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Lectures on Hilbert Cube Manifolds

The goal of these lectures is to present an introduction to the geometric topology of the
Hilbert cube Q and separable metric manifolds modeled on Q, which we :all Hilbert cube
manifolds or Q-manifolds. in the past ten years there has been a great deal of research on Q
and Q-manifolds which is scattered throughout several papers in the literature. We present
here a self-contained treatment of only a few of these results in the hope that it will stimulate
further interest in this area. No new material is presented here and no attempt has been made
to be complete. For example we have omitted the important theorem of Schori-West stating
that the hyperspace of closed subsets of [0,1] is homeomorphic to Q. In an appendix (prepared
independently by R. D. Anderson, D. W. Curtis, R. Schori and G. Kozlowski) there is a list of
problems which are of current interest. This includes problems on Q-manifolds as well as mani-
folds modeled on various linear spaces. We refer the reader to this for a much broader perspec-
tive of the field.

In some vague sense Q-manifold theory seems to be a “’stable” PL r-manifold theory.

This becomes more precise in light of the Triangulation and Classification theorems of Chapters
X1 and X11. In particular, all handles can be straightened and consequently all Q-manifolds

can be triangulated. Thus there are delicate finite-dimensional obstructions which do not
appear in Q-manifold theory. This is perhaps why the proofs of the topological invariance of
Whitehead torsion (Chapter XI1) and the finiteness of homotopy types of compact ANRs
(Chapter X1V) first surfaced at the Q-manifold level.

In the first four chapters we present the basic tools which are needed in all of the remaining
chapters. Beyond this there seem to be at least two possible courses of action. The reader who
is interested only in the triangulation and classification of Q-manifolds should read straight
through {avoiding only Chapter V1). In particular the topological invariance of Whitehead torsion
appears in §38. The reader who is interested in R. D. Edwards’ recent proof that every ANR
is a Q-manifold factor should read the first four chapters and then (with the single exception of
26.1) skip over to Chapters XlIl and XIV.

These lectures were delivered in October, 1975, at Guilford College as part of the Regional
Conference Program sponsored by the Conference Board of the Mathematical Sciences with the

support of the National Science Foundation. | wish to express my appreciation to the Conference
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Board for making them possible, and to the Departments of Mathematics of Guilford College and
the University of North Carolina at Greensboro for their generous hospitality. | am also indebted
to L. C. Siebenmann and Mike Handel for helpful comments on earlier drafts of portions of the

manuscript.

T. A. Chapman



References

R. D. Anderson,
1. Topological properties of the Hilbert cube and the infinite product of open intervals,

Transactions A.M.S. 126 (1967), 200—-216.

2. On topological infinite deficiency, Mich. Math. J. 14 (1967), 365-383.
R. D. Anderson and R. Schori,
3. Factors of infinite-dimensional manifolds, Transactions A.M.S. 142 (1969), 315-330.
R. D. Anderson and John McCharen,
4. On extending homeomorphisms to Frechet manifolds, Proceedings A.M.S. 25 (1970), 283—-289.

R. D. Anderson and T. A. Chapman,
5. Extending homeomorphisms to Hilbert cube manifolds, Pacific J. of Math. 38 (1971}, 281-293.

William Barit,
6. Small extensions of small homeomorphisms, Notices A.M.S. 16 (1969), 295.

R. H. Bing,
7. The cartesian product of a certain nonmanifold and a line is E*, Ann. of Math. 70 (1959),

399-412.

K. Borsuk,
8. Concerning homotopy properties of compacta, Fund. Math. 62 (1968), 223—-254.

9. Theory of retracts, Polish Scientific Publishers, Warsaw, 1967.

T. A. Chapman,
10. Dense sigma-compact subsets of infinite-dimensional manifolds, Trans. A.M.S. 154 (1971), 399-426.

11. On the structure of Hilbert cube manifolds, Compositio Math. 24 (1972), 329—-353.

12. On some applications of infinite-dimensional manifolds to the theory of shape, Fund. Math.
76 (1972), 181-193.

13. Shapes of finite-dimensional compacta, Fund. Math. 76 (1972), 261-276.

14. Surgery and handle straightening in Hilbert cube manifolds, Pacific J. of Math. 45 {1973), 59-79.
15. Comspzacg glilbert cube manifolds and the invariance of Whitehead torsion, Bull. A.M.S. 79 (1973),
16. Topological invariance of Whitehead torsion, American J. of Math. 96 (1974), 488—-497.

17. All Hilbert cube manifolds are triangulable, preprint.

18. Non-compact Hilbert cube manifolds and infinite simple homotopy types, preprint.

19. Cell-like mappings of Hilbert cube manifolds: Solution of a handle problem, General Top. and
its App. 5 (1975), 123—145.

T. A. Chapman and Steve Ferry,
20. Obstruction to finiteness in the proper category, preprint.

M. Cohen,
21. Simplicial structures and transverse cellularity, Ann. of Math. 85 (1967), 218—-245.

22. A course in simple-homotopy theory, Springer-Verlag, New York, 1970.

108



LECTURES ON HILBERT CUBE MANIFOLDS 109

R. Connelly,
23. A new proof of Brown’s collaring theorem, Proc. A.M.S. 27 (1971), 180-182.

J. Dugundji,
24. Topology, Allyn and Bacon, Boston, 1966.

R. D. Edwards,
25.

Steve Ferry,
26. Animmersion of T" — D" into R", I'Enseignement Math. 20 (1974), 12—13.

Mike Handel,
27. On certain sums of Hilbert cubes, preprint.

William E. Haver,
28. Mappings between ANRs that are fine homotopy equivalences, Pacific J. of Math. 58 (1975),
457-461.

D. W. Henderson,
29. Open subsets of Hilbert space, Compositio Math. 21 (1969), 312-318.

30. Infinite-dimensional manifolds are open subsets of Hilbert space, Topology 9 (1970), 25—34.

J. F. P. Hudson,
31. Piecewise linear topology, Benjamin, New York, 1969.

D. M. Hyman,
32. ANR divisors and absolute neighborhood contractibility, Fund. Math. 62 (1968), 61-73.

R. C. Kirby,
33. Lectures on triangulation of manifolds, U.C.L.A. Lecture Notes, Los Angeles, 1969.

R. C. Kirby and L. C. Siebenmann,
34. On the triangulation of manifolds and the Hauptvermutung, Bull. A.M.S. 75 (1969), 742-749.

George Kozlowski,
35. Images of ANRs, Trans. A.M.S., to appear.

R. C. Lacher,
36. Cell-like mappings I, Pacific J. of Math. 30 (1969), 717-731.

R. J. Miller,
37. Mapping cylinder neighborhoods of some ANRs, Bull. A.M.S. 81 (1975), 187-188.

J. W. Milnor,
38. On spaces having the homotopy type of a CW complex, Trans. A.M.S. 90 (1959), 272-280.

T. Benny Rushing,
39. Topological embeddings, Academic Press, New York, 1973.

R. B. Sher,
40. The union of two Hilbert cubes meeting in a Hilbert cube need not be a Hilbert cube, preprint.



110 T. A, CHAPMAN

L. C. Siebenmann,
41. The obstruction to finding a boundary for an open manifold of dimension greater than five,

thesis, Princeton University, 1965.
42. [Infinite simple homotopy types, Indag. Math. 32 (1970), 479—495.
43. Approximating cellular maps by homeomorphisms, Topology 11 (1972), 271-294.

44. L’Invariance topologique du type simple d’homotopic, Seminaire Bourbaki, 252 anee,
1972/73, n° 428.

45. Chapman’s classification of shapes: A proof using collapsings, Manuscripta Math. 16 (1975),
373-384.

E. H. Spanier,
46. Algebraic topology, McGraw-Hill, New York, 1966.

H. Torunczyk,
47. Concerning locally homotopy negligible sets and characterization of Q,-manifolds, preprint.

G. Venema,
48. Embeddings of compacta with shape dimension in the trivial range, Proc. A.M.S. (1976),
to appear.

C.T.C. Wall,
49, Finiteness conditions for CW complexes, Annals of Math. 81 (1965}, 55—-69.

J. E. West,
50. Infinite products which are Hilbert cubes, Trans. A.M.S. 150 (1970), 1-25.

51. Mapping cylinders of Hilbert cube factors, General Top. and its App. 1 (1971), 111-125.
52. Mapping Hilbert cube manifolds to ANRs, preprint.

J. H. C. Whitehead,
53. Simple homotopy types, Amer. J. of Math. 72 (1950), 1-57.

54. Combinatorial homotopy 1, Bull. A.M.S. 55 (1949), 213—245.

R. Y. T. Wong,
55. On homeomorphisms of certain infinite-dimensional spaces, Trans. A.M.S. 128 (1967), 148—154.

56. Extending homeomorphisms by means of collarings, Proc. A.M.S. 19 (1968), 1443—1447.



APPENDIX
OPEN PROBLEMS IN INFINITE-DIMENSIONAL TOPOLOGY
List of Problems by Area

Page
I. Introduction 111
11, CE Images of ANR's and Q-manifolds 114
111, SC Shape of Compacta in I-D Topology 117
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X1V, HS Spaces of Homeomorphisms and Mappings 130
XV. LS Linear Spaces 131

I. Introduction

This problem list is a successor to earlier problem lists prepared following con-
ferences in Ithaca (January 1969), Baton Rouge (December 1969), Oberwolfach (Sept-
ember 1970), and Baton Rouge (October 1973), It was prepared following a special
conference in Athens, Georgia (August 1975) and the CBMS regional conference in
Greensboro (October 1975), Earlier lists were published as Mathematisch Centrum
Report ZW 1/71 and as part of Mathematical Centre Tract 52, 1974, pp. 141-175, both
from Amsterdam,

The present list is not, of course, a complete list of all open questions known to
the conference participants, but it does include representative problems from most of
the principal areas of current activity in the point-set topology of infinite-dimensional
spaces and manifolds known to the authors, Space considerations have forced the

omissions of some topics included in earlier lists such as uniformly continuous and

111



112 T. A. CHAPMAN

Lipschitz homeomorphisms in which the recent activity has been by others (Aharoni,
Enflo, Mankiewicz) than the participants. This problem list has been organized by
R.D. Anderson, D, W, Curtis, G. Kozlowski and R, M, Schori with help from many
others, An effort has been made to bring the past lists up-to-date and to recognize
the current, as distinct from the earlier, areas of interest,

It is recognized that a few of the problems listed below may be inadequately
worded, be trivial or be known. Because of many interrelationships, some aspects of
various problems are listed under more than one heading,

The following mathematicians (with addresses listed in the AMS-MAA Combined
Membership List) took part in the problem sessions and are sources of continuing
information on many of the problems: R.D, Anderson, T.A, Chapman, D, W, Curtis,
R, Geoghegan, G, Kozlowski, R, M. Schori, and James E. West; the following partic-
ipants are sources on certain types of problems: D,E. Edwards, R.D. Edwards,

M. Handel, H, Hastings, W, E. Haver, R. Heisey, J.E. Keesling, J. Quinn, R, B,
Sher, W,E. Terry, R,Y-T Wong, and S. Ferry,

Henryk Torunczyk of the Mathematics Institute of the Polish Academy of Sciences
in Warsaw and Czeslaw Bessaga of the Mathematics Institute of the University of
Warsaw are also knowledgeable about many problems and results, particularly those
dealing with linear space problems.

We briefly review three of the important areas of recent results in I-D topology
and then mention three areas of promising research activity. Our effort is to show the
evolving relationships of I-D topology with other areas of mathematics.

1. Recent results have emphasized the close relationships of I-D topology with
AR and ANR theory. Specifically, using Q-manifold theory, James E. West showed
that every compact metric ANR has the homotopy type of a finite polyhedron. More
recently, R, D, Edwards has shown the stronger result that a locally compact separable
metric space X is a Q-manifold factor (X x Q is homeomorphic to a Q-manifold)
iff X is an ANR, For compacta this implies West's result and also characterizes
compact AR's as Q-factors, It complements the earlier results of Torunczyk showing
that a complete separable metric space X is an zz-manifold factor iff X is an ANR,
(Indeed, Torunczyk's results on ANR's are applicable to manifolds modeled on various
linear metric spaces.) Clearly, in light of Edward's results, locally compact or com-
pact AR's or ANR's can be conveniently studied by crossing with Q@ and using Q-
manifold theory. Many properties of AR's, ANR's and of deformations of such spaces
now follow automatically,

2, Inlate 1974, J.L. Taylor showed that there exists a cell-like map (i.e., each
point inverse has trivial shape) of an I-D compactum X onto Q such that X does not
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have trivial shape. Taylor used inverse limit techniques and examples of Adams and/
or Kahn, It is a corollary of Taylor's example and known results (Curtis, R. Edwards,
Keesling, Kozlowski) that there exists a cell-like map of Q onto a non-AR of infinite
dimension, Thus, the known results that CE maps preserve shape if the image is
finite-dimensional (Anderson, Kozlowski, and, in a special case, Sher) or if domain
and range are ANR's (Armentrout-Price, Kozlowski, Lacher) cannot be totally ex-
tended, On the basis of results of Kozlowski on hereditary shape equivalences, the
following questions (older, in some form) now seem more important (and possibly
doable ?) and are related.

(A) Does there exist a cell-like map of a finite dimensional compactum onto an
I-D compactum ?

(B) Does every I-D compactum contain an n-dimensional subset (not necessarily
closed) for each n?

An affirmative solution to either gives a negative solution to the other, (Note
that Henderson's and other examples give infinite~-dimensional compacta containing no
1-dimensional subcompacta, The question about I-D compacta necessarily containing
n-dimensional nonclosed subsets apparently is still open,)

3. The earlier results of Geoghegan that the space H(M) of homeomorphisms of
a finite~dimensional compact n-manifold M admits an lz-factor (H(M) = H(M) X Ez)
and of Torunczyk that for any complete metric ANR X, X X 22 is an Ez-manifold
immediately imply that H(M) is an Lz-manifold iff HM) is an ANR, Indeed, a
recent observation by Haver is that H(M) is an ANR if for any n-cell, Bn, the space
Ha(Bn) of homecomorphisms of B" fixed on the boundary is an AR, Thus, the prob-
lem is now reduced to an AR problem on a single n-cell, The results are known for
n=1,2,

4. There are a growing body of results relating the topology of Q-manifolds with
the topology of finite-dimensional manifolds via the stabilization process, multiplying
by or factoring out Q. The recent delicate Chapman-Siebenmann results on com-
pactifications of Q-manifolds are a case in point, In his dissertation, Cerin has begun
the investigation of the relationships between shape theory for locally compact spaces
(ANR's) with Q-manifold theory exploiting the Chapman characterization of shape of
compacta in terms of Z-set complements in Q. In general, there appears to be a
growing area for study, both of related finite and I-D manifold properties and of shape
and Q-manifold properties,

5, One of the areas of much activity and, so far, few definitive results, is that
of group action on Q or Q-manifolds, The problems start with the question as to

whether any two semi-free periodic actions on Q (with the same period and a single
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fixed point) are equivalent and extend to questions of group actions on manifolds. The
earlier result of Wong that two finite periodic actions on Q with a single fixed point
are equivalent if their periods agree and if each has arbitrarily small invariant con-
tractible neighborhoods of the fixed point remains the standard result (although some-
what more general conditions have been given by Edwards and Hastings). Delicate
questions of proper homotopy type get involved.

6. The classical questions of topological characterizations of Q and s in
terms other than as products, linear spaces or as convex subsets of linear spaces
remain open, It seems likely that imaginative new, usable characterizations of s or
Q should lead to new theories.

Finally we mention an area which recent results have pretty much finished. An
early question in I-D topology concerned the union of two sets X1 and X2 such that
Xl’XZ and Xl N X2 were all homeomorphic to Q or were all homeomorphic to s,
Is X1 U X2 necessarily homeomorphic to Q (or to s)? Similar questions existed
where Xl,X2 and X1 V] X2 were all assumed homeomorphic to Q (or s) and the
question was whether X1 n X2 was homeomorphic to Q (or s). All of these questions
have negative answers (some rather easily). The final result to be obtained is due to
Sher who used Eaton's generalized dog-bone construction applied to Q and showed
that on slicing it in two we get two copies of Q whose intersection is a copy of Q but
whose union is not, Complementing this, Handel has shown that a union of two copies
of Q must be a copy of Q if the intersection is a Z-set copy of Q in either, Lastly,
in contrast with this, Quinn and Wong have shown that the union of two convex Hilbert

cubes in 22 is a cube, provided their intersection is a cube,

II, CE Images of ANR's and Q-manifolds
In the theory of Q-manifolds the foundational problem involving CE mappings is
to give conditions under which the image Y under a CE map f: M=Y of a Q-manifold
is homeomorphic to M. By Chapman's CE Mapping Theorem the question of Y being
homeomorphic to M is equivalent to that of Y being a Q-manifold,

™) Under what conditions do the CE images of Q-manifolds

remain Q-manifolds?

In connection with problems of type (M) we shall deal only with situations in
which each point-inverse is a Z-set, since shrinking out a wild arc (Wong) or a cut
slice in Q produces a non-Q-manifold, Even this improved situation is circumscribed
by counter-examples. A modification of Eaton's argument for the existence of dog-
bone decompositions for higher dimensional Euclidean spaces shows that there is a

dog-bone decomposition of Q, i.e., a surjection f:Q=Y suchthat Y is not Q,
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each nondegenerate point-inverse is a Z-set arc, and the nondegeneracy set of f is

a Cantor set in Y. In this case by (1c) below Y is an AR, but even this information
is not obtained in general, for Taylor's example gives a CE map f:X - Q onto the
Hilbert cube which is not a shape equivalence; and considering X as a Z-set of Q

and taking the adjunction F:Q - Q Uf Q=Y produces a CE map of Q onto a non AR,

Because of Taylor's example there is interest in finding conditions to insure that
the CE image of a Q-manifold is an ANR. This problem is equivalent to the older
problem of finding conditions under which the CE image of a (locally compact) ANR
is an ANR. Infact, if f:X-Y isa CE map of such an ANR, then ' =fp:Xx Q~
Y isa CE map (where p:X X Q- X is the standard projection) of a Q-manifold by
Edwards' result, Kozlowski defines an hereditary shape-equivalence to be a proper
map f:X - Y such that f:f"lB - B is a shape equivalence for every closed subset B
of Y, and has shown:

(1) A CE map f:X=Y, with X an ANR, is an hereditary shape equivalence
if and only if Y is an ANR, His Vietoris theorems then imply that Y is an ANR in
the following cases:

(1a) Y is a countable union of closed finite-dimensional subspaces;

(1b) Y is compact and countable-dimensional;

(lc) the nondegeneracy set {y € Y:f—l(y) is nondegenerate} of f is finite
dimensional (or more generally, is contained in a subset of Y having large inductive

transfinite dimension),
A) Under what conditions do CE images of ANR's remain ANR's?

This problem can be closely tied to (M), Say that a map f:X =Y s determined
on the subset A of X if every nondegenerate point-inverse of f lies in A, The
following useful result was known to West and others,

2 If f:M~Y isa CE map of a Q-manifold M onto an ANR which is
determined on a Z-set of M, then f is a near homeomorphism,

Now consider a CE map f: M~ Y defined on a Q-manifold M. Identify M=
Mx 0 Mx Q and consider the adjunction F:MX Q~ (MX Q) UfY =N, Itisa
classical result of Borsuk-Whitehead-Hanner that N is an ANR iff Y is. Alternatively,
identify M= MX 1< Mx [0,1] and consider the adjunction M x [0,1]~ (M x [0,1]) Uf Y
= M(f), where M(f) is the mapping cylinder of f; since M isa Z-setin Mx Q and
Mx [0,1], these situations are related by the Z-set homeomorphism extension theorem

as in the diagram

14

Mle Mx1[0,1]

M(f)

»

N
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where the homeomorphism is the identity on Y. By Theorem 2, N is a Q-manifold
iff N is an ANR. Recapitulating, for a CE map f:X—~Y one has Y an ANR iff
f is an hereditary shape equivalence iff the induced map M Xx Q= N is a near homco-

morphism, Thus (A) is equivalent to

() Under what conditions do CE images of Q-manifolds

determined on Z-sets remain Q-manifolds,

The following problems stem from (A).

(CE1) Let f:Q-Y be a surjection with each point-inverse a copy of Q. Is
Y an AR? It is readily seen, using Edwards' Q-factor theorem and a cone con-
struction, that this is equivalent to a question of Borsuk: If X is a compact ANR
and f:X—~Y has AR's for point-inverses, is Y an ANR?

(CE 2) Let f: B"-Y bea CE map. Is Y an AR? This is equivalent to the
question: Is the CE image of a finite-dimensional compactum finite dimensional ?
(The procedure, givena CE map f:X - Y with dim X< o, is to imbed X in some
B" and consider the quotient map F: B" - B" Uf Y. If B" LJf Y is an AR, then F
and f are hereditary shape equivalences, and these do not raise dimension. The
converse follows from (la) above,

Even the following special case is of interest,

(CE 3) If it is further assumed in (CE 2) that the nondcgenerate point-inverses
of f are arcs, is Y an AR?

Some of these questions originated in part from the study of decompositions of
manifolds. The situation at present is that one has complete information regarding
the homotopy groups but no information about homotopy.

(CE4) If X is B" or R" and f:X- Y is a cell-like map, is Y contractible?

A corollary of Theorems (1), (1c) and (2) is a theorem claimed earlier by
Anderson,

(3) f M is a Q-manifold and f:M—~Y is a CE map determined on a Z-set
and whose nondegeneracy set is finite dimensional, then f is a near homeomorphism,

In the dog-bone decomposition of Q the union of the nondegenerate point-inverses
does not lie even in a o-Z-set,

(CE 5) Suppose f:Q-Y is a CE map onto an AR, with the union of the non-
degenerate point-inverses lying ina g-Z-setin Q. Is Y = Q? Suppose we require
only that the union of the nondegenerate point-inverses lie in a pseudo-interior of Q?

Even cases in which there are only countably many nondegenerate point-inverses
of f are of interest, [In this case (1c) shows that Y is an ANR,]

(CE 6) More specifically, if the set of nondegenerate point-inverses is countable,
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is Y= Q? (This is known if the union of the nondegenerate point-inverses is a Gé')

(CET) Is Y= Q, if (a) the collection of nondegenerate point-inverses is null
(i.e., there are only finitely many such sets of diameter > ¢ for every € > 0), and/or
if (b) the closure in Y of the nondegeneracy set is zero-dimensional ?

(CE 8) Suppose f:Q-Y isa CE mapof Q ontoan AR, Find conditions and
examples when Y x Ik > Q for some finite k, Recall that Bryant-Chapman have shown
that Y X I=Q in the case that f has exactly one nontrivial point inverse and it is a
finite-dimensional cell, R, Edwards claims that Y X I=Q in the case that f has
exactly one nontrivial point inverse and it is a finite-dimensional cell-like compactum
(this uses a variation of an argument of Stanko),

The following question relating to lz—manifolds is also of interest,

(CE 9) Suppose Y is a complete separable metric ANR which is a closed cell-
like image of an lz-manifold M. Is Y infact an Ez—manifold? This amounts to
asking whether the decomposition of M induced by the (compact) point inverses of the
map M~ Y is shrinkable in the sense of Bing. It is a consequence of known theorems
that the stabilized decomposition obtained by crossing with LZ or Q is shrinkable,

III. SC  Shape of Compacta in I-D Topology

Shape theory has become a useful tool in I-D topology and geometric topology.
Since Chapman's proof that two Z-sets in Q have the same shape iff their comple-
ments are homeomorphic, deep results of Chapman, R, Edwards, Miller, and West
involving CE maps have decisively demonstrated the power of shape theoretic con-
cepts in solving classical problems, The problems appearing here are, for the most
part, concerned only with aspects of shape theory which bear somewhat directly on
I-D topology. For more purely shape theoretic problems, one can consult Borsuk's
work, in which lists of problems frequently appear,

We restate two problems from the CE section,

(SC 1) Is it true that cell-like maps do not raise dimension? This question is
equivalent to the following: is a cell-like map defined on a finite-dimensional space a
shape equivalence?

(SC 2) Does every infinite~dimensional compactum contain subsets of arbitrarily
high finite dimension? [A positive answer implies a positive answer to (SC 1).]

(SC3) If f:X—~Y isa CE map, whose nondegeneracy set is countable-
dimensional, is f a shape equivalence?

(SC4) If M and N are compact Q-manifolds and if there exist a compactum
X and hereditary shape equivalences f: X~ M, g: X~ N, are M and N homeomorphic?

(SCS5) If M and N are compact Q-manifolds and if there exist a cocmpactum
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X and CE maps f:M—X, g:N~ X, are M and N homeomorphic?

(SC 6) Give conditions so that for an inclusion Y = X which is also a shape
equivalence the following condition holds whenever X< P (an ANR): for every
neighborhood V of Y and every neighborhood U of X, there is a homotopy ft:X -
U, 0=t=1 such that: (1) fO(x) =x for all x € X, (2) fl(X) Cc V, and (3) ft(y) =y for
all y€Y and 0=t=1,

(SC 7) If X,Y are compact metric with respective compact subsets A, B and
if f:X=Y restricts to a shape equivalence A= B and maps X\A homeomorphically
onto Y\B, is f a shape equivalence? What if X and Y are compact ANR's?

(SC 8) If X and Y are shape equivalent UVl-compacta, does there exist a
finite diagram X = X0 - X1 el o Xn =Y in which X.l - Xi+1 is an hereditary shape
i+1 1 o X7
(SC9) If A isa Z-setin Q and Q/A is an ANR, is A shape-dominated by

equivalence either from Xi to X or from Xi+
a complex?

(SC 10) Let f:(X,x)= (Y,y) be a morphism of pointed shape theory which
induces an isomorphism on each homotopy pro-group, Under what hypotheses is f a
(pointed) shape equivalence? (Remark: There is considerable recent literature on
this problem, There are good positive theorems and good counterexamples, We are

asking for the best possible positive theorem,)

IV. PF Products and Factors

R. D. Edwards has recently proved that every locally compact separable metric
ANR is a Q-manifold factor, (Trivially, the converse is true.) This long-sought-
after result is the Q-analogue of Torunczyk's characterization of Lz-manifold factors:
every complete separable metric ANR is an lz-manifold factor,

Edwards' result, together with Chapman's Q-manifold triangulation theorem,
provides another proof of West's theorem that every compact metric ANR has finite
homotopy type.

(PF 1) Give an internal characterization of spaces X for which Xx I= Q.
What is the relationship between the conditions Xx I=Q and X x X= Q? Cerin has
shown, extending unpublished results of Bryant and Chapman, that (Q/A) x I=Q=
Q/A xQ/A for every closed n-cell A in Q.

Another consequence of Edwards' result with a theorem of West is that every
countable infinite product of nondegenerate compact metric AR's is homeomorphic to
Q. The corresponding question for products of zz-factors remains open,

(PF 2) Is every countable infinite product of noncompact complete separable

metric AR's homeomorphic to LZ? We may suppose that each factor contains a closed
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copy of the line, since it is not hard to show that each product of two such factors has
this property., What about the special case where each factor is a contractible Q-
manifold ?

As another special case we consider the following product:

(PF 3) Let P be the set of points in the closed unit ball of !'2
most one nonzero coordinate, (P is sometimes called the '""porcupine'".) Is ﬂ;gl p=

22?

which have at

(PF 4) (i) Does XX X=g=2X=g?
(i) Does XxI=s=2X=g?
(iii) Does XxQ=Zs=>X=g?
Note that if X x Y= s for some locally compact Y, then XX YX Q= s, and since
Y x Q is a Q-manifold, X x Q is a contractible s-manifold, hence X x Q=s,

V. Qs Cone Characterizations of Q and s

A major continuing problem is to get useful and simple topological characterizations
of Q or s that do not depend explicitly on linear space properties or on the product
structure of the space, For linear space and product structures we note that Keller
proved in 1931 that any compact convex infinite-dimensional subset of !‘2 is homeo-
morphic to @, and recent work of West and Edwards combine to show that any countable
infinite product of metric compacta is homeomorphic to Q iff each factor is an AR
and infinitely many are nondegenerate, Results for s due to Anderson and Kadec
characterize s as homeomorphic to any separable infinite-dimensional Frechet space,
and results due to Torunczyk state that X x s=s iff X is a topologically complete
separable metric AR. The final possible characterization of s as a product of AR's
is still not settled and is stated in section PF,

It would be very nice to have topological characterizations of s and Q in more
general or at least different terms, Specific problems which appear interesting are the
following:

(Qs 1) Are the one-point set and Q the only homogeneous contractible metrizable
compacta?

Qs 2) Is s the only homogeneous separable contractible nonlocally compact
completely metrizable space? Special cases of (Qs 1) and (Qs 2) are (Qs 3) and (Qs 4)
below in which contractibility is strengthened to ""being a cone". Of course, homogeneity
and cone structure give conditions quite similar to those of product structure,

(Qs 3) Let X be compact metric, homogeneous and homeomorphic to its own
cone, Is X homeomorphic to Q?

Note. By a theorem of Schori, cone(Y) X 1= cone (cone(Y)) for any compact
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Hausdorff space Y, Therefore X=X x I, If we can prove that the projection map
p:X X I+ X is either tiltable (in the sense of West) or a near-homeomorphism, then
by an inverse-limit argument it follows that XX Q= X, Furthermore, de Groot
observed that X is locally homogeneous, i,e., every point x € X has arbitrarily
small neighborhoods Ox such that for any two points y, z € Ox’ y can be mapped
onto z by an autohomeomorphism of X thatis the identity outside Ox; and
Kroonenberg observed that X is n-point order-preserving homogeneous for any n,
A possible counterexample might be obtained in the following way: Schori showed that
cone(Y) x Q is homeomorphic to its own cone for every compact metric space Y,
However, homogeneity and local contractibility at the cone point rule out spaces
cone(Y) X Q for Y a space like the Cantor set or the universal curve,

(Qs 4) We can pose a problem similar to (Qs 3) about s, If X is homogencous,
separable, complete metric and not locally compact and X = cone(X) (where an

appropriate metric definition of cone is used), then is X=>=sg?

VI, H Hyperspaces

The original hyperspace problems in infinite-dimensional topology have, in
general, been solved. Some problems of current interest concern pseudo-~interiors
for hyperspaces, convex hyperspaces, and hyperspaces of noncompact spaces.

For X a metric space, ZX denotes the hyperspace of nonempty compact sub-
sets of X, and C(X) the hyperspace of nonempty subcontinua of X, topologized with
the Hausdorff metric., Schori and West showed that 2I = Q, and more generally,
that 2r = Q for every nondegenerate finite connected graph I', West also showed
that the hyperspace of subcontinua C(D) of a dendron D is homeomorphic to Q if
and only if the branch points of D are dense. Using these results, Curtis and Schori
subsequently showed that ZX = Q if and only if X is a nondegenerate Peano continuum,
and C(X)= Q if and only if the Peano continuum X contains no free arcs,

Further results on various subspaces of ZX, where X is a nondegenerate Peano
continuum have been obtained, In particular, for A, Al‘ . Arl € ZX, the containment
hyperspace 23: ={F € 2X: F > A} is homeomorphic to Q if and only if A # X, while
the intersection hyperspace 2X(A1, oA = re2®.Fn A, # 0 for each i} is
always homeomorphic to Q. Also, for every compact connected polyhedron K, there
}S(Stc 2K of "small" subsets of K such that ngti‘ Kx Q.

If X has an affine structure, we may consider the convex hyperspace cc(X) < 2

exists a hyperspace 2
X
of compact convex subsets of X, Nadler, Quinn, and Stavrakas have shown that

ce(X) = Q for every compactconvex subset X of EZ with dimX > 1, They also show

that for X< R2 with ccX)=Q (X not necessarily convex), X must be a 2-cell.
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Curtis, Quinn, and Schori have shown that if X R2 is a polyhedral 2-cell then
cc(X) =Q if and only if X contains no singular segments (a segment J< X is singular

if it contains in its interior three vertices Vi Vo Vs at which X is locally nonconvex,

such that the side of J determined by the middle vertex v, is opposite that determined

2

by v. and by v,).

1
Curtis has recently shown that 2X is an AR (metric) if and only if the metric
space X is connected and locally continuum-connected. Two more specific hyper-
X Q\{pt} if and only if X is a

locally compact connected locally connected noncompact metric space; (2) a topologically

space characterizations are also obtained: (1) 2

complete separable connected locally connected and nowhere-locally compact metric
space X is imbeddable in a Peano continuum P such that 2X is a pseudo-interior
for ZP if and only if X admits a metric with Property S,

(H 1) Is the collection of finite subsets of I an fd-cap set for ZI?

(H2) Let T be a finite connected graph, Are the collections {A € 2I‘ :A is
0-dimensional} and {A € 2T

Note. The above problems are due to Kroonenberg, who has answered (H 2)
for T =1,

(H3) If Xc R2 is a 2-cell containing no singular segments, is ccX)=Q?

:A is a topological Cantor set} pseudo-interiors for Zr?

(H4) Let 2% be the nonseparable Banach space of bounded real sequences, and
let ~ be the equivalence relation in 229 of isometry between compact metric spaces.
Is the quotient space 2290 /n = 12? (D. Edwards has obtained some basic properties
of 24%/~ )

(H5) Is 2X = Ez for every topologically complete separable connected locally
connected and nowhere-locally compact metric space X?

VII. QM Hilbert Cube Manifolds

The two major problems on Q-manifolds, triangulability and classification (by
infinite simple homotopy type) have been solved by Chapman., Many techniques for PL
manifolds can be adapted for Q-manifolds and are usually simpler in the I-D case,

(QM 1) Give a locally flat embedding of codimension 3 of one Q-manifold into
another which does not have a normal bundle. Finite-dimensional examples exist.
Chapman showed that an arbitrary-codimensional embedding of Q itself ina Q-
manifold is flat, which result is false of course, even in codimension 1, when we
replace Q by an arbitrary Q-manifold,

(QM 2) Let X be a compact Q-manifold, and U a finite open cover of X by
contractible open subsets such that intersections of subcollections of U are either
empty or contractible. Is X homeomorphicto N(U)x Q? Here N(U) denotes the

nerve of U.
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(QOM 3) Given a compact Q-manifold M, does there exist € > 0 such that if
r: M- N is a retraction onto a Q-manifold N, with diam r-l(n) < ¢ for each n in
N, then r is close to a homeomorphism?

A proper surjection f: M = N is an upproximate fibration (Coram=-Duvall)
provided that given a space X, mappings g:X X {o]- M and H:Xx I—- N such that
fg = HlX X [0}, and an open cover U of N, there exists a mapping G:Xx I+ M
such that' G extends g and fG and H are U-close,

QM 4) If f: M= N is an approximate fibration of Q-manifolds, when is f close
to locally trivial maps?

(QM 5) Let M,N be compact Q-manifolds and let f,g: M~ N bc locally
trivial maps such that f is close to g. Is f homotopic to g through such maps?

(QM 6) (Fibered Stability) Let E = Q be a compact ANR fibration over the
Hilbert cube such that each fiber is the Hilbert cube. Is E= E x Q by fiber-
preserving homeomorphism? A positive answer would imply that E -~ Q is a trivial
bundle. The answer is known to be affirmative if the base Q is replaced by a

polyhedron,

VIII, CMP Compactifications

A noncompact Q-manifold M admits a compactification is there cxists compact
Q-manifold NOD M suchthat N- M is a Z-setin N, Chapman-Siehenmann have
treated this problem and have succeeded in finding general algebraic conditions for
which this is true, Chapman-Ferry have gone one step further and found algebraic
conditions which quarantee that the Z-set N\M is a Q-manifold. Also, a theorem
of West has been strengthened by Torunczyk (and independently by Ferry) to read: if
X is a compact metric ANR and Ac X is a Z-set such that X\ A is a Q-manifold,
then X is also a Q-manifold, In fact, if A is closed and hazy in X, then the
assumption that X is an ANR is superfluous [see ANR].

Here is a question concerning a finite~dimensional version of the Chapman-
Siebenmann result,

(CMP 1) If K is a noncompact polyhedron, when can we add a compactum to K
to obtain an ANR?

(CMP 2) I K is a noncompact polyhedron, when is the one-point compactification
of K an ANR?

(CMP3) If E~ S1 is a locally trivial bundle with fiber F, a noncompact Q-
manifold, such that F admits a compactification, when does there exist a locally
trivial bundle E - S1 which contains E as a subbundle and such that cach fiber ’Ex is

a compact Q-manifold compactifying Ex’
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(CMP 4) The above definitions may be interpreted in terms of ANR's, Which
ANR's A admit Z-set compactifications? A necessary condition is that Q x A admits
a Z-set compactification, Therefore, A is tame at o in the sense of Chapman-
Siebenmann and the invariants % and ‘l’(Jo must vanish, Does this suffice?

Equivalent question: If the Q-manifold QX A admits a Z-set compactification,

does A admit one?

X. GA Compact Group Actions

One of the areas of greatest current interest (and frustration) in infinite-
dimensional topology concerns questions of compact metric group actions on Q or on
Q-manifolds, It is known by West's work that all compact groups can operate on !.2
with an arbitrary closed set as the set of fixed points. As noted below, it is a routine
application of covering space theory to show that every two fixed point free periodic

homeomorphisms of prime period p on £, are equivalent (i.e,, conjugates of each

other). Many interesting examples are knc?wn concerning actions on @ or on Q-
manifolds, but basic questions are still open in this latter category.

Questions of group actions on Q@ or s or on manifolds modeled on them are
quite different from those of finite~dimensional topology but examples from finite-
dimensional manifolds and polyhedra provide a rich core of building blocks. Since
each of Q and s can be represented as infinite products of copies of itself or of
other factors, group actions can be induced on the product by using actions on the
factors as explained in Examples 1,2, and 3 below., We use the result due to West that
any countable infinite product of nondegenerate Q-factors is homeomorphic to Q
together with the result of Edwards that each compact AR is a Q-factor, Thus, any
countable infinite product of compact nondegenerate AR's is homeomorphic to Q. We
also use the fact that the cone of any ANR is an AR,

An action of G on X is effective or free if for each g1+8 €G and x€ X,
81X = BoX iff B = By i.e., each orbit is full, An action is strongly semi-free if
there exists one point p fixed under all of G and G acting on X\ {p] is free, Let
Q = Q\{pt]. Since s=Qx s= QX s then actions on Q or QO can be used to
induce actions on s,

Example 1, (West) Since any compact Lie group G acts strongly semi-freely
on cone (G) by left translation on levels, we know that G acts strongly semi-freely
on the countable infinite product ﬂi (cone G) =Q and thus freely on Qo and also on
s. We call such action the standard free action on QO or s,

Example 2, Let G be any strongly semi-free actionon Q, Then G can be
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considered as acting on (cone Q) = @ with an arc T of fixed points and with the
original action on each level of the cone above the vertex., Now collapse the arc T of
fixed points to a point, Since T is a Z-set, the resultant space Q' is still homeo-
morphic to @ but the induced action on Q' has interesting invariant sets,

Example 3, For each i> 0, let Xi be a nondegenerate AR and let Gi be a
strongly semi-free group action on Xi‘ Let "i+1 be a homeomorphism of Gi+1 onto
G;. Then lim G, acts strongly semi-freely on I'IXi =Q and freely on Q, under the
coordinate defined action, Thus, for example, any solenoidal group or Canior group
can act strongly semi-freely on Q. Also, regarding the bonding maps as isomorphisms
we can induce many different looking actions of G1 on Q.

Wong has shown that any two strongly semi-free period p homeomorphisms of
@ which have arbitrarily small invariant contractible neighborhoods of the fixed point
(are trivial at the fixed point) are equivalent, This is still the fundamental known
result, It shows that the various semi-free period p examples stcmming from
Examples 2 and 3 above are equivalent,

The basic apparatus for studying free actions of finite groups on QO or s is
elementary covering space theory, Thus, for example, two Zp free actions are
equivalent if their orbit spaces are homeomorphic. For such actions on s or QO'
the orbit spaces are Eilenberg-Mac Lane spaces whose homotopy types are characterized
merely by their homotopy groups, Since all zz-manifolds (or Q-manifolds admitting
a half-open interval factor) are characterized by homotopy type, we know that any two
orbit spaces of the appropriate type are homeomorphic and hence the actions inducing
the orbit spaces are equivalent, For QO' the argument breaks down since Q-
manifolds are not, in general, characterized by homotopy types but by infinite simple
homotopy type.

West used Siebenmann's work on infinite-simple~homotopy equivalences and
Chapman's triangulations of Q-manifolds to show that for finite (or discrete countable)
G, free G-actions on QO are classified by the proper homotopy type of the orbit
spaces, D,A. Edwards and Hastings showed that (1) a Siebenmann-type Whitehead
theorem fails in the infinite-dimension situation, and (2) uniqueness of group actions
fails in pro~-homotopy theory (pro-H). It thus appears that some combination of
homotopy theory and geometry is needed to settle the uniqueness of free G-actions on
Q-

Some typical specific questions related to semi-free actions on Q are the
following, If they have negative answers, then classification duestions naturally arise.

(GA 1) For what prime p> 2 are every two period p homeomorphisms of Q
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with exactly one fixed point equivalent? A similar question about actions of nonprime
period can be posed. No counterexamples are yet known,

(GA 2) Let f:Q- Q be a homeomorphism of Q onto itself with exactly one
fixed point and with f of prime period p. Must f be trivial at x?

The concept of triviality can be extended to a periodic homeomorphism fixed on
an arbitrary contractible closed set,

If m:Y-Y is amap, let ¢(m) denote the set of fixed points of m,

(GA 3) Suppose f,g:Qx [0,1]—~ QX [0,1] are pericdic level-preserving
homeomorphisms of period p having fixed point sets ¢(f) = x X {0,1] =¢(g) for some
point x € X, Is f equivalent to g by means of a level-preserving homeomorphism
h:Qx [0,1]-QXx [0,1]?

(GA 4) What if we assume, in addition, that both f and g are trivial at x X
[0,1]?

If the above questions have affirmative answers, we may consider replacing
[0,1) by [0, 1]n or a polyhedron,

(GA5) Let K bea Z-setin Q which is homeomorphic to [0,1]“. Suppose
f,g:Q~ Q are period p homeomorphisms such that ¢(f) = K =¢(g) and both f and
g aretrivial at K. Is f equivalent to g?

When considering group actions on Q-manifolds as distinct from on Q itself the
basic questions concern conditions under which actions are factorable into an action
on a finite-dimensional manifold (or polyhedron) by an action on Q? And, if two
actions are free and factorable then we would like to know conditions under which they
are equivalent [see West (preprint) for examples of nonequivalence]. If there is an
action which is not factorable, then it involves an essential mixing of finite and infinite-
dimensional phenomena which would be interesting to identify., Note that solenodial
or Cantor group actions on Q itself are essentially I-D type actions,

Specifically we ask:

(GA 6) Under what conditions can a compact group action G on a Q-manifold
M regarded as K x Q for some polyhedron K be factored into an action on K by an
action on Q? (There are actions on S1 X Q which arise from maps rather than group
actions.)

(GA 7) Under what conditions (on M?) are two free Zp—actions on M

necessarily equivalent?

X. TD Topological Dynamics

There has so far been practically no study of flows on Hilbert cube manifolds but
many natural questions arise. Since S1 X Q is homeomorphic to ([0,1] X Q)/R for
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any homeomorphic identification R of {0} x @ with {1} x Q, any discrete flow on Q
can be canonically imbedded in a continuous flow on S1 X Q. Questions of the existence
of minimal sets and of various types of flows such as expansive flows have not yet been
studied beyond fairly obvious examples, It is not hard to show that Q itself admits

a regularly almost periodic homeomorphism which is not periodic. Also, as a countable
infinite product of itself, Q admits a shift homeomorphism,

We list two special problems as representative of the much wider class of open
problems inherent in the types of flows studied in topological dynamics.

(TD1) (a) Is S1 X Q a minimal set, i.e,, does S1 X @Q admit a discrete flow
with all orbits being dense?

Clearly, such a flow cannot be described coordinatewise as a flow on S1 Cross a
flow on Q since any discrete flow on Q has a fixed point and thus any composite flow
would have an invariant circle, An affirmative answer to (TD 1)(a) would thus require
a flow that does more than mix a flow on a finite-dimensional manifold or complex
with one on Q itself,

(b) A more general question can be asked: Is any compact Q-manifold a
minimal set?

(TD 2)(a) Does Q admit an expansive flow, i,e., is there a homecomorphism
h:Q - Q and a number €> 0 such that for each x,y € Q, x# y, there is an n,- <
n < o, for which dh"x), h"y)) > €2

it seems likely that the answer is negative since interesting flows on Q involve
some switching of coordinates and geometrically all high indexed coordinate spaces are
of small diameter, Thus, any two points must be "spread apart” during the short
time they are distinguished in only a few coordinates,

(b) A more general question can be asked: Does any compact Q-manifold admit

an expansive flow?

Xl. M Manifolds Modeled on Infinite-Dimensional Linear Spaces

The basic classification and representation theorems for manifolds modeled on
many of the infinite-dimensional linear spaces were largely done in the late 1960's by
Anderson and Schori, Henderson, West, and Chapman and supplemented by results
from infinite-dimensional differential topology.

We quote these theorems only in the Ez-manifold case, They are as follows:

(1) Two lz-manifolds are homeomorphic iff they are of the same homotopy type.

(2) M is an zz-manifold iff M=Kx LZ where K is a countable, locally-finite

simplicial complex,
3) If M is an Ez-manifold, then M can be embedded as an open subset of 22.
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In the early 1970's, Torunczyk gave a characterization of Lz-manifold factors,

(4) If X is a separable complete metric space, then X X 12 is an zz-manifold
iff X is an ANR,

These theorems motivated much of the later work on Q-manifolds, The following
problems are open, (See also (CE 9).)

(M 1) Let X be a topologically complete separable metric space,

(i) If X isan ANR, YC X isdensein X, and Y is an lz-manifold, under
what conditions can we conclude that X is an Ez-manifold? Torunczyk has proved
this result in the case that X\Y is a Z-set in X (recall that Z-sets are closed and
thus Y is open in X).

(ii) Let M be an zz-manifold, and suppose that X< M is the closure of an
open set Y, Under what conditions can we conclude that X is an lz-manifold?

Henderson has observed relative to (i) that if Z-sets are strongly negligible in
X and if X\Y is a countable union of Z-sets, then X= Y, However, it seems
difficult to verify these conditions in many naturally arising cases.

(M2) For M a separable Ez-manifold, can every homeomorphism of M onto
itself be approximated by diffeomorphisms? Burghelea and Henderson have proved
that such homeomorphisms are isotopic to diffeomorphisms,

In the following three problems we assume K and M to be zz-manifolds and
K to be a closed subset of M, Then K is said to have /ocal deficiency n at a point
p if there exist an open set U with p € U and a homeomorphism h of (-1,1)n X 1.2
onto U such that h({0} x 4,) =KNU. If K has local deficiency n at every point of
K, then we say that K has local deficiency n, Let Rc K be such that (a) R consists
of a single point, (b) R is compact, or (c) R isa Z-setin M and a Z-set in K,

(M 3) If K has local deficiency 1 at every point of K\R, does K have local
deficiency 1 for cases (a), (b) and (c) above?

(M 4) For n> 1, under what conditions does local deficiency n at every point
of K\R imply that K has local deficiency n for cases (a), (b) and (c) above? Kuiper
has given examples for n=2 where R is a single point, an arbitrary n-cell, or a

copy of £,, such that K does not have local deficiency 2, The examples involve

knots, Fgr n> 2 no examples are known,
(M 5) For n> 1, does local deficiency n imply the existence of a neighborhood
U of K such that U is the total space of a fibre bundle over K with fibre (-l,l)n?
(M6) Let M and K be 22-manifolds with KC M and K a Z-setin M, Then
K may be considered as a "boundary' of M, i.e., for any p € K there exists an open
set U in M with p€ U and a homeomorphism h of U onto 52 X (0,1) such that

hKNU) = 22 x {1}, Under what conditions on the pair (M,K) does there exist a
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homeomorphism h of M onto 12 such that the topological boundary of h(M) in 22
is h(K)? It is known that if the identity map of K into M induces a homotopy
equivalence of K and M, then the embedding is possible.

(M7) Let £:E- B be a fibre bundle over a paracompact space B with fibre
F an Lz-manifold. Suppose K is a closed subset of E such that KN £—1(b) isa
Z-set in each §-l(b). Is there a fibre-preserving homeomorphism of E\K onto E?

(M 8) Is a locally contractible complete separable metric topological group
which is not locally compact an £2—manifold?

(M9) f G is alocally contractible separable metric topological group which is
the countable union of compact finite-dimensional subsets and not locally compact, then
is G an l,f-manifold?

2
Note. No Q-manifold supports a topological group structure,

X, RQ R® and Q®-manifolds

The problems here deal with adapting the basic framework of zz-manifolds to
R® and Qm—manifolds where R® =dirlim R® and Qm = dirlim Qn, The results
are due to Heisey, ,

(RQ1) I M is an R®-manifold, is Mx R®=M? (This is true if M is an
open subset of Rm,)

(RQ 2) For M a Q®-manifold, it is known that Mx Q® =M. Are there
homeomorphisms h: M x Qm - M arbitrarily close to the projection M x Qm - M?

(RQ 3) For every Qm-manifold M is there a countable locally-finite simplicial
complex X such that M= X x Q®? What about the case for R®-manifolds?

XIII, ANR Characterizations of ANR's

Incentives for finding characterizations of ANR's are provided by Edwards' and
Torunczyk's results that products of ANR's with appropriate standard I-D spaces
are infinite-dimensional manifolds, and the fact that certain characterizations of
spaces as I-D manifolds now hinge upon whether the spaces involved are ANR's.

The following results, which give sufficient conditions for a space to be an ANR,
have recently been useful,

(i) (Haver) If X is a locally contractible metric space that can be written as a
countable union of finite-dimensional compacta then X is an ANR,

(ii) (Torunczyk) X is an ANR iff there is a space E suchthat Xx E has a
basis & of open sets such that for any finite subcollection & of 3, the intersection
NC is path-connected and all its homotopy groups are trivial,

(iii) (Kozlowski) Y is an ANR if there is an ANR X and amap f:X~ Y onto
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a dense subset of Y with the property that for every open cover ¥ of Y there exist
a homotopy ht:X-—‘X (0=t=1) and amap g:Y — X such that h0 = idx h1 = gf,
and the homotopy is limited by 1y,

The following questions are inspired by the homeomorphism group problem,

(ANR 1) If a space has a basis of contractible open neighborhoods, is it an ANR?

(ANR 1a) If a topological group has a basis of contractible open neighborhoods,
is it an ANR?

More classical are the relations of linear spaces to AR's,

(ANR 2) Is every metrizable linear space an AR?

(ANR 2a) Is every separable metrizable linear space an AR?

Problem 2a and the homeomorphism group problems have been linked to
negligibility properties,

According to Kozlowski, a subset A of X is hazy, provided the inclusion
U\A - U is a homotopy equivalence for every open subset U of X. He has shown
that a map f:X~ Y is a homotopy equivalence over every open subset of Y if and
only if f is a fine homotopy equivalence, As a corollary one has that if X\X0 is
hazy in X and X0 is an ANR, then X is an ANR,

At present, there seems to be substantially more difficulty in verifying that a
subset is hazy rather than just 1.h.n. In particular, the following questions are open,

(ANR 3) Is X\X0 hazy in X when

(a) X is a separable linear space and Xo is the linear hull of a countable
dense subset,

(b) X is the component of the identity in the homeomorphism group
H(M) of a closed PL manifold M of dimension 25 and X0 consists of all Pl~
homeomorphisms of M which are in X,

In (ANR 3a) and (3b), it is known that X\X0 satisfies a weaker negligibility
property.

A subset A of X is said to be /ocally homotopy negligible (abbrev. 1,h,n),
provided that the inclusion U\A = U is a weak homotopy equivalence for every open
set U in X, Torunczyk has shown this to be equivalent to his original definition of
Lh.n and has also shown that if X is an ANR and X\X, is 1h.n,, then X, is
an ANR. Unfortunately, the converse of this last result is false: Taylor's example
gives a CE map f:Q—- Y such that Y is not an ANR, although Y isan l.h.,n,
subset of the mapping cylinder M(f) of f (Lacher, Torunczyk) and M(f) - Y is an
ANR,



130 T. A. CHAPMAN

X1V, HS Spaces of Homeomorphisms and Mappings

Let M be a compact n-manifold; then H(M) denotes the space of homeomorphisms
on M and HB(M) denotes the subspace of H(M) consisting of those h which are the
identity on the boundary 9M (in case 3M = 0, Hy(M) = H(M)). It is known (Anderson)
that the space HB(I) is homeomorphic to s (or 22).

The following is the problem of greatest current interest involving Ez-manifolds
and is often referred to as the ""Homeomorphism Group Problem',

(HS 1) For M a compact n-manifold, is Hy(M) an 22—manifold?

Much work has been done on this problem so far with the major results being:

(1) (Geoghegan) For every manifold M of positive finite dimension, Ha(M) X
!,2 = Ha(M).

(2) (Torunczyk) If HB(M) is an ANR, then HB(M) b !&2 is an lz-manifold.

As a corollary of these results we know that HB(M) is an Ez-manifold iff HB(M)
is an ANR. Haver has given the following reduction of HB(M) being an ANR to the
problem of showing Ha(Bn) is an AR: For a given compact n-manifold M obtain a
cover of M by n-cells B? (1 £1i = p); by Edwards and Kirby there is an open

neighborhood N of the identity such that any h € N can be written as the composition

h= hp‘ . 'hl' where hi € Ha(B?), and the assignment h- (hp, v ’hl) from N into
P= n?=1“a(B?) defines a map ¢: N - P; clearly composition defines a map of an open

neighborhood G of ¢N into N, which establishes ¢ N= N as a retract of G; thus,
by Hanner's theorem, if Ha(Bn) is an AR, Ha(Mn) is an ANR,

Consequently, {HS 1) has been reduced to the following,

(HS2) Is Hy(B") (m>2) an AR?

Mason and Luke have shown that HB(M)‘ is an ANR for any compact 2-manifold
and hence HB(M) and H(M) are Lz—manifolds.

Work has also been done on PLH(M), the space of piecewise-linear homeomor-
phisms of a compact PL manifold M, Combined work of several authors, finally
explicitly stated by Keesling and Wilson, shows that PLH(M) is an zg—manifold.
Combining this'result with a theorem of Whitehead and the discussion on hazy subsets
in [ANR], the Homeomorphism Group Problem for closed PL manifolds M has been
reduced to the following,

(HS3) Let M be aclosed PL manifold of dimension at least 5, Is every open
subset of H(M) homotopically dominated by a CW complex?

Haver has studied H(M), the closure of H(M) in the space of mappings of a
compact manifold M. He has shown that H(M)\H(M) is a countable union of Z-sets

in H(M) and, hence, it follows that if H(M) is an 2,-manifold, so is H(M).
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(HS 4) Is H(M) an ANR and, hence, an L,-manifold, since Geoghegan and
Henderson have shown that H(M) X !,2 = H(M)? This would imply that H(M) is an
£2-manifold.

(HS 5) Can the elements of H(M) be continuously approximated by homeomor-
phisms, i.e., does there exist for each € >0 a map h:H(M) -~ H(M) such that

d(h,id) < €?

XV, LS Linear Spaces

In a sense, infinite-dimensional topology originated with problems posed by
Frechet and by Banach concerning the topological as distinct from the joint linear and
topological structure of linear spaces, While almost all of the originally posed
problems have been solved, several intriguing open questions exist, Bessaga,
PeYczynski and Torunczyk are probably the best sources concerning such problems,

We first list problems concerning separable spaces,

(LS 1) Is every I-D separable normed space homeomorphic to some pre-
Hilbert space, i.e., to a linear subspace (not necessarily closed) of a Hilbert space?

(LS2) Let X be an I-D separable pre-Hilbert space, Is XX R=X? Xx X
=X? X;.u =X or X*=X? The answers are probably negative for the added condition
of uniform homeomorphisms,

(LS 3) If a o-compact separable normed space E contains a topological copy
Q' of Q, is E homeomorphic to {x € 22 :Z‘i2 . xi2 < ®J}? Note that the closed convex
hull of Q' need not be compact,

(LS 4) Identify classes of subsets of .iz which are all homeomorphic to Q. The
result should be more general or in a different context than the Keller characterization
of all I-D compact convex subsets of le as homeomorphic to Q.

(LS 5) Let E be locally convex linear metric space and let X be a noncomplete
retract of E. Is X x E¥=E¥? It is known by Torunczyk that X x E* x zg = g¥x zg
and that if X is complete, then X x EY = Ew.

Some problems on nonseparable spaces are the following.

(LS 6) Is every I-D Banach space homeomorphic to some Hilbert space ?

(LS 7) For every I-D Banach space E is E= EY9 (The result is known for
Hilbert spaces.) A positive answer to this question would extend the domain of many

theorems on nonseparable spaces and manifolds which suppose E = Ew.
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