Teaching Mathematics in Colleges and Universities: Case Studies for Today's Classroom

Faculty Edition

Solomon Friedberg et al.
Selected Titles in This Series

Volume

10 Solomon Friedberg et al.
Teaching mathematics in colleges and universities: Case studies for today’s classroom. Available in graduate student and faculty editions
2001

9 Robert Reys and Jeremy Kilpatrick, Editors
One field, many paths: U. S. doctoral programs in mathematics education
2001

8 Ed Dubinsky, Alan H. Schoenfeld, and Jim Kaput, Editors
Research in collegiate mathematics education. IV
2001

7 Alan H. Schoenfeld, Jim Kaput, and Ed Dubinsky, Editors
Research in collegiate mathematics education. III
1998

6 Jim Kaput, Alan H. Schoenfeld, and Ed Dubinsky, Editors
Research in collegiate mathematics education. II
1996

5 Naomi D. Fisher, Harvey B. Keynes, and Philip D. Wagreich, Editors
Changing the culture: Mathematics education in the research community
1995

4 Ed Dubinsky, Alan H. Schoenfeld, and Jim Kaput, Editors
Research in collegiate mathematics education. I
1994

3 Naomi D. Fisher, Harvey B. Keynes, and Philip D. Wagreich, Editors
Mathematicians and education reform 1990–1991
1993

2 Naomi D. Fisher, Harvey B. Keynes, and Philip D. Wagreich, Editors
Mathematicians and education reform 1989–1990
1991

1 Naomi D. Fisher, Harvey B. Keynes, and Philip D. Wagreich, Editors
Mathematicians and education reform: Proceedings of the July 6–8, 1988 workshop
1990
This page intentionally left blank
Teaching Mathematics in Colleges and Universities: Case Studies for Today’s Classroom

Faculty Edition
This page intentionally left blank
Teaching Mathematics in Colleges and Universities: Case Studies for Today's Classroom

Faculty Edition

Solomon Friedberg

Avner Ash
Elizabeth Brown
Deborah Hughes Hallett
Reva Kasman
Margaret Kenney
Lisa A. Mantini
William McCallum
Jeremy Teitelbaum
Lee Zia
2000 Mathematics Subject Classification. Primary 00A35, 97D40; Secondary 00A05, 97C70, 97D30, 97D50, 97D60, 97D70, 97U70.

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.

© 2001 by Solomon Friedberg. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at URL: http://www.ams.org/
10 9 8 7 6 5 4 3 2 1 06 05 04 03 02 01
Contents

Acknowledgements xiii

Introduction 1

Part I. Fourteen Case Studies

Case 1. Changing Sections: On the first days of class, different instructors in a multisection calculus course grapple with weak student knowledge of prerequisites 5

Case 2. Emily’s Test: Possible cheating in a proctored exam 11

Case 3. Fundamental Problems (Part I): Explaining the fundamental theorem of calculus 13

Case 4. Making the Grade: Grading student work 15

Case 5. Making Waves: Motivating Fourier series through physics 21

Case 6. Order Out of Chaos: A precalculus class struggles with graphing calculators 27

Case 7. Pairing Up: Managing group work 31

Case 8. The Quicksand of Problem Four: A recitation section covering average velocity goes awry 35

Case 9. Salad Days: A struggling calculus student 43

Case 10. Seeking Points: A student protests his exam grade, having used prior knowledge about the derivative to solve the examination question 45

Case 11. Study Habits: A TA seeks ways to get her class to work harder 49
Case 12. Studying the Exam: Constructing an effective, appropriate examination 55
 College algebra questions 56
 Calculus II questions 58
 Multivariable calculus questions 60

Case 13. There’s Something about Ted (Part I): Moving to a large state university as an instructor 63

Case 14. What Were They Thinking?: Coping with poor exam results 65

Part II. Supporting Materials for Faculty

Developing Effective Mathematics Teaching Assistants Using Case Studies: An Introduction for Faculty 71

Using Case Studies in a TA-Development Program 77

Types of Cases 83

Summaries of Cases 85

How These Cases Were Created 91

Case 1. Changing Sections, Teaching Guide 93

Case 2. Emily’s Test, Teaching Guide 95

Case 3. Fundamental Problems, Part II 97
 Fundamental Problems, Teaching Guide 99

Case 4. Making the Grade, Teaching Guide 103

Case 5. Making Waves, Part II 109
 Making Waves, Teaching Guide 111

Case 6. Order Out of Chaos, Teaching Guide 115
 Exercise for Order Out of Chaos 119

Case 7. Pairing Up, Teaching Guide 121

Case 8. The Quicksand of Problem Four, Teaching Guide 125
 Exercise for the Quicksand of Problem Four 131

Case 9. Salad Days, Teaching Guide 133

Case 10. Seeking Points, Teaching Guide 135
 Exercise for Seeking Points 139

Case 11. Study Habits, Teaching Guide 141

Case 12. Studying the Exam, Teaching Guide 145
 Teaching Guide, College algebra version 147
 Teaching Guide, Calculus II version 149
 Teaching Guide, Multivariable calculus version 151
Case 13. There’s Something about Ted, Part II 153
 There’s Something about Ted, Teaching Guide 155
Case 14. What Were They Thinking?, Teaching Guide 157
This page intentionally left blank
The case studies in this volume are fictionalized accounts of common teaching situations. All characters in them are fictitious. Any similarities to specific individuals are purely coincidental.
Acknowledgements

It is a pleasure to thank the many people who have enabled this project to take place. When I first had the idea of writing case studies for mathematics graduate students and instructors, I discussed it with Deborah Hughes Hallett and Katherine Merseth. Their thoughtful and enthusiastic responses were key to making the idea a reality. Deb and Kay also contributed their expertise in helping me formulate a realistic plan of action. At the grant-writing stage, Avner Ash, Margaret Kenney, Jim Leitzel, Glenn Stevens, Lee Zia, and Dorothy Wallace, as well as Deb and Kay, stepped in with valuable comments which improved the development plan and the grant proposal considerably. Thank you all. Jim Leitzel’s untimely death saddened all of us greatly; his memory inspires us still. A host of Boston College administrators gave me the green light early on to pursue this idea, and they ultimately committed extensive resources to support the project: Michael Smyer, Vice President for Research, Fr. Robert Barth S.J., former Dean of the College of Arts and Sciences, Joseph Quinn, present Dean, and Richard Jenson, Chair of the Mathematics Department. In addition, John Neuhauser, both as Dean of the School of Management and later as Academic Vice-President and Dean of the Faculty at Boston College, shared his extensive experience with the use of case studies, and made a difference. No faculty member could ask for better support from his institution. My proposal to carry out this project was funded by the Fund for the Improvement of Postsecondary Education (FIPSE), a unit within the Office of Postsecondary Education, U.S. Department of Education, under FIPSE grant number P116B980015, and I hereby acknowledge with appreciation this support.

In carrying out the project, The Boston College Mathematics Case Studies Project (BCCase), development team members Avner Ash, Elizabeth Brown, Deborah Hughes Hallett, Reva Kasman, Margaret Kenney, Lisa Mantini, William McCallum, Jeremy Teitelbaum, and Lee Zia contributed their ideas, energy, experiences, and wisdom, and made the project what it is. A enormous, sincere, and much-deserved thanks. Elin Norberg and David Foster ably served as the project administrators, and Mary Sullivan contributed her expertise as the project evaluator. Their contributions are much-appreciated.

I and the rest of the BCCase team would like to thank the many people who have aided us in the development of the case studies. Once the project got under way, we depended upon the feedback and insightful comments of mathematics graduate students from around the country who used and evaluated the case studies as we wrote and revised them. We would like to sincerely thank them all. We would like to especially mention the group of graduate students whose initial use often
led to the early demise or major revision of a case. The group included: Elizabeth Brown, Ben Brubaker, Mark Evans, Craig Friedland, Lynette Kelley, Sarah Lehan, Brian Munson, Allison Pacelli, Carolyn Pointek, Steven Rattendi, and Jay Douglas Wright. Other contributors include: Dawn Berk, Susan Billimek, Jonathan Cox, Teodora Cox, Jailing Dai, Jeff Edmunds, Todd Grundmeier, Tom Harris, Michael Hayes, Jessica Hemenway, Jack Hoppin, David Hrencecin, Sarah James, Katrina Jimenez, Qayum Khan, Michael Kuecken, Amy Lehan, Andre Lehovich, Arthur Lo, Guada Lozano, Joyce Macabéa, David Marsden, Kaarin McCarthy, Laura McSweeney, Stephanie Molnar, Carlos Morales, Kinya Ono, Andy Parker, Virgil Pierce, T.J. Preacher, Chris Rasmussen, Randi Scott, Charlotte Schulz-Hewett, Jeff Selden, Randy Sesto, Jeanine Smallwood, Jennifer Smith, Nichole Soter, Carrie Spooner, Simei Tong, Nadia Whisenand, Haishen Yao, and Shaowei Zhang. Also thanks to the many graduate students from around the country who filled out copious feedback forms after using a case and offered their frank comments and intelligent suggestions. Parallel to the contributions of the mathematics graduate student community has been the contribution from mathematics faculty.

We would like to thank the small army of faculty from around the country who have tested and evaluated the case studies or provided other feedback to us: Doug Aichele of Oklahoma State University, Judith Arns of the University of Washington, Margaret Balachowski of Michigan Technology University, Ken Boggart of Dartmouth College, Tina Garn of the University of Arizona, Thomas Goodwillie of Brown University, Daniel L. Goroff of Harvard University, Marcia Groszek of Dartmouth College, Tim Gutman of the University of New Hampshire, Gary Harris of Texas Tech University, Diane Herrmann of the University of Chicago, Theodore Laetsch of the University of Arizona, Katherine Merseth of Harvard University, Teri Jo Murphy of the University of Oklahoma, Regina Panasuk of the University of Massachusetts Lowell, Kent Pearce of Texas Tech University, Emma Previato of Boston University, James Propp of the University of Wisconsin, Karen Rhea of the University of Michigan, David Rohrlich of Boston University, Ned Rosen of Boston College, Eileen T. Shugart of Virginia Tech., Brenda Slez of the University of Massachusetts Lowell, Glenn Stevens of Boston University, Maria Terrell of Cornell University, Stuart Thomas of the University of Oregon, Dorothy Wallace of Dartmouth College, Steve Wheaton of the University of Arizona, and Dale Winter of Harvard University.

We would also like to thank Marilyn Adams, the Boston College mathematics department secretary, Susan Hoban and the rest of the staff of the BC Office of Research Administration, Jay Donahue, our program officer at FIPSE, Naomi Fisher and Bonnie Saunders of the MER Forum, Elizabeth Armstrong and Tom McGarry of the Harvard Medical School, Tom Seidenberg and Gwen Sneedon of the Phillips Exeter Academy, and Edward Dunne and Barbara Beeton of the American Mathematical Society.

Finally, I would like to thank my wife Karen Ann Siller and my children Ilana, Rina, and Liora, who saw me come home late or work on the computer so many evenings due to this project, who put up with my trips to conferences and case
study presentations as I worked to introduce these materials to the mathematics community, and who were always there to greet me with open arms and big smiles upon my return.

Thanks to all.

Solomon Friedberg
Director, The Boston College Mathematics Case Studies Project
Chestnut Hill, Massachusetts
February 12, 2001
This page intentionally left blank
Teaching Mathematics in Colleges and Universities:
Case Studies for Today's Classroom
Faculty Edition

Solomon Friedberg et al.

Progress in mathematics frequently occurs first by studying particular examples and then by generalizing the patterns that have been observed into far-reaching theorems. Similarly, in teaching mathematics one often employs examples to motivate a general principle or to illustrate its use. This volume uses the same idea in the context of learning how to teach: By analyzing particular teaching situations, one can develop broadly applicable teaching skills useful for the professional mathematician. These teaching situations are the Case Studies of the title.

Just as a good mathematician seeks both to understand the details of a particular problem and to put it in a broader context, the examples presented here are chosen to offer a serious set of detailed teaching issues and to afford analysis from a broad perspective.

Each case raises a variety of pedagogical and communication issues that may be explored either individually or in a group facilitated by a faculty member. Teaching notes for such a facilitator are included for each Case in the Faculty Edition.

The methodology of Case Studies is widely used in areas such as business and law. The consideration of the mathematics cases presented here will help readers to develop teaching skills for their own classrooms.