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Abstract 

These Lectures provide a survey of the modern theory of differentiable 

dynamics as an abstraction of the qualitative theory of ordinary differential 

equations. Historical and conceptual developments are emphasized as the 

theories of nonlinear mechanics, topological dynamics, and differential topol-

ogy contribute to the formation of differentiable dynamics. Important c lasses 

of dynamical Systems, such as structurally stable, Morse-Smale, Anosov 

hyperbolic, and generic Systems, are described and related to one another 

and to nonlinear mechanics. 
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44 LAWRENCE MARKUS 

K(v, í,  Ø ) - ø ÷ ; - ßø 

on the Banach space Cl (Tn) ÷ C1 (Tn) x C 0 ! ^ ) into C ° ( r n ) . We seek to solve the 

equation Ê - 0 for Ø near the init ial data 

í:  ÷ —» /Ix, £ : % —> /Ix, ø  = identity. 

It is not difficult to prove that the function Ê is in d a s s C , and has a bounded 

invertible Operator for the partial derivative with respect to Ø, at the initial data 

(Ax, Ax, id ) . Then the existence of the continuous map Ø € C (Ôç), for each í  and 

í  near ÷ —> Ax, follows from the implicit function theorem. Á further argument proves 

that Ø is the required homeomorphism of Tn onto itself. This method of proof of 

Anosov's theorem was suggested by Mather [39], 

These diverse theorems on Hyp, MS, SS, and g e n ( l , 2, 3, 4) Systems const i tute 

the principal theorem of differentiable dynamics, as presented at the beginning of 

this sect ion. 
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APPENDIX (1980) 

Scope and Structure of the Appendix 

During the past decade the discipline of differentiable dynamics has flourished, branched, 

and borne fruit with hot-house intensity. The ränge of scientific activity is demonstrated by 

the many major symposia and Conferences in various subfields and related areas: 

I. Nonlinear Oscillation, with motivations and applications from engineering [Confer

ence References: 2, 4, 5, 7, 16, 21, 23, 24, 31, 32, 34, 35, 36, 38, 40, 41, 43] and from 

diverse sciences such as astronomy, biology, ecology, and economics [Conference References: 

9, 11, 12, 13, 14, 26, 27, 30, 31, 38, 40, 41, 42, 43]. 

II. Diffeomorphisms and Foliatiom, including special constructions and examples of 

signiflcant interest on particular low dimensional Spaces [ConferenceReferences: 10, 19, 

20 ,22 ,25 ,28 ,33 ,44] . 

III. General Theory-Dissipative Dynamics (including Axiom Á Systems) [Conference 

References: 1, 2, 3, 5, 7, 8, 10, 14, 16, 17, 20, 22, 23, 24, 25, 28, 29, 33, 34, 35, 36, 39, 

41 ,44] . 

IV. General Theory-Conservative Dynamics (including Hamiltonian Systems) [Confer

ence References: 1, 2, 3, 5, 7 ,8 , 17, 19, 20,25,28,32, 33, 34, 35, 36 ,37 ,40 ,41 ,44] . 

V. Chaos, Catastrophe, and Multi-Valued Trajectories (including parts of ergodic 

theory; and some topics in the related dynamics of control and polysystems, stochastic dif-

ferential Systems, and functional-differential Systems) [Conference References: 4, 6, 11, 12, 

13, 14, 15, 17, 18 ,20 ,23 ,26 ,27 ,29 ,30 ,31 ,32 ,33 ,37 ,38 ,39 ,40 ,42 ,43 ,44 ] . 

We introduce the prior five headings I—V, with the corresponding Conference listings, 

as an organizational base for this appendix. In fact, the given outline may turn out to be 

the most valuable part of this appendix, since, at best, the appendix consists of sketchy de-

scriptions of some selected important results, and some fragmentary mentions of some selected 

major theories. We shall not attempt to specify every last technical hypothesis in each theory, 

but shall treat this appendix more as an annotated bibliography indicating the direction and 

nature of the research in differentiable dynamics since the first publication of this mono-

graph ten years ago. The new References include Conferences, Surveys, and Articles. 

Besides the astonishing frenzy of activity evidenced by the multitude of symposia, 

even more astonishing is the recognition that a few of the challenging problems posed in the 

original monograph have actually been resolved [25, 41, 80, 92, 107]. But, as in all mathe-

matical development, the phrasing of new problems and questions, and the Organization of 
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new theoretical methods to treat them, form the central effort of the research in differen-
tiable dynamics over the past decade. In particular we should emphasize the incorporation 
of the powerful KAM results into the general framework of conservative dynamics as in area 
IV, and the new research area V. 

The original edition of this monograph still serves as a useable conceptual, organiza-
tional, and notational basis for differentiable dynamics. This appendix will serve only to up
date the results in areas I, II, III; and as a guide to provide a brief introduction to areas IV 
and V not covered in the monograph. 

I. Nonlinear Oscillations 

Instead of the hopeless and thankless task of attempting to outline and organize the 

torrent of contributions to the theory of nonlinear oscillations (mainly for second order dif-

ferential equations), we shall merely comment on several results bearing on the examples and 

methods mentioned in the original monograph. For a key to the extensive literature in this 

broad field we refer to the proceedings of the appropriate symposia and Conferences, as in-

dicated previously under area I. 

The damped nonlinear oscillator, with one degree of freedom (see this monograph, 

page 7), 

Je + f(x)x + g(x) = e{t) 

has frictional coefficient f(x) > 0, restoring force g(x) (so xg(x) > 0 for ÷ Ö 0), and periodic 

driving force e(t 4- P) = e(t). Á new result [112] asserts that 

÷ + bx + g(x) = e(t) 

has a unique periodic response, for each sufficiently large constant b > 0. The same result 
might be expected for a frictional coefficient bf(x) > 0 (compare page 10). 

For the frictionless forced oscillator 

x + g(x) = e(t), 

it is of interest to show that each Solution remains bounded in the (x, y — x) phase plane 

(see page 11). This has been demonstrated [80] for g(x) = x3, e(t) = sin t but the method, 

which shows that the Poincare map of the phase plane is an area-preserving "twist map" 

around intlnity (with corresponding invariant curves encircling infinity), probably applies to 

more general cases. 

There have been serious attempts [59] to study the Poincare map for the Duffing os

cillator, with g(x) = ÷ 4- e(2ax + 4ßx3)f e{t) = - e a cos f, e > 0 small, to find homoclinic 

orbits. It is well known [121] that a transverse intersection of attracting-repelling curves (a 

transverse homoclinic orbit) implies the existence of infinit ely many long period orbits. The 

main difflculty has been to prove the desired transversality— but this has been accomplished 

[19] for certain frictionless forced oscillators, for some orbits in celestial mechanics [2, 84], 

and recently by M. Levi in an analysis of the forced van der Pol equation [51] (brilliantly 

clarifying the early classical work of Cartwright and Littlewood). 
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An old technique, but now much more powerful because of the improvement in Com

puter facilities, is the numerical and graphical exploration of the phase-plane portrait and the 

Poincare map of the phase-plane. These Computer explorations, reinforced by mathematical 

estimates, can be used to find topological indices for fixed points-and hence for periodic 

orbits of the corresponding dynamical System. Such methods have been applied very suc-

cessfully [106, 138] to the frictionless forced Duffing oscillator. 

Some years ago the concepts of nonstandard analysis were introduced explicitly into 

topological dynamics to define limit sets on noncompact phase Spaces. More recently the 

methods of nonstandard analysis have been used to study particular dynamical Systems, for 

instance, the van der Pol equation, 

ex + (x2 - l)x + ÷ = A. 

When e —^ 0 the unique periodic Solution has the form of a "relaxation oscillation". With-
in nonstandard analysis we can let e be an infinitesimal number, study the corresponding 
nonstandard periodic Solution, and then relate this approach to the classical analysis of the 
relaxation oscillation [17, 21]. 

In the Newtonian celestial mechanics of three bodies new types of periodic oscillations 
have been studied [2, 56]. Other very important contributions to the dynamics of the n-

body problem clarify and analyse the nature of the possible collisions and singularities [57, 
58, 105]. 

Within mathematical biology the classical areas such as diffusion in biochemistry, and 
fluid dynamics within the circulatory Systems of physiology have been pursued strongly. 
But also new directions have arisen with new modeis of population dynamics and epidemi-
ology being proposed—although these modeis often involve retarded Information about earlier 
generations, and so are formulated as differential-delay Systems (see V). Another new direc-
tion concerns mathematical ecology, where an interesting example displays an ecological 
model [7] with several species cyclically occupying the same niche. This example surprised 
many ecologists, but not too many mathematicians (the latter being immune to such sur-
prises in science-at least from outside mathematics proper). 

Mathematical economics has been enriched by a series of papers of Smale [123—128], 
from the study of static modes of equilibria to the dynamics of adjustment processes and 
the convergence of the economic State towards equilibria (such as defined by Pareto). These 
investigations lead to polysystems that are important generalizations of Morse-Smale Systems 
[122]. Another topic concerns the optimization of the growth of a controlled economy, 
and the corresponding mathematics of Hamiltonian differential Systems [110]. 

II. Diffeomorphisms and Foliations 

Perhaps the most impressive recent contributions to topics of this appendix, at least 

within pure mathematics, have come from differential topology, where it impinges on dif-

ferentiable dynamics. 

For example, the results of P. Schweitzer [107] give a C^-flow counterexample to the 

Seifert conjecture on S3 (see page 4). Also consider the contrary result of A. Fathi and 
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Ì . Hermann [25] on the existence of a C°°-diffeomorphism that generates a minimal discrete 
dynamical System on S3. The principal problem in this area lies between these two results: 
Is there á C°°-ßow on S3 that is minimal; must every noncritical C°°-flow on S3 have á peri

odic orbin (See STOP PRESS, end of Appendix.) 

It is known [111] that no diffeomorphism of S3 (or higher dimensional Sn) can be 
hyperbolic in the sense of Anosov, but the question for flows, or even of the minimality of 
flows on spheres is a major unresolved problem. 

From a different viewpoint we can consider actions of the circle group S1 on S3— so 
that each orbit is periodic, and also the entire flow has a common period. The easiest ex-
ample is the Hopf foliation of S3 [39]. It has been proven that each noncritical flow on 
S3, in which each orbit is periodic, is equivalent to such a periodic group action [24]. The 
difficulty is to show that there is a longest period among all the periodic orbits on S 3; 
while this at first glance seems highly plausible, ingenious counterexamples [131] on com
pact manifolds of higher dimensions illuminate the profundity of the proof. 

Group actions of R2, and other Lie groups, on spheres yield generalizations [18, 69, 
96] of the classical Poincare-Bendixson theorem on the existence of closed orbits. These 
studies are intermediate between the classical theories of differential Systems and the geo-
metric theories of foliations, in which much progress has been made. For instance, there is 
a foliation of codimension 1 on each compact manifold with Euler characteristic zero [136]. 

Besides the Poincare-Bendixson theorem for flows on the sphere S2, the other famous 
result of differential topology for flows on surfaces is the Denjoy Theorem for the torus 
T2. That is, the only minimal sets for a smooth flow on T2 are either periodic orbits or 
eise the entire torus surface. Several new types of interesting flows on higher dimensional 
tori have been constructed, including new minimal flows [40, 114]. Thus various kinds of 
nonequivalent minimal flows exist on an «-torus. (Related remark: an Anosov diffeomor
phism of a torus or any nilmanifold must necessarily be topologically one of the Standard kinds 
related to the algebraic structure of the phase-space [65, 66].) 

The Denjoy analysis for C°°-flows on T2 rests on a study of diffeomorphisms of the 
circle S1. Each such diffeomorphism (orientable and with irrational rotation number) is 
topologically equivalent to an irrational rotation of Sl. Á major new result of M. Hermann 
[35] shows that, for a certain dense set of rotation numbers, there is a C°°-diffeomorphic 
equivalence with the irrational rotation. 

Finally we mention an interesting result of J. Harrison that certain Ck -diffeomorphisms 
of T2 have topological invariants that depend on the order k of differentiability [34]. Hence 
some C2-diffeomorphisms of tori are not even topologically equivalent to any C°°-diffeo-
morphism. Similar results hold for flows on higher dimensional manifolds. 

III. General Theory—Dissipative Dynamics 

1. Hyperbolic Invariant Sets. Structures are such stuff as dynamics are made of. So 

we flrst must study the structure of invariant sets, and then the structure of a whole dy

namical System—primarily from the viewpoint of stability. Thus we consider a dynamical 

System or vector field í  on a C°°-differentiable «-manifold M. For simplicity, as in the 
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original monograph, we take Ì  compact and denote by Ü(M) the space of C^-vector fields 

on M. In this terminology, employed in this monograph, we shall indicate some of the newer 

results of differentiable dynamies-emphasizing the nature and direction of research and de-

emphasizing any complete recitation of technical hypotheses. 

Near a critical point or periodic orbit of a dynamical System õ Å Ö(M), which is of 

hyperbolic type, the corresponding linear structure is qualitatively correct. That is, there 

exists a topological linearization of the dynamical System õ, as is reported earlier. It is now 

known that there likewise exists a valid linearization near any invariant compact submanifold 

N, provided there is a hyperbolic structure for the induced flow on the normal bündle and 

furthermore this normal component of the flow dominates the tangential flow on Í  (which 

is always the case for equicontinuous flows on tori) [36, 37]. In the extreme case where 

the normal component of the flow tends towards N, so the invariant manifold Í  is (future) 

asymptotically stable, then Í  is called an attractor both for continuous and discrete flows. 

During the past several years there has been much interest in the general study of at-

tractors—compact invariant sets Í  (usually with at least one dense orbit) that are future 

asymptotically stable. Sometimes Í  is not a manifold, and the induced flow on Í  is chaotic 

(say, topologically mixing); in which case Í  is called a "stränge attractor" (see V). Expanding 

attractors have special homological properties; for instance, they bear Cech cycles [132,143]. 

The property of hyperbolicity is closely related to the dominant theme of qualita

tive dynamics—namely, structural stability. For example, hyperbolic Anosov flows dis-

play an appropriate hyperbolic decomposition of the tangent bündle of M, and a basic 

theorem asserts (see page 36) Hyp C SS. In the case of conservative Anosov flows the 

nonwandering set Ù fills the entire manifold M, since the set (Per) of periodic orbits is 

dense in M. The corresponding result is not known for general Anosov diffeomorphisms but it 

is definitely false for Anosov flows (even though Per is an infinite set dense in Ù) [27]. 

Á very signiflcant generalization of the concept of Anosov hyperbolic flows on Ì  are 

the flows satisfying Axiom A: 

A) Per = Ù, and Ù is everywhere hyperbolic. The requirement of hyperbolicity in 

Axiom Á is that at each point Ñ of the compact set Ù the tangent space TpM decomposes 

into a direct sum of a (0 or 1 dimensional) space along the flow and then a dilating and a 

contracting subspace-satisfying the exponential bounds and conditions indicated on page 31. 

In particular, note that each critical point and periodic orbit of an Axiom Á System is neces-

sarily hyperbolic. 

It is also possible to generalize the analysis of Anosov Systems by expressing the de-

mand for hyperbolicity in terms of the Liapunov-Perron characteristic exponents—say, as-

sume these exponents are bounded away from zero on M, or just on Ù, with some attention 

to appropriate uniformity demands. 

Very roughly speaking the Anosov hyperbolic flows on Ì  are related to conservative 

dynamics, whereas Axiom Á Systems refer to dissipative dynamics. For instance, Axiom Á 

Systems include all Morse-Smale Systems on M, that is, 

MS C Á÷. Á. 
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2. Structural Stability. Both classes SS and Á÷. Á are plausible modeis for a 
general theory of "physical dynamics with dissipative friction". It is a most important 
problem of differentiable dynamics to clarify the interrelations of these two elasses of 
Ö(M). For this purpose we Supplement Axiom Á by another Axiom B: 

B) Strong transversality holds for all attracting and repelling manifolds for Ù (which 

is hyperbolic in accord with Axiom A). 
In order to clarify Axiom Â we remark that each point Ñ E M has a trajectory that ap-

proaches (say, as t —• +<*>) the trajectory through some point Q Å Ù. This theorem on the 
existence of an "asymptotic phase" of Ñ is proved by using the local product structure near 
each basic set (transitivity component) of Ù. Thus the point Q Å Ù specifies an attracting 
and a repelling submanifold of M, and hence we obtain two foliation-like decompositions of 
M. The demand of Axiom Â is that any intersection in Ì  of such an attracting and a re
pelling submanifold (for all pairs of points of Ù) must be transversal. (For diffeomorphisms 
this implies that the expanding and contracting subspaces of each point ÷ Å Ì  must Span 
the entire tangent space at x). 

An important theorem asserts that Axioms (A and B) imply structural stability, in fact 
a stronger conclusion of absolute SS. Here the dass (absolute SS) consists of Systems õ Å SS 
with the further requirement that the conjugating homeomorphism Ø of M, carrying the 
sensed trajectories of í  to its neighbor (u + äõ) Å Ö(M), differs from the identity by äØ; 
and moreover ä Ø has a Lipschitz-bound in terms of äõ. The best result in this direction is 
that the dynamical Systems satisfying both Axioms Á and Â are precisely the Systems that 
are absolutely structurally stable [97, 100, 101]: 

Ax. (A and B) = absolute SS. 

An outstanding open problem is whether the above equality also holds for the dass SS (in 
other words, is SS = absolute SS?). 

Besides the problem of characterizing the dass SS by the behavior of the nonwandering 
set Ù, we can investigate the extent to which SS is (or fails to be) generic in Ö(M). For ex-
ample it is known (see monograph, page 36) that SS is not C^dense in Ö(M). However new 
results prove that SS is C°-dense in the set Ö(M). In order to obtain this result we must de-
fine some subclass of SS that is easy to analyse—wider than MS, yet still rather explicit. (In 
passing we note that MS is not C°-dense in Ö(M)—although it is known [10, 79] that each 
homotopy dass of noncritical vector fields in ¼(Ì)  does contain a Morse-Smale system, for 
n>4.) 

Recall that a Morse-Smale system õ Å MS satisfies the axioms (page 28): Ù = Per, 
which consists of finitely many critical points and periodic orbits, each hyperbolic; and all 
attracting and repelling manifolds have transversal intersections. To enlarge MS appropriately 
we permit a further flnite collection of compact invariant 1 dimensional sets in Ù, known as 
"horseshoes" (or simply "shoes"—see reference on page 37—which each contain homoclinic 
points and thus infinitely many periodic orbits). Then a Smale system has a nonwandering 
set Ù consisting of finitely many isolated critical points, periodic orbits, and shoes—all satis
fying the usual types of hyperbolicity, transversality, and so noncyclicity hypotheses. Thus 
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Smale Systems satisfy Axioms (A and B) and hence belong to SS. Yet it is known [26] that 
Smale Systems are C°-dense in Ö(M). As a slight simplification of the dass of Smale Systems, 
Zeeman uses only planar saddle shoes (The Goodie Two Shoes Construction) [147]. 

3. Bifurcation. During the past decade there have been deep studies of the bifurca
tion set, that is, the closed subset of Ö(M) that is the complement of SS. Some of these 
studies refer to very general properties of bifurcation, and others to very detailed analyses of 
particular types of bifurcation. In this section we comment mainly on the general nature of 
bifurcation, and in area V there is some mention of special and chaotic bifurcations. 

Consider a generic arc f(s) in the group Diff(M) of all diffeomorphisms of the mani-
fold M. It has been shown that f(s) fails to be Kupka-Smale [130] at only a countable 
number of points, and at these points the properties of hyperbolicity or transversability col-
lapse in a limited and elementary manner. There is also a deep study [85] of a generic arc 
|(s) inö(M) approaching the bifurcation set from the open set MS; but the analysis is not 
complete if the intricacies of the limiting behavior of £(s) near the boundary of MS are al-
lowed the most general complexities. 

In a somewhat different vein, it is possible to join two components of MS by an arc in 
Ö(M) with only a finite number of bifurcation points—each of which corresponds to a Kupka-
Smale (or quasi-KS) system [87]. Using these ideas of continuous deformations of MS Systems, 
Peixoto [92] has remarked that the Morse-Smale inequalities (see page 30) can be improved: 

M0>b0, 

7 = 0 / = 0 

where b- is the Betti number specifled as the dimension of the real /-homology group 

Hj{M, R). 

In addition to these global bifurcation results there is a profound analysis of generic 

bifurcations of critical points, starting with Hopf bifurcation for one parameter, and then 

dealing with several parameters, and catastrophe singularities. We refer back to these topics 

later in area V. 

4. Axiom A. The induced dynamics on the nonwandering set Ù is reasonably under-

standable for dynamical Systems satisfying the hyperbolicity demand of Axiom A. Hence 

there has developed an entire research group engaged in a profound analysis of the structure 

and nature of attractors in Axiom Á Systems [12, 13, 14]. Some of the major results here 

involve ergodic theory, especially concepts of entropy and mixing. 

For technical reasons we consider Axiom Á flows of differentiability dass C2 on a 

compact C°°-manifold M. Then for almost all initial points (with regard to the obvious null 

sets of Af), the corresponding trajectory tends to an attractor as t —> +°°. The basin of an 

attractor Ë  is the set of all points that tend to the specifled attractor Á as t —> + °°. More-

over, almost all points of Ì  belong to the basin of some attractor. 
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Under these circumstances we can State the fundamental ergodic theorem as it applies to 

a C2-vector field õ, satisfying Axiom Á ï ç  Ì  [15, 104]: 

Let Ë  be an attractor for the C2-vector field õ Å Á÷. Á, with flow t —> x(t) 

on M. Then there exists á unique invariant probability measure ì , with Sup

port Ë , such that : 

Hrn̂  IJJÖ(÷(ß))Üß = fA Ö(ã)ì(áã), 

for almost all initial points x(0) in the basin of A; where Ö(ã) is any real 

continuous function on this basin. Moreover ì  is ergodic under the flow of 

í  on A. 

Note that x(0) can be any point of the basin of A, excluding a (Lebesgue) null set. Also 

the support of ì  is Ë, so that ì  may well be Singular with regard to Lebesgue measure on 

M. While ì  is necessarily ergodic for õ on Á (that is, the only invariant subsets have mea

sure 0 or 1 on Ë) , the flow of õ might not be ì-mixing . But the induced map on some ap-

propriate cross-section of Ë  is measure-equivalent to a subshift of flnite type, and hence 

equivalent to a Bernoulli shift. 

The topological entropy h of a continuous map ÷ of Ì  into itself is a numerical indi-
cator of the tendency of orbits to separate apart. To deflne h consider &-segments of orbits 
(that is ÷, ÷÷, ÷2÷, . . . , xk~1x for ÷ Å Ì)  and let h(kf e) be the least number of points in 
Ì  whose k-segments are e-dense—eaeh fc-segment lies uniformly within a distance e > 0 of 
some one of a given collection of fc-segments. Then the entropy of ÷ is deflned: 

h(x) = Hm lim sup - log h(k, e) . 
e-^o k-+°° Iß J 

Á fundamental problem concerns the relation of the entropy h to the induced homology 

map ÷* on M. For Axiom Á diffeomorphisms h > log |ë| , where |ë | is the largest among 

the eigenvalues of the homology map ÷* (in all dimensions) [11,13]. In fact for Anosov 

maps, equality holds provided certain orientability hypotheses are valid. For general homeo-

morphisms the above inequality fails [93], although it is valid for \ \ \ largest among the 

eigenvalues for the first homology group [67, 68]. 

If ÷ is a topological map of a compact n-manifold Ì  onto itself, preserving a measure 

ì , then the entropy (with respect to ì ) does not exceed the topological entropy h(x). In 

fact, 

h(x) = sup Á(ì ) 

where ì  runs over all invariant measures of ÷. For the case where ÷ is a C2 -diffeomorphism 
satisfying Axiom A, we can further assert that there exists an invariant measure ì  such that 
h(x) = h(Jl)—and moreover ì  can be described by the density of the various periodic points 
of ÷ [11, 13, 15, 103]. Also the î  -function that counts the periodic orbits is then a rational 
function [64]. 
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In terms of the Liapunov exponents of the C2diffeomorphism ÷ we obtain [S29] 

h(ß) < | X (positive Liapunov exponents) ö . 

If the Liapunov öxponents of ÷ are nowhere zero on M, and there is an invariant ergodic, 
nonatomic measure on M, then there exist transverse homodinic points for ÷—in fact, their 
support eontains the support of ì . In this ease the entropy h(%) > 0, see [48, 49] . Á par-
tial converse holds on surfaces where /é(÷) > 0 implies the existence of homodinic points. 

IV. General Theory-Conservative Dynamics 

The simple harmonic oscillator fails to be structurally stable in R2 if perturbations are 
allowed within the dass of all C1-vector fields in the plane; yet within the restricted dass of 
conservative Systems (see page 8) ÷ + g(x) = 0 the structure of a center is maintained. How-
ever, note that the 2 dimensional linear oscillator (page 3) 3c1 4- k2xl - 0 andx2 + l2x2 = 0 
(position (xl, x2)), which can be analysed in the (x1, x2, yv j2)-space R4 by 

xl=bH/byx, y1=-bH/bx1 and x2 = bH/by2, y2=-bH/bx2 

with Hamiltonian energy function 

uri 2 ÷ Qbc1)2 + (fec2)2 , ( > - i ) 2 + ( ^ ) 2 

H(xl, ÷2, yv y2) = ^ — é ~ ã Ë — L - + 2 , 

fails to be structurally stable in R4—even within the dass of Hamiltonian conservative Systems. 

This is evident since the flow for this oscillator in R4 has periodic orbits if and only if k/l 

is rational. 

1. Global Hamiltonian Systems on Symplectic Manifolds. These elementary considera-

tions show that the general theories of structural stability and of generic behavior must be 

profoundly modified if they are to contribute to the study of conservative dynamics, say for 

Hamiltonian Systems 

xi = bH/byif y^-bH/bx*, z = l , . . . , w 

for given Hamiltonian functions //(JC1, . . . , xn, yv . . . , yn) in dass C2 (usually in C°°) in 
the (x, j)-space R2". Furthermore, in order to construct a global theory of Hamiltonian 
dynamics on a C°°-differentiable 2n-manifold Ì  we require the existence of a distinguished 
atlas of canonical (or symplectic) local Charts (x, y) that are interrelated by canonical coor-
dinate transformations—and hence maintain the format of the given Hamiltonian vector field. 
That is, the corresponding Jacobian matrix Ô of the coordinate transformation must be sym
plectic at each point: 

TJT' = J = 

Then M, with the symplectic atlas of canonical Charts, specifies a symplectic manifold. The 

globally defined nonsingular 2-form Ù = Ó"= 1 dxl Ë  dyi (in each canonical chart) is the 
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symplectic form on M, and Ù specifies a duality between tangent vectors and covectors at 
each point of M. Each real C2 -function Ç on Ì  defmes a gradient covector dH9 and by Ù-
duality, a tangent vector field dH# called the Hamiltonian vector field for the Hamiltonian 
functionH. In each canonical chart {x, y) the components of <i//# are (bH/dy^ -dH/dxl) 

and hence the Hamiltonian differential System has the classical format. UM is compact, or 
if Ì  is the cotangent bündle of a compact n-manifold, then each Hamiltonian vector field de-
fines a complete flow on Ù. We refer to Standard texts and recent expositions [1, 72, 83] 
for the further discussion of the differential topology of symplectic manifolds, and the re
lated structures of classical conservative dynamics—including such concepts as Lagrangian sub-
manifolds, integrals of motion, and involutory Systems. 

2. Liapunov Periodic Orbits and Generalizations. Near a critical point, say at the origin 
of canonical chart (x, y), the Hamiltonian function can be written 

H = ̂ (x,y)s(X\ + "· for S = S\ 

and the Hamiltonian differential System becomes 

The critical point is called elliptic in case every eigenvalue of the Hamiltonian matrix JS is 
pure-imaginary (the linearization displays neutral stability). In particular, this occurs when 
S is positive definite, so Ç achieves a strict local minimum at the origin. 

Nearly a Century ago Liapunov proved that there exist ç families of periodic orbits 
near a generic elliptic critical point (eigenvalues suitably independent over rationals), corre-
sponding to the ç normal modes of Vibration of the linearized System. Also each of the 
families is parametrized by the energy level of the Vibration. Recent research of Weinstein 
[141, 142] proves the existence of such "Liapunov periodic orbits" without the imposition 
of special irrationality conditions, near a minimum of Ç where S > 0. Á generalization of 
the method of Liapunov can be used to prove the exist ence of periodic orbits near to those 
small tori arising in the linearized System [139]. 

3. KAM-Theory. Some of the most diffieult and profound contributions to the theory 
of ordinary differential equations during the past generation have dealt with the local behav-
ior of Hamiltonian Systems near a critical point, or a periodic orbit, or even a higher dimen-
sional invariant torus. More specifieally, in the elliptic case the methods of Kolmogoroff-
Arnold-Moser (KAM-theory) overcome the difficulty of "small-divisors" to prove the conver-
gence of suitable approximations demonstrating the existence of invariant tori of various di-
mensions [9, 50, 82] . 

For example, consider a periodic orbit ó for a Hamiltonian System dH# in R4 (so 
ç = 2) and r est riet attention to the corresponding energy hypersurface Ç = constant (often 
this is S3 in R4). Take a 2-section Ó transversal to ó in the energy hypersurface and con
sider the Poincare return map Ð of Ó. In the elliptic case both eigenvalues of Ð (or its 
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linearization near ó) are of modulus 1, that is, the nontrivial characteristic multipliers of ó 
are ì  = e2mf and ì - 1 = e~2nlf (for real frequency /, mod 1). Now assume that the fre-
quency / is suitably irrational, and that the map Ð is strictly nonlinear so that the "angular 
twist" of Ó varies with the distance out from ó. Then the KAM-theory [83, 84] guarantees 
the existence of a simple closed curve C, encircling the point ó Ð Ó in the 2-section Ó, and 
invariant under the Poincare map Ð. In this case C generates an invariant 2-torus surface 
T2(C) that encloses a tubulär neighborhood of the periodic orbit ó, so ó is necessarily Lia-
punov stable. Á further result is that the induced flow on T2(C) is almost periodic with an 
irrational rotation number. 

The existence of the invariant 2-torus T2(C), and the enclosed tubulär neighborhood 
of ó, shows that the Hamiltonian flow fails to be ergodic on the given energy hypersurface. 
In higher dimensions, say ç > 3, the corresponding invariant /7-tori do not topologically sep
arate the energy (2n — 1 )-hypersurface and Liapunov stability for ó can hold or fail, depend-
ing on the nature of the higher order terms of Ð, see [82, 84]. However, ergodicity must fail 
since there exists a sufficient collection of invariant w-tori to fill a subset of positive measure 
in the given hypersurface. 

The KAM-theory was not discussed previously in the original monograph, partly be-
cause of the ignorance of the author, and partly because the theory was local and so did not 
fall within the province of the global theory of differentiable dynamics. However, during 
the past decade many of the local KAM results have been reformulated and modified so as 
to fit int ï  the developing theory of global conservative dynamics. (Also this author has now 
studied these results—to alleviate ignorance—and has even made some contributions in these 
subjects, as indicated later.) 

4. Generic Hamiltonian Systems. The first studies of the global theory of conservative 
dynamics used the same techniques (adequately refined) as for the general theory of differen
tiable dynamics on manifolds. In this way the corresponding closing-lemma (see page 37) 
was proved, and important generic classes of Hamiltonian Systems were specified in terms of 
the nature of their critical points and periodic orbits [94, 98, 99]. For instance, a generic 
dass of Hamiltonian Systems has all (excepting a possible countable subset) periodic orbits 
that are nondegenerate (nontrivial characteristic exponents different from 1) [98]. 

Using these generic properties of Hamiltonian Systems, together with KAM-theory, 
Markus and Meyer have obtained the results indicated in the title of their Memoir [72], 
Generic Hamiltonian Dynamical Systems are neither Integrable nor Ergodic. Continuing the 
direction of their researches in Hamiltonian dynamics, the same two authors have recently 
published a substantial paper [73] showing that generic Hamiltonians possess complicated 
sequences of long periodic orbits, with accumulations towards solenoidal minimal sets (that 
is, 1 dimensional non-locally-connected continua). The main theorem in this work refers to 
the Baire space Hk of all Hamiltonian dynamical Systems, of dass Ck (4 < k < °°) on a 
compact symplectic C°°-manifold Ì  of dimension 2n > 4. 

Let Hk be the space ïf  Hamiltonian dynamical Systems on the compact symplectic 

manifold M. Then there exists á generic set Ì Ó C Hk such that: for each Hamiltonian 
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System dH# G Ì Ó, and for each solenoid Óá, there exists á minimal set, for the flow of 

dH#, that is homeomorphic to Óá. 

V. Chaos, Catastrophe, and Multivalued Trajectories 

The complexity of various physical and geometrical phenomena tends to east doubt on 
the universal validity of the principle of determinism—that the future states of a System neces-
sarily evolve from the present State, aceording to flxed dynamical laws. Important examples 
of such complexity, with corresponding uncertainty, include: (i) molecular chaos with ergo
dic mixing, as interpreted by geometric modeis of geodesic flows over manifolds of negative 
curvature;atmospheric turbulence as interpreted by the Lorenz equations; (ii) jump-phenomena 
in nonlinear Vibration analysis; (iii) fluctuations in electronic circuits; branching of controlled 
spaceship trajectories; and (iv) the spreading of biological epidemics. In these examples the 
concept of the "present State" appears unclear and indefinite, since the future evolution 
might branch in diverse ways depending on hidden parameters, or even on factors of uncer
tainty and interference. 

Instead of ignoring the principle of determinism, a more conservative phüosophical ap-
proach would be to broaden the concept of "state" to cope with these branching evolution-
ary possibilities. There is a well-established tradition, over the past half-century, in dealing 
with such problems. Consider, for instance, the use of hidden parameters in the thermody-
namics of imperfect gases; the probabilistic basis of quantum mechanical uncertainties and of 
Brownian motion, with a resulting vast literature on stochastic processes; and the historical 
description of elastic media in studies of hysteresis. 

We next list some recent attempts to resolve similar problems and to incorporate the 
apparent "weakening of determinism" into the framework of the strict determinism of the 
theory of dynamical Systems. 

First, the geometric complexities can be tackled head-on, say as in the horseshoe con-
struction for a homoclinic point or some other intricate flows that describe ergodic or mixing 
phenomena. Note that in dynamical Systems with such chaotic behavior, the trajectories are 
highly sensitive to slight changes in the initial data. That is, very small changes in the initial 
data will yield trajectories with wildly diverse asymptotic behavior. This gives a possible 
mathematical Interpretation of physical phenomena such as fluid turbulence. In order to by-
pass the details of the complicated geometry, one can turn to probabilistic interpretations— 
for instance, ergodic theory itself provides such a simplification in that it refers to mean 
asymptotic behavior of trajectories. 

Second, the dynamics might contain a finite number of hidden variables or parameters 
that are adjusted from time-to-time so as to produce qualitative changes in the dynamical 
System—for instance, bifurcations or even more startling catastrophic discontinuities of be
havior. 

These first two approaches fit rather closely into the classical theory of deterministic 
dynamical Systems having a finite number of degrees of freedom. The next two methods of 
modification enlarge the notion of "state", or the basic initial data required to determine the 
future, to an element in an infinite dimensional function space. For instance, the system 
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may be affected at each instant by some external influence—either probabilistic (as for sto-
chastic differential equations), or by willful control inputs. In both these cases the dynami-
cal System is no longer finitistic in nature, since more than a choice of an initial point on a 
finite dimensional manifold is required to specify the future evolution. That is, an infinite 
set of data must be introduced, a stochastic process, or a choice of a control function—as 
supplementary data input. 

Finally, the State can incorporate past historical data, as for a differential-delay equa-
tion (differential equation with retarded arguments)—or more generally, a differential-func
tional System. Of course, such differential-functional equations can further be generalized to 
include control elements—even stochastic control. (Why not? Nothing in mathematics is so 
ludicrous that it has not already been taken seriously.) 

1. Chaos and Ergodic Mixing. Classical mechanical problems that deal with chaotic 
dynamics in very high dimensions (like molecular Statistical mechanics) are often treated by 
the methods of geometric ergodic theory. Some of these dynamical Systems may be de-
scribed as Anosov Systems arising as geodesic flows over compact manifolds of negative cur-
vature [4, 117, 118]. It would take us too far afield to report on the many developments 
within ergodic theory proper, so we restrict attention to a few remarks especially pertinent 
to differentiable dynamics. For instance, the general study of the ergodic theory of Anosov 
flows, with corresponding mixing properties, is well known [4, 90, 140]. It should also be 
remarked that every compact «-manifold (for ç > 3) admits smooth ergodic (that is, metri-
cally transitive with respect to a smooth invariant measure) differentiable flows [6]. 

Recent efforts to explain the chaotic behavior of some deterministic dynamical Sys

tems examine very special differential equations, having trajectories delicately sensitive to the 

initial conditions. For example, consider the Lorenz differential equations in R3: 

÷ — oy - ó÷, y = -xz + rx - y, æ = xy - bz 

for positive parameters (ó = Prandtl number, r — Rayleigh number, b > 0). The Lorenz 

equations [54] arose in a simplified model of atmospheric turbulence. Computer studies of 

the Lorenz System (originally using the parameter values ó = 10, r = 28, Æ? = 8/3) indicated 

the existence of a stränge attractor Á (for the Poincare map on the plane æ = 27). It seems 

likely, although not proven mathematically, that the discrete dynamics on Á can be related 

to the study of a map ÷ of the linear interval [ -1 , 1 ] into itself. One model for the Lorenz 

attractor is 

2x + 1 o n - l < j c < 0 , 

2x - 1 on 0 < ÷ < 1, 

but the ergodic properties of the dynamics seem to depend only on the qualitative form of 
÷. For such maps ÷ there is always an absolutely continuous invariant measure [91, 145]. 

2. Bifurcation, Catastrophe. Great effort has been expended on these various modeis 
for the Lorenz attractor, and for other types of chaotic dynamics that can be represented 
by various maps of linear intervals. For instance, the dynamics of the horseshoe invariant 
set are closely related to those of the map of the segment 0 < ÷ < 1 described by 

÷: ÷ ì-> 
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÷á: ÷ Ç> á÷{\ - ÷) with parameter Ï  < á < 4. 

Each of these maps ÷á satisfies Axiom Á and has a unique attraeting periodic orbit, at least 
for values of the parameter á outside some nowhere dense set (related results hold for all 
qualitatively similar maps [32, 42, 52, 78]). When 0 < á < 1 the map ÷á is a contraction 
back t ï  ward the fixed point at ÷ = 0. But as the parameter á increases, there appear more 
and more unstable periodic points, through ever more complicated bifurcations—eventually 
leading to a cascade of bifurcations and chaotic behavior. 

In contrast to the above extremely complicated pattern of bifurcations, the classical 
studies of bifurcations have been more elementary and have been used to describe the ap-
pearance of periodic orbits of rather special dynamical Systems—as some parameter passes 
through a critical bifurcation value. 

The most famous treatment of bifurcations of periodic orbits (after the classic studies 
of Poincare on celestial mechanics during the last Century) is the Hopf bifurcation [38, 61]. 
The Hopf bifurcation of a limit cycle from a critical point applies to a differential System in 
the plane R2, as the scalar parameter changes the nature of the equilibrium from stable to 
unstable. Using the center manifold theorem [1] this result can be applied to Systems in 
Rn—but the bifurcation activity is essentially in a 2-manifold and still depends on a single 
scalar parameter. 

Much more complicated bifurcation structures arise when two or more parameters enter 
the picture [133]. Catastrophe theory offers the most detailed and complete analysis of bi
furcations of the structure of the critical points of a real differentiable function, depending 
on five or less real parameters. Such bifurcations have been classified and modelled by a 
finite list of qualitative geometric forms known as the elementary catastrophes [28, 135]. 
Hence we can study the bifurcation of the critical points of a potential function (for a gra-
dient differential system), or for a Hamiltonian function (for the corresponding Hamiltonian 
differential System). However, some care must be exercised to distinguish between the quali
tative behavior of the potential function (or Hamiltonian function) and that of the corre
sponding dynamical system [29], with respect to the bifurcations arising from the changing 
parameter values. 

The theory of catastrophes, as expounded profoundly by R. Thom [135] is a geomet
ric theory of metaphysics. Further studies [149] have clarifled the mathematical Standing 
of the elementary catastrophes, and have developed the theory from the viewpoint of global 
dynamics. While the theory of catastrophes might, with suitable caution, serve as a basis 
for the Organization of certain phenomenological approaches to the biological and behavioral 
sciences [28, 148], the method fits more traditionally int ï  the theory of nonlinear mechanics, 
say nonlinear vibrations and elasticity [28]. It seems plausible to expect that many discon-
tinuities and jump-phenomena, say for the forced Duffing oscillator, can be clarifled and ex-
plored by referring to the geometry of the elementary catastrophes [19]. 

3. Stochastic Dynamics, Control Dynamics, and Polysystems. We shall defme a stochas-
tic differential system on a differentiable rc-manifold Mr in terms of a deterministic flow 
(along a given Cx-vector field X0(x)) and a stochastic disturbance of white noise (indicated 
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by w(t), where w(t) is the real scalar Wiener process of Brownian motion—as defined on 

some probability space Ù) acting via given tangent C1 -vector fields Xv . . . , Xm on M. In 

each local chart (x) we write the corresponding stochastic differential System 

÷ = X0(x) + w'W^x) + ••• + wm(t)Xm(x). 

In order that this stochastic differential System should be globally defined on Ì  (with respect 
to the usual Ito calculus in coordinate transformations), the integral stochastic process x(t), 

from given initial State xö Å Ì , should be interpreted in the sense of Stratonovich [20]. 

The general theory of such global stochastic dynamical Systems has been developed in 
great generality in the work of Eells and Elworthy [S14]. In particular Brownian motion 
over a general Riemannian w-manifold can thus be defined by a stochastic differential System 
in the frame bündle, where X0 = 0 (no drift) and the vectors Xv ..., Xn are the natural 
liftings, via the Christoffel eonnection, of frames on the base manifold to horizontal vectors 
in the frame bündle. In the corresponding theory of relativistic Brownian motion over a 
Lorentz manifold, the appropriate stochastic system in the frame bündle keeps X0 as the 
lift of the time-like vector of each Lorentz orthonormal frame, and the remaining vectors 
Xv . . . , Xn^! are the lifts of the space-like vectors of the base frame of the Lorentz mani
fold [71]. 

In the general theory of stochastic dynamical Systems on Ì  the Solution x(t), initiating 
at xQf is a stochastic process that lies almost surely on a certain submanifold through x0— 

namely the same submanifold that contains the attainable (or reachable) set for the analogous 
control dynamical system on Ì  [44, 53]: 

÷ = X0(x) + ^(Þ×^÷) + · · · 4- um(t)Xm(x). 

Here ux{t), . . . , um{t) are real scalar Controllers of some specified dass, say piecewise con-

stant, and the vector fields X0, Xv ..., Xm are just as before. In the homogeneous case, 

where X0 = 0 on M, the attainable set is precisely the submanifold of Ì  obtained by inte-

grating the Lie algebra generated by {Xv ..., Xm) (in the analytic case, otherwise some 

further extension is required [53]). 

For the case of a group-invariant control system—that is, Ì  is a Lie group G (say, ma-

trix subgroup of GL(n, R)), with right-invariant control vector fields, we have the matrix 

control dynamics 

X = AQX + ^(ÞÁ  ̂ + · · · + um(t)AmX. 

Here the real ç ÷ ç matrices A0, Av ..., Am each belong to the Lie algebra g of 6, so each 
vector field A0X, AtX, . . . , AmX is right-invariant on G. Thus each Solution trajectory X(t) 

initiating from X0 G G must lie always within the matrix group G. In the homogeneous 
case, where A0 = 0, the attainable set from Å is precisely the Lie subgroup with Lie alge
bra generated by the matrices {Av . . . , Am}. Hence the homogeneous system is controlla-
ble in G if and only if the matrices Á t, ..., Am generate the Lie algebra g of G, [16, 43]. 
For the nonhomogeneous case further hypotheses are required to guarantee controllability 
on G' for instance, G is compact and AQ, Av . . . ,Am generate its Lie algebra [43]. 
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Another approach to the study of control dynamics, on a differentiable w-rnanifold M, 

is via the terminology of polysystems. To illustrate this interrelation consider a control Prob
lem on Ì  defmed by a control differential system ÷ = f(x, u) (in each local chart (x) on AT); 
that is , / is a differentiable cross-section map of Ì  ÷ Rm into the tangent bündle ofM Here 
the control parameter u denotes the various admissible Controllers, say piecewise constant 
u{t) in Rm , each producing a Solution trajectory x(t) from a specified initial point x0 in M. 

That is, x(t) describes a piecewise integral curve of the various vector fields /(÷, u0), for vari
ous constant values of uQ Å Rm . Hence we consider the family V = {Xu(x)} of vector fields 
on M, where Xu(x) = f(x, u) for each flxed u Å Rm . Then the trajectory x(t) of the con
trol system, for a given piecewise constant Controller u(t) on 0 < t < Ô and a given initial 
point x 0 Å Ì , is recognized as a trajectory of the polysystem p. The study of polysystems, 
or multivalued differential Systems on M, then relates immediately to control dynamics. 

The controllability of nonlinear dynamical Systems on a compact differentiable n-

manifold Ì  has been successfully phrased in terms of polysystems [53]. In this conceptual 
framework an important theorem asserts that generic 2-polysystems are completely control-
lable on Ì  (provided we use Symmetrie or reversible polysystems—that is, effectively permit 
both past and future trajeetories). For conservative Systems only future-control need be em-
ployed, and in this case generic 2-polysystems are controllable on M, [53]. 

The prior methods of geometric analysis have applications to engineering control Prob
lems [16], and also to the stability of economic markets where continuous adjustments to-
wards a Pareto equilibrium are pursued [122]. 

4. Differential-Funetional Systems. Even the simplest differential-delay equation 

x(0 = ax(t) + bx(t- 1) 

for real constant coefficients a, b and real scalar Solution x(t) on t > 0, leads to interesting 

and novel problems. For instance, where are the complex roots ë of the characteristic equa

tion ë = á - be~x, and for which values of á and b will each Solution x(t) decay eventually 

towards zero [22, 33] ? Of course, appropriate initial data for a Solution x(t) on t > 0 con-

sist of a segment of a real continuous funetion x0(s) on - 1 < s < 0; and then the Solution 

x(0 is uniquely defined on t > 0 by the method of step-wise Integration. 

More general linear Systems for ÷ Å R" are defined by 

x(0 = A0(t)x(t) +A1(t)x(t - hx) + · · · + Am(t)x(t - hm) + B(t) 

for positive (usually constant) delays hv ... f hm, and continuous coefficient matrices 
A0(t), Ax(t)9 . . . , Am(t), and column vector B(t). Even more general hereditary Systems 
correspond to a continuum of delays, say 

x(t) = f^Afa s)x(t + s)dv(s) 4- B(t), 

where ì  is a suitable measure on R—however, we shall refer only to the case of a finite num-

ber of delays so the time-horizon h = max{/ip /i2, . . . , hm} is finite. In this case the de

lays can be incorporated into the algebraic strueture of the coefficients by introducing the 

shift Operators [63, 81]: 
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of. x(t) h+ x(t - hj), j = 1, . . . , m. 

(Note that the ó;· commute as elements of the ring of continuous linear Operators of, say, 
the linear space L™oc{-°°, °°).) Then we can write the differential-delay system in the for-
mat 

x(t) = (A0(t) + Á! (t)o1 + · · · + Am(t)om)x(t) + B{t) 

or 

x(t)=A(t, &)x(t)+B(t). 

Here the entries of the ç ÷ ç matrix A(t, ó) are polynomials À ç ó1 , ó 2 , . . . , a m (perhaps of 

high degree in just óé if all delays are integral multiples of /æ÷), with time-dependent coeffi-

cients. 

This eonstruetion introduces the methods of the theory of polynomial rings and alge

braic geometry into the study of differential-delay equations [129]. Such algebraic methods 

have proved especially useful in the theory of controllability for linear differential-delay Sys

tems. 

In the general theory of nonlinear differential-hereditary Systems for x £ R " , w e en-

counter equations like x(t) — f(x, xt) (say, autonomous with a finite time-horizon h > 0), 

where / : R" ÷ C —* RM is suitably smooth. Here C is the State space, usually the Banach 

Space of all continuous functions (or perhaps the Sobolev Hubert space Ç1) from the delay 

interval —h < s < 0 to R". Thus xt(s) = x(t + s) for -h < s < 0 deflnes the State at time 

t > 0. In this case the dynamical system defines a (local) semi-flow in C as t increases in 

the future. Since only a future semi-dynamical system is specified, and that holds in an in

finite dimensional Banach Space, new methods and concepts of topological and differentia-

ble dynamics are demanded [33]. 

In spite of the many novel difficulties arising in the qualitative study of differential-

hereditary Systems, there has been developed a valid theory of stability, even hyperbolicity, 

of critical points and periodic orbits [33]. Also the basic properties of attracting and re-

pelling manifolds have been established and the generic nature of Kupka-Smale structure has 

been proven [60]. 

Besides the exploration of the general theory of differential-hereditary Systems, a num-

ber of serious investigations have illuminated the qualitative behavior of certain explicit non

linear Systems of special interest. For instance, the scalar nonlinear equation [45] 

x(t) =x(t)[a -bx(t - 1)] 

(and certain closely related generalizations [146]) has a periodic orbit—for appropriate Para
meters a, b. This equation originally was invented to describe a population growth, where 
the net-birthrate [a ~ bx(t - 1)] displays a dependence on the preceding generation. The 
capacity to utilize Information about preceding generations has made the theory of differen
tial-hereditary Systems of prime importance in the mathematical theory of population dy
namics and ecological interaction of biological species, and the analysis of the spread of epi-
demics [76, S47]. 
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Queries 

In closing this rather lengthy appendix, we list a few open problems that are of great 

interest within the theory of differentiable dynamics, and also can serve to test the power of 

new methods. 

1) Can the chaos of the generation of periodic orbits of the forced Dufflng oscillator 

be organized and explained by any theory of catastrophes or stochastic dynamics? 

2) What are the topological properties of minimal manifolds? In particular can there 

exist a smooth minimal flow on the sphere S3? 

STOP PRESS: Á preprint "There is no minimal flow on S3", from I. Ishii has just been 

received containing a proof of the following theorem: 

MAIN THEOREM. IfM3 is an orientable closed 3-dimensional manifold which admits 

á Cl minimal flow on it, then its first cohomology group H1(M3;R) is not trivial. 

3) Contrary to the preceding question, does every smooth noncritical flow on S3 have 
a periodic orbit? 

4) Is the C°° -closing lemma valid for smooth flows (using perturbations and approxi-
mations in the appropriate C°°-topology)? 

5) Does structural stability imply Axioms Á and Â for smooth flows? 
6) Can white noise illuminate black holes? 
7) When is an elliptic periodic orbit of a Hamiltonian dynamical System Liapunov 

stable—assuming appropriate generic hypotheses? Is the "drift" of trajectories away from the 
elliptic periodic orbit a generic phenomenon, regardless of the generic &-jet of the Poincare 
map? 

Finally, one last query: 

What is the difference between the Hopf bifurcation and the Hopf foliation? (reply: EH!). 
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