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PREFACE

Our knowledge about fractional parts of linear polynomials is fairly satisfactory.
Dirichlet’s Theorem tells us that for every a and for N > 1, there is a natural <N
with |lan| < N"l, where | -..|| denotes the distance to the nearest integer; and this
bound is best possible. Our knowledge about fractional parts of nonlinear polynomials
is not so satisfactory. In these Notes we start out with Heilbronn’s Theorem on quad-
ratic polynomials f(n) = anz, according to which there is a natural » <N with ||/(n)||
< N=1/2%_ From this we branch out in three directions. In $37-12 we deal with arbi-
trary polynomials with constant term zero. In $$13-19 we take up simultaneous approx-
imation of quadratic polynomials, and in $520, 21 we discuss special quadratic poly-
nomials in several variables. There are many open questions; in fact, most of the re-
sults obtained in these Notes are almost certainly not best possible. Since the theory
is not in its final form, I have refrained from including the most general situation, i.e.
simultaneous fractional parts of polynomials in several variables of arbitrary de:gree.l
On the other hand, I have given all the proofs in full detail, at a leisurely pace.

I wish to thank the National Science Foundation and the Illinois State University

for sponsoring this series of lectures.

Wolfgang M. Schmidt
December 1976

1For further references, covering a rather wider area, see Malyshev and Podsypanin [1974].
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L
2
(21.2) 2 s, | > N
m=1
Now with
N N
2
Am = Zle(m(alnz + Bln)), Bm = Iz_:l e(m(azl + le))
n= —
we have

S,=A,B +A +B, =A B +0N<<|A |*+|B_|*+0(N),

and therefore

L
2 (A 12 +1B |7 >> N
m
m:l

by (21.2). We may suppose without loss of generality that
L
Z lA \2 > C1N27
m=1 T

where ¢, = CI(G) > 0. We are going to apply Lemma 11A with k=2, a=a,, 8=0,
A= CINZ, and with €, in place of ¢. The condition (11.2) is true for large N since
1-€] 1+2€;  1-4€;

2-2¢ 14+2¢
1 _ lL.

N N

A >> N >N

2+€1 , . 1~ .
There is a natural ¢ < LN 1A= << LN << N' 7Y with

-2 1 _
laygll < NTA= << N7 Byl <N AT <N

€1-1

-1
For sufficiently large N we obtain ¢ < N and Halqz + ,quH << N1 , and therefore
||0L1q2 + B4l < N¢=1. Thus (20.2) is true with 7 =g, [ =0.

N~ 404 we let S be the interval

We now turn to Theorem 20B. We set I =
0<x<]I. Weapply Lemma 3A with 7>1 + 3s%¢~! to obtain a function ¥(x). If the

inequalities (20.4), (20.5) have no solution, then
S
)3 ¢<): @2 + Bn)) =0,
(71,000,m5)ER i=1
where N is the set (20.4). We may infer that

3 ¢ S > IN®,
m m
m#0

e 5 ol
(71yee.,ng)ER i=1

(21.3)

where
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With ¢, = ¢/3s?) and L = [I"'N'] we find that

l ZI:L e, S | << N* I > IU/|m)TT << NS(/L)1TT << 1 = o(IN®).

We thus obtain

L
(21.4) 21 1S, > N°
m=

as a consequence of (21.3). The summands where lSml is small compared to NSL-! give
a small contribution to the sum. Hence there is a B with NSL~! << B < N® such that

the set B of integers 1 <m < L with
(21.5) B<I|s,|<2B
has EmeBlsml >> Ns/log N, or

|B| >> N*/(B log N)-

Putting
N
Si= > e(m(ain2 + B,n))
n=1
we have
(21.6) -
. Is | < I_]l(|smi| +1).

Without loss of generality we may suppose that the subset B’ of £ consisting of m

with [S ][>0 > |Sm5|, has cardinality
(21.7) |B'| >> N°/(Blog N).

Again let b be the largest integer with 2h(h + 1) < s. We claim that for me B',

2(1-¢
1) N

1+€

(21.8) G=1,...,h).

1 1~
(1+€7)/(2( EI))SN

1S ]

1
For otherwise, we had |S_| <N, and |S_| <N T2 g <
mi1’ - mi — -

1 <'s, whence by (21.6),

—1+(1/2+2t'1)(s-b+1)< (1/2)(s+h=1)+2s€)

b
IS | <<N <N

But it is easily seen that 5 < s + 1, whence /(s + h—1) <s -2h =5 - c(s), so that

s—c(s)+2s€;
= ol

S _| <N NETEEREE) N -1 < B,

in contradiction to (21.5).
We now apply Lemma 11A with k=2, L =1, a=ma, B=mB, A= |Smil2' and
with €, in place of e. The condition (11.2) holds by (21.8). Accordingly, there is a

natural 7; with
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2+€ -
r, <N l!Smil 2
(21.9)
€1 -2
(21.10) ||aimri|| <N IS””.I .

(The assertion of Lemma 114 about |[8.m7 | will not be used.) Such an integer 7,
exists for 1 <i<h and for me€ B'. Now for me€ B' we have ‘Smll |Smb| >>
IS P75 >> BP/S. Thus if we write g = 717, tet T, We get

m b

2b+s(IB_ 2h/s
2

2(h-1 - .
g<N lamqll < NP7 DFUg=2b/s (1, b,

Such an integer g = g(m) exists for every m€ £'. The product mgq is
< LN2h+qu_2b/S. Since the number of divisors m' of mg is << Nfl, we obtain
>> l%'lN—(l >> NS—ZGIB-1 distinct products mg as m runs through 8'. There will
be two such products whose difference is a natural number

z << (NST71g-1)- 1 N?PHs€ip=2b/s

This number z will have

2(h=1 -
lozll << N¥PTIFSUg=2b/s (g ).

Thus

s 14
2p2- 2 -
2 [T llozll < = T1 ozl << NP7 72 1 p1=2htha1)/s)
i=1 =1

Since the exponent of B here is nonnegative, and since B << N°, we further obtain
g ’

—2h+252€1 2b—€+€]N-—2b+252€1 -€]

s
z [T ezl <<LN << N << N

=1

But since z is bounded by a certain power N2 of N, this is impossible for large N

in view of the condition that a,,...,a_ be not very well approximable.
S
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