Additional Exercises for "Analysis"

Additional Exercise for Chapter 4:

One can rewrite the HLS inequality 4.3(1) as

$$\int_{\mathbb{R}^n} |x|^{-\lambda} (f * h)(x) \mathrm{d}x \le C(n, \lambda, p) \|f\|_p \|h\|_r$$

with $1/p+1/r = 2-\lambda/n$. The function $|x|^{-\lambda}$ is in weak L^q with $q = n/\lambda$, so 1/p+1/r = 1+1/q'. We know from Young's inequality that f * h is in $L^{q'}$ and we might be tempted to conclude from 4.3(1) that we can replace f * h in the integral above by any $L^{q'}$ function (with a possible readjustment of the constant C). This is not so; the $L^{q'}$ functions obtained by convolution of an L^p and an L^r function are special and one of the ways in which they are special is that the integral above is finite.

Find a function $g \in L^{q'}(\mathbb{R}^n)$ so that the integral above is infinite when f * h is replaced by g.