Additional Exercises for "Analysis"

Additional Exercise for Chapter 4:
One can rewrite the HLS inequality $4.3(1)$ as

$$
\int_{\mathbb{R}^{n}}|x|^{-\lambda}(f * h)(x) \mathrm{d} x \leq C(n, \lambda, p)\|f\|_{p}\|h\|_{r}
$$

with $1 / p+1 / r=2-\lambda / n$. The function $|x|^{-\lambda}$ is in weak L^{q} with $q=n / \lambda$, so $1 / p+1 / r=1+1 / q^{\prime}$. We know from Young's inequality that $f * h$ is in $L^{q^{\prime}}$ and we might be tempted to conclude from 4.3(1) that we can replace $f * h$ in the integral above by any $L^{q^{\prime}}$ function (with a possible readjustment of the constant C). This is not so; the $L^{q^{\prime}}$ functions obtained by convolution of an L^{p} and an L^{r} function are special and one of the ways in which they are special is that the integral above is finite.
Find a function $g \in L^{q^{\prime}}\left(R^{n}\right)$ so that the integral above is infinite when $f * h$ is replaced by g.

