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PREFACE 

During the week of June 12-16, 1972, 1 gave a series of ten lectures at the University 
of Georgia on the occasion of a Regional Conference sponsored by the Conference Board of 
the Mathematical Sciences with the support of the National Science Foundation. These 
notes are a corrected version of the lecture notes which were distributed at that time. 

The theme of the lectures was the use of techniques drawn from the theory of Banach 

algebras to study Toeplitz Operators. An attempt was made at unifying diverse results, and 

point of view and direction were stressed rather than completeness. In particular, many re-

cent results and problems were discussed. 

1 would like to thank Bernard Morrel who planned and arranged the Conference and 
the University of Georgia which provided the facilities. 

Stony Brook 

July, 1972 

R. G. Douglas 
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46 R. G. DOUGLAS 

Therefore Ôö is seen to be Fredholm, dim ker Ôö = dim ker Ãö* Ãö = 0, and dim ker Ãö*= 

dim ker ÔöÔö = dim ker (Tt„T*n + r w W 7 * w ) = mn. Thus we obtain that ind2(F0) = 

- mnf and we see that even Toeplitz Operators with matrix coefficients can have nonzero 

index. 

These examples show that Computing the index for Fredholm Operators in T(CM (T2)) 
is not a trivial problem. We eonsider first the case of Operators in T(C(TZ)). If Ô is an 
Operator in T(C(T2)) which is Fredholm, then yz(T) Ö JW(T) is an invertible element of 
C(T, T(C(T))) Ö C(T, T(C(T))). Moreover, we have from Theorem 17 that {ö 2(Ã)(æ)] }(w) = 
{i[7w(7) (w)]}(z). Thus the symbol space for this algebra is the collection Ó3 of invert­
ible elements of C(T, T(C(T))) è C(T, T(C(T))) satisfying this identity. To compute the 
index one can concentrate on the component structure of Ó÷. This is easier to determine 
for the scalar case. If ö is the function in C(T2) defined by ö(æ, w)= {ff[72(7)(r)]}(W) = 
{*[yw(T) (w)l H2)> then ö Ö 0 and is homotopic to a constant. Let öß be a nonzero 
function in C(T2), for 0 < f < l , continuous in ß suchthat ö0 = 1 and öú = ö, Each 
of the Operators Ã, , /ö í  is Fredholm on Ç2(¾) and the Operator 5 t in T(C(T2)) de­
fined by St = Ôë,,ö ^Ô is Fredholm, and hence St has the same index as T, 

The important property of the symbol 72(S,) ®7 w (Sj ) isthat 7r[72(Sj) (z)] (H>) = 

*b\v(SiMw)] (z)= 1 f o r ( z»w) *n T2 · Therefore, 7 2 ( S , ) - / and yw(St)-I are 

compact Operators on H2(T) for (z, w) in T 2 . If f( denotes the group of invertible 

Operators on Ç2(º)  having the form 1 + K for some Ê in LC(H2(T)), then F , and 

Gt Hein [T,fC]. Since [T, K] is isomorphic to Z, essentially using the determinant 

function, there are integers indf(72(Sj)) and indr(7w(Sj)) naturally associated with the 

symbol for St. Thus what we have is that the group of homotopy classes of the symbol space 

Ó, is isomorphic to Æ Ö Æ and the problem is reduced to determining a homomorphism 

from Æ ÖÆ to Z. 

lt is possible to compute the index of Operators with symbols 72(*$º) Ö 1 and 
3 Ö 7w(«S*j) separately since the symbols lie in Óß and then to take the product. Let us 
recall the Operator R = TZT* ± lA T^ considered earlier. Computing we have yz(R) (z) = 
/ + ÌÃ * and yw(R)(w)=TzT*+w/2 and 

n{ [yz(R) (z)] }(w) = 3 + w/2 = Ì  (2 + w). 

If we multiply by T2/(2 + -y then we obtain 7 z ( r 2 / ( 2 + - } i? ) = 3 and 
Tw(^2/(2 + w)^)(w ) = ^ + F 0 /(l 4- 2w). where £ 0 is the projection onto the constant 
functions on Ç2(º).  To compute ind r{7w(7 ,

2 / (2 + ^ )i?)} it is sufficient to take the wind-
ing number of the function 3/(1 + 2w) on Ô which is - 1. Since the index of R was 
shown to be 1 we obtain that 

inde(/?) = -( ind,[72(7 '2 / ( 2 + - ) Ä ) ] + ind f[7w(r 2 / ( 2 + - ) /?)]) . 
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But this computation is enough to complete the proof. 

If Ó̂  denotes the subgroup of Ó} consisting of Symbols F®G for which the 
ränge of both F and G lies in K, then we have shown that the homotopy classes of Ó\ 

and Zj coincide. Thus there exists an isomorphism indr from the homotopy classes of 
Zj to Æ Ö Æ. Let ó denote the homomorphism from Æ è Æ onto Æ defined by 
o{m, «) = m 4- n. 

We can now State the index result due to Coburn, Singer and the author [36] for the 

scalar case. 

THEOREM 19. If Ô is an Operator in T(C(T2)), then Ô is Fredholm if and only 

if 1Z(T) © JW(O ß « '« Óé in which case 

inaa(T)~-oimdtly2(T)®yw(T)}}. 

The extension of this result to the matrix case involves considerably more sophisticated 
topological arguments. We State the result and refer the reader to [16] for details. 

PROPOSITION 10.2. / / Ô is á Fredholm Operator in T(CMk(T
2)) with symbol 

yz{T)®yw(T) in Xk, then there is á path ^ Ö ^ in ÓÇ suchthat F0 = y2(T)9G0 = 

yw(T) and such that 

F*(2) = i A V 0 \ md GiW = | * 0 
1 / \ 1 

for some (m, n) in Z2. The index of Ô is given by indG(7) = - (m + Þ). 

In general the path is not unique nor are m and ç uniquely determined for k > 3. 

Lastly, we consider the following invertibility result [25] for Toeplitz Operators on 
the bidisk. 3t generalizes a recent result of Malysev [49] by removing the requirement that 
the function have an absolutely convergent Fourier series and allowing more general functions. 
We refer the reader to [25] for more details. 

THEOREM 20. / / ö is á function continuous on the closed bidisk D2 which is holo-
morphic on the interior, (av a2) is á point in D2, and ö is defined on T2 by 

ø( 2 z ) = - -_ . 
(æ, - * , ) ( z 2 - f l 2 ) 

then T^ is invertible if and only if ö Ö 0 and is homotopic to á constant. 

PROOF. We begin by showing how to reduce to the case where (alt a2) = (0? 0). 
There are several ways to do this. The most straightforward is to observe that if ç is the 
conformal seif map of the bidisk defined by 

* In the original version of these notes this theorem was stated for Toeplitz Operators on the 
n-dimensional polydisk. The proof, however, had a gap. lt is unknown whether or not the theorem is 
valid in that generality. 
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' * ! - * , z2 -b2 

\ 1 ~ djZj 1 ~ b2z2 j 

for a fixed (bv b2) in D2, then T0 is imitarily equivalent to Ôèï  for every eontinu-

ous function è on Ô2 . To prove this it is sufficient, in view of the tensor product repre-

sentation in [26], to consider the one-dimensional case; and for this it suffices to apply 

Coburn's uniqueness result [12] to the isometry T^z_by^ _^2y on if2(T). 

lf Ôø is invertible on H2(T2)f then it follows from [26] "that ø  is nonvanishing 

on T2 and homotopic to a constant. The converse involves showing that such an Operator 

has no kernel. 

Suppose / is a function in Ç2(¾2) lying in the kernel of 7^. Then we have 
ôøß~ Ô* æ ( 0 / ) = 0» a n d h e n c e t l i e r e e x i s t functions glf g2 in Ç2(¾) such that 

ö(Æí  Z2)f{Zv Z2) = f ,(2j) + g2(22). 

We want to show that this is impossible. First, there exists {z : 1 > \z | > 3 - e},such that 
ö(æj, z2) Ö 0 for (zv 22) in A2. This follows from the continuity of ö on D2 and 
the fact that ö(æ{, æ2)Ö0 for (zvz2) in T 2 . Now fix z2 in Á and consider the 
holomorphic function defined $ J ( 2 J ) = ö(æ,, z2) for zt in D. Since the index of the 
curve Öú(æ) traced by 2 in Ô is 1, there exists a unique complex number %(z2) of 
modulus less than 1 - € such that Ö(|(22), 22) = 0. This follows from the fact that 
ö(æß1æ2)/æj22 is homotopic to a constant on T 2 . Moreover î  is a holomorphic func­
tion from Á to the open disk D 1_€ of radius 3 - e. 

Since a function in Ç2(º2) can have no poles in D2 we see that ö(æ÷ø z2) = 0 

for (2j ,2 2 ) in D2 implies gi(zl) + g2(z2) = 0, and hence we have theinclusion 

g2(A)C-gl(Ol^). 

For X an arbitrary subset of C let X® denote the subset of C obtained by taking 
the closure of X and adding the bounded open components in the complement. It is easy 
to verify that g(A)# 3 g(D) for g holomorphic on D. 

Thus we obtain 

[ - g ] ( D 1 _ e ) ] # D ^ ( D ) . 

Therefore the maximum of the function gj on D j _ € is at least as great as that of g2 on 
D. Hence the maximum of g, on D exceeds that of g2 on D unless gt is constant. 
But this implies a contradiction. Otherwise we repeat the preceding argument with the roles 
of 2j and 22 reversed to obtain a contradiction. In either case the theorem is proved. 

We conclude with a comment. In [52] Pattanayak shows that the collection of func-
tions ö in CM (T2) for which Ôö is Fredholm is a dense open set in the collection of 
invertible functions which are homotopic to a constant. Thus, for CM (T2) the generic 
case is Fredholm. On the other hand, this is not true for CM (T3). 
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