 414
Atlas, 50
Azencott, Robert, 320

Basis in a Hilbert space, 432
Beltrami, Eugenio, ix
Bessel semigroup, 133
Bessel’s inequality, 432
Borel set

in R
n, 436

on a manifold, 59
Bottom eigenfunction, 275
Bottom of the spectrum, 265
Boukricha, Abderrahman, 362
Bounded convergence theorem, 114, 439
Bounded geometry, 312
Brooks, Robert, 320

C-manifold, 49
Canonical Euclidean metric, 57
Canonical hyperbolic metric, 77
Canonical spherical metric, 72
Carathéodory extension theorem, 435
Carlen, Eric A., 388
Carron, Gilles, 388
Cartan-Hadamard manifold, 368, 383
Cauchy problem, 4

in L2 (Rn), 45
L2-Cauchy problem, 112
Cauchy semigroup, 134
Cauchy-Schwarz inequality, 431, 440
Chain rule

for Lipschitz functions, 301
for strong derivatives, 121
for the Riemannian gradient, 59
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for the weighted Laplacian, 69
in W 1, 128
in W 1

0 , 123, 124
Chart, 49
Chavel, Isaac, 388
Cheeger’s inequality, 275
Ck-norm, 16
Closed operator, 109, 446
Compact embedding theorem, 214, 289

in R
n, 158

Compact inclusion, 16, 49
Compact operator, 168, 434
Comparison principle, 137
Complete measure, 435
Completeness of Lp, 440
Components

of a vector, 55
of the metric tensor, 57

Convergence
in D (Ω), 23
in D (M), 97

Convex function, 42
Convexity lemma, 43
Convolution, 17
Cotangent space, 56
Coulhon, Thierry, 388
Countable base, 49
Counting measure, 267
Covector, 56
Cutoff function, 19

Lipschitz, 300
on a manifold, 52

Davies, Edward Brian, x, 339
Davies-Gaffney inequality, 326
De Broglie, Louis, 2
De Giorgi, Ennio, 181, 215, 414
Delta function, 24
Density function, 67
Density of measure, 438
Diffeomorphism, 92
Differential, 56
Dirac, Paul, 2
Dirichlet Laplace operator, 105
Dirichlet problem, 105

weak, 105, 111, 135
Discrete spectrum, 265
Distribution

definition, 24
derivatives, 25
multiplication by a function, 25
non-negative, 136
on a manifold, 97

support, 26, 97
Distributional gradient, 99
Distributional vector field, 98
Divergence

on a manifold, 64
weighted, 68

Divergence theorem
in R

n, 3
on a manifold, 64

Dodziuk, Józef, 263, 429
Dominated convergence theorem, 439, 441
Doob, 252
Doubling volume property, 410

Eigenvalue, 434
Eigenvector, 434
Einstein, Albert, 2
Elliptic operator, 4, 162
Ellipticity constant, 162
Embedding

of linear topological spaces, 16
Essential spectrum, 265
Exhaustion sequence, 52, 144

compact, 52, 201

Faber-Krahn inequality, 367
in balls, 397
in unions of balls, 402
on direct products, 386
relative , 409

Faber-Krahn theorem, 367
Fatou’s lemma, 438
Fourier series, 432
Fourier transform, 8

inversion formula, 155
Fourier, Jean Baptiste Joseph, 1
Friedrichs lemma, 160
Friedrichs, Kurt Otto, 181
Friedrichs-Poincaré inequality, 159
Fubini’s theorem, 442
Functional calculus of operators, 453
Fundamental solution

of the heat equation, 243
of the Laplace operator, 342, 359
regular, 243

Fundamental theorem of calculus, 120

Γ-transform, 372
Gaffney, Matthew P., ix, 319
Gamma function, 455
Gâteaux derivative, 210
Gauss-Weierstrass function, 4
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Geodesic ball, 89
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Geodesic completeness, 295
Geodesic distance, 86
Geodesics, 86, 295
Gradient, 58
Green formula, 104

for Laplacian on a manifold, 67
in R

n, 3
Green function, 342

upper bound, 414
Green operator, 341
Gross, Leonard, 388
Ground state, 358
Gushchin Anatolii Konstantinovich, 320

h-transform, 252
Hamilton, Richard, x
Hansen, Wolfhard, 362
Hardy inequality, 259
Harmonic function, 83, 189, 229
α-Harmonic function, 229, 354, 356
Harnack inequality
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n, 355

local, 353
Harnack principle, 356
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Heat kernel

asymptotics as t → ∞, 292
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n, 256
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integrated upper bound, 399, 422
Li-Yau upper estimate, 413
of a weighted manifold, 198
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on products, 249
on-diagonal lower bound, 424
on-diagonal upper bound, 380
smoothness, 198, 208
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under isometry, 250

Heat semigroup
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n, 40
on a manifold, 115

Hermite polynomials, 69
Hilbert space, 431
Hilbert-Schmidt theorem, 434
Hölder conjugate, 439
Hölder inequality, 439
Hopf-Rinow Theorem, 295, 296
Hörmander, Lars Valter, 181
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Induced measure, 71
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Integrable function, 437
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Khas’minskii, Rafail Zalmanovich, 241
Krylov, Nikolai Vladimirovich, 181
Kusuoka, Shigeo, 388

L-transform, 372
Landis, Evgeniy Mikhailovich , 182
Lang, Serge, ix
Laplace equation, 1
Laplace operator

Dirichlet, 105
distributional, 99
in R

n, 1
on a manifold, 67
weak, 99
weighted, 68

Laplace, Pierre-Simon, 1
Lax, Peter David, 181
Lebesgue integral, 437
Lebesgue integral sum, 437
Lebesgue measure, 436
Lebesgue space, 440

in R
n, 16

in R
n, local, 16

Length of a path, 86
Levy distribution, 134
Li, Peter, 415
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The heat kernel has long been an essential tool in both classical and 
modern mathematics but has become especially important in geometric 
analysis as a result of major innovations beginning in the 1970s. The 
methods based on heat kernels have been used in areas as diverse as 
analysis, geometry, and probability, as well as in physics. This book is 
a comprehensive introduction to heat kernel techniques in the setting 
of Riemannian manifolds, which inevitably involves analysis of the 
Laplace–Beltrami operator and the associated heat equation.

The first ten chapters cover the foundations of the subject, while later 
chapters deal with more advanced results involving the heat kernel in a 
variety of settings. The exposition starts with an elementary introduction 
to Riemannian geometry, proceeds with a thorough study of the spectral-
theoretic, Markovian, and smoothness properties of the Laplace and 
heat equations on Riemannian manifolds, and concludes with Gaussian 
estimates of heat kernels.

Grigor’yan has written this book with the student in mind, in particular 
by including over 400 exercises. The text will serve as a bridge between 
basic results and current research.
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