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Preface

These notes parallel a series of ten lectures that I gave at the Conference Board of the
Mathematical Sciences Regional Conference in Rochester, Michigan, June 1979, sponsored by
the National Science Foundation and the Department of Mathematical Sciences, Oakland
University. I have taken the liberty of including some new results as well as some improved
arguments suggested by colleagues at the conference.

I am most grateful to Jack Tsui, Steve Wright, and the CBMS for organizing the
conference and to the National Science Foundation for its support. The facilities of Meadow
Brook Hall were elegant and conducive to the fruitful interaction of the participants. [ am also
indebted to Alain Connes, who provided me with an opportunity to prepare these lectures in
a visit at the Institut des Hautes Etudes Scientifiques. During the preceding year I had
profited from a number of conversations with him regarding his approach to geometry, some
aspects of which are reflected in Chapter 1. I also wish to thank the participants, who pro-
vided an audience that was both enthusiastic and provocatively skeptical, as well as my col-
leagues who attended a course at UCLA in which I had the opportunity to expand the lec-
ture notes.

Finally I wish to thank my collaborator and former student Chao-Liang Shen. His un-
flagging enthusiasm and ingenuity have provided considerable impetus to the further develop-
ment of dimension groups as a new mathematical discipline.

August 1980
UCLA
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More recent developments in dimension groups
A supplement to Dimensions and C*-algebras by Edward Effros
' by David Handelman

In the almost fifteen years since the expository lecture notes on Dimensions and C*-
Algebras were written by Ed Effros, there have been a large number of exciting developments.
Many of these are still in flux, and so it is impossible (or at least very frustrating for potential
readers) to give references to all the relevant work; much of it is circulating in preprint form.
Instead, I shall give the names of some of the people who are active in these areas, and hope
that those interested will contact them directly. The order of discussion of the topics (which
overlap somewhat) is not intended to be either chronological or in relative importance.

Of course, a very important and active topic relevant to dimensions and C*-algebras
is the study of inclusions of von Neumann algebras of finite index, knot theory, the Jones
polynomial and subsequent multivariable versions, etc. This is now so vast an area that it
would be impossible to do it justice in a brief discussion such as this, nor am I qualified to
present any sort of summary of it.

For a systematic development of dimension groups and their relatives, the book [G] is

a very useful reference.
Classification of simple C*-algebras. In section 10, a conjecture is made about the structure
of irrational rotation C*-algebras, namely that they can be realized as a C*-direct limit of
direct sums of matrix algebras over C(T2). In fact a much better result was established, the
culminating theorem (based on earlier work by Riedel, Choi and Elliott, and others) being
that irrational rotation algebras are direct limits over C(T) (the actual result being better
than even this), by Elliott and Evans. This is part of a much larger programme, formulated
by George Elliott, to classify simple C*-algebras.

The idea is that K-theoretic data might be enough to classify C*-algebras that are
“sufficiently non-commutative”, and in particular certain types of simple C*-algebras. A
particularly attractive class is that consisting of direct limits of matrix algebras over con-
tinuous functions on various compact Hausdorff spaces, or more generally, direct limits of
reasonable type I C*-algebras. There are at least two aspects to this problem. One is to
find reasonable invariants; the second is to be able to decide if the C*-algebra you have in
front of you belongs to this class. The initial set of invariants consists of Ky ® K; equipped
with a partial ordering (which essentially makes K into a group of infinitesimals). Since
traces need not be determined by their effect on K, there is an additional datum that is
not determined by the Grothendieck group, the natural pairing T((4)) x Ko — R, where
T(4) denotes the trace space of A. At the time of writing (according to George Elliott),
these invariants are complete for certain classes of inductive limits of matrix algebras over
spaces of finite dimension. However, there are very recent examples which show that these
invariants do not suffice for certain related inductive limits. Remarkably, it has been proved
that additonal K-theoretic invariants suffice to classify these more general limits. For a
survey of this (and a list of references), see [Ell].

Dynamical systems, part I. Shifts of finite type (aka topological Markov chains) were dis-
cussed briefly in chapter 6. Williams discovered a relatively easily computed invariant, shift
equivalence, and Krieger formalized the associated dimension group (constructed topolog-
ically) as part of a complete invariant for shift equivalence. Williams’ conjecture, that shift
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74 RECENT DEVELOPMENTS IN DIMENSION GROUPS

equivalence implies strong shift equivalence, is still open in the most important case (primi-
tive integer matrices), but is known to fail in many other situations—for example, reducible
matrices (Kim, Rousch, and Wagoner), primitive matrices with nonnegative polynomial
entries (Boyle), and others. However, it turned out that the dimension group construction
was a very useful tool in this area. Let 4 and B be primitive 0 — 1 matrices (this can be
replaced by primitive integer matrices) of sizes n(4), n(B) respectively; let (X4, T4) etc.,
be their respective shift spaces, that is, X4 = {(x;) € {1,2,...,n(4)} | A(xi,xi1) =1},
and T, is just the restriction of the bilateral shift to X4, which is an invariant subset. The
dimension group with autormophism attached to 4, namely (G4, A) is defined in section 6.
Sample theorem (one of many in [BMT, Theorem 3.2]):

If there is an onto (order preserving) group homomorphism G4 — Gp that
intertwines the order automorphisms A and B, then for all sufficiently large
m, there are one to one a.e. factor maps from (Xm, Ty=) onto (Xgm, Tgm)
(and these are given by right closing maps).

Dynamical systems, part II. Based on earlier work by Anatoly Vershik and Ian Putnam (sepa-
rately), Herman, Putnam, and Skau ([HPS]) gave a miraculous description and classification
of minimal homeomorphisms of metrizable boolean spaces. Given a Bratteli diagram for
a simple dimension group, place an ordering on the path space (essentially) so that paths
which agree except at finitely many levels are comparable, and conversely comparable paths
are cofinal. A partially defined transformation on the path space, given by sending a path to
its successor in its ordering may be extended to a homeomorphism on the path space if there
are unique minimal and maximal paths. Amazingly, every minimal homeomorphism of a
Cantor set is conjugate to one of these constructions. Moreover, they showed that two such
systems are strongly orbit equivalent if and only if the dimension groups are (unitally) order
isomorphic (two pairs of spaces with self-homeomorphisms (X, ¢) and (¥, w) are strongly
orbit equivalent if there exists a homeomorphism o X — Y —orbits are sent onto orbits—
this by itself is orbit equivalence—and the functions n X — Z and m ¥ — Z described by
ad(x) = y"Xa(x) and a~'y(y) = ¢"®a~1(y) are both continuous except possibly at
one point). Earlier work by Putnam had shown that inside the crossed product are naturally
occurring AF algebras, whose ordered Grothendieck group is that of the crossed product,
and this agrees with the dynamicists first cohomology group—except that there was no or-
dering on the latter, whereas the ordering on the K, group is essential. This also lead to
many of the classification results mentioned earlier in the section on simple C*-algebras.
This makes constructions of interesting examples relatively easy; e.g., every minimal home-
omorphism on a Cantor set is (strongly) orbit equivalent to one of entropy zero, and the
dyadic adding machine is (strongly) orbit equivalent to minimal homeomorphisms of any
entropy (including infinite).

Very recently, Giordano, Putnam, and Skau showed that orbit equivalence for these
minimal homeomorphisms is completely classified by the underlying dimensio group (Ko
of the crossed product, viewed as a unital ordered group) factored out by its subgroup of
infinitesimals. Since orbit equivalences are usually rather nasty, this is a striking result.

There has also been some work on non-minimal zero dimensional dynamical systems
from this point of view (Boyle and Handelman); for irreducible shifts of finite type, the
K, of the crossed product (viewed as an ordered group) is a complete invariant for flow
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equivalence. As a consequence, in this class of dynamical systems, orbit equivalence implies
flow equivalence, which is quite different from the minimal situation. (Still open is whether
shift equivalence implies anything better than flow equivalence of all powers of the shifts.)
Group actions. Perhaps the most striking result here was the example of Blackadar answering
in the negative one of the questions in 10.3. There exists an order two automorphism of 2°°
UHF algebra whose fixed point algebra is not AF [Bla]. In fact, the order two automorphism
can be defined on a dense subalgebra which is a direct limit of matrices over continuous
functions on the circle. This and later generalizations motivated and blended naturally into
the classification programme for simple C*-algebras.

Fack and Marechal ([FM1], [FM2]) considered actions of product type (infinite tensor
product actions) of prime order groups on UHF algebras, and showed (in effect) that these
actions were classifiable by the Kj of the crossed product (when viewed as a module over the
dual group, acting via the dual action). This was extensively generalized by Handelman and
Rossmann ([HR 1], [HR2]) to compact (not necessarily abelian) groups of automorphisms
acting on a dense nested union of finite dimensional algebras so that all the automorphisms
are approximately inner (now the Grothendieck group becomes an ordered module over
the representation ring of the group). Describing the ordering on the resulting dimension
group now leads to various probabilistic questions (e.g., [H1, H2]). In another direction,
classification of these locally definable automorphisms in the case of order 2 is a special
case of the classification of real AF C*-algebras (where we allow matrix rings over the reals,
complexes, or quaternions to appear in any combination in the direct limit). This was due
independently by Giordano [Gi], Goodearl and Handelman [GH], and Stacey [St].

Weak ergodicity. A sequence of nonnegative real matrices {4;} is weakly ergodic if for all
k, the angles between the columns of the products Ay xAN+k—1 ... Ax converges to zero
as N — oo [Se, chapter 3]. Let G be a simple dimension group given as a limit of strictly
positive matrices lim 4; Z"®) — Z"(+1)_ Then G will have a unique state if and only if the
sequence {4, } is weakly ergodic. Not much is known about weak ergodicity of sequences of
matrices, except for consequences of the Birkhoff contraction theorem (op. cit.), and it would
be useful interesting to have some perturbation results. Let us alter the usual definition of
dimension groups to have limits of finite dimensional real vector spaces (i.e., R"(") in place
of Z"()). Then assuming ¢; are bounded nonnegative real numbers, the sequence defined by

2 &;
Ai '— [8,' 2]

is weakly ergodic if and only if 3 & = oo (this is easy to check—if {4;} is a family of
commuting primitive matrices, weak ergodicity holds if and only if 3 (1 — §(4;)) = oo,
where d(A) is the ratio of the second largest absolute value of an eigenvalue to the spectral
radius); evidently, the perturbation from [2 ] has to be substantial in order to give a unique
state. However, the sequence of matrices defined by

2 172
B; = :
! [1 /201 ]
is also weakly ergodic despite the fact that the perturbation from the diagonal matrix is now
very small in most reasonable senses. Problems concerning harmonic functions on fairly
general infinite state Markov chains can often be reduced to questions on relatively small
dimension groups, and weak ergodicity results would represent a first step in attacking them.
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