
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Small Fractional Parts of Polynomials
About this Title
Wolfgang M. Schmidt
Publication: CBMS Regional Conference Series in Mathematics
Publication Year:
1977; Volume 32
ISBNs: 978-0-8218-3880-8 (print); 978-1-4704-2392-6 (online)
DOI: https://doi.org/10.1090/cbms/032
Table of Contents
Front/Back Matter
Chapters
- Heilbronn’s Theorem
- The Heilbronn Alternative Lemma
- Vinogradov’s Lemma
- About Sums $\sum \| \xi _i \|^{-1}$
- About Sums $\sum e(\alpha n^2)$
- Proof of the Heilbronn Alternative Lemma
- Fractional Parts of Polynomials
- A General Alternative Lemma
- Sums $\sum \| \xi _i \|^{-1}$ Again
- Estimation of Weyl Sums
- What Happens if the Weyl Sums are Large
- Proof of the General Alternative Theorem
- Simultaneous Approximation
- A Reduction
- A Vinogradov Lemma
- Proof of the Alternative Lemma on Simultaneous Approximation
- On max $\| \alpha _in^2 \|$
- A Determinant Argument
- Proof of the Three Alternatives Lemma
- Quadratic Polynomials in Several Variables
- Proofs for Quadratic Polynomials