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Preface 

The qualitative study of the Solutions to ordinary differential equations has had a long 
and varied history. In recent years much attention has been paid to the connections between 
the theory of these smooth "dynamical Systems" and two other areas of mathematics: er-
godic theory and Statistical mechanics on the one hand and algebraic and differential topol-
ogy on the other. 

It is the relationships between dynamical Systems and topology which these lectures 
address. This particular part of dynamical Systems dates from the work of Poincare, espe-
cially his beautiful theorem equating the Euler characteristic of a surface with the sum of the 
indices of rest points of a flow on the surface. 

In this Century the most important contributions to this area of investigation have been 
made by Marston Morse and Steve Smale. It is not possible to survey all their contributions 
in a meaningful way in this brief introduction. However, the importance of their contribu­
tions can perhaps be gauged by the number of times their names occur in the chapter titles 
of these lectures. It would be remiss however not to mention the special importance of 
Smale's paper Differentiable dynamical Systems [Sl] , not only for investigations of the type 
we consider here, but all qualitative investigation of smooth dynamical Systems. In addition 
to proving important new results, this article had a major influence on the direction of the 
whole field of dynamical Systems. Two influences merit special mention. First it emphasized 
ciassifying dynamical Systems according to the complexity of their qualitative dynamical be= 
havior, rather than, for example, the more traditional way of Classification by complexity of 
the algebraic form of the differential equation. Secondly Smale drew attention to structur-
ally stable Systems as particularly worthy of investigation and conjectured a characterization 
of them, which has subsequently been proven correct in many cases. 

The relationship between qualitative dynamics and topology is much too large an area 
to consider fruitfully in its entirety within the framework of these lectures and accordingly 
we will narrow our attention to a collection of results with a particularly homological flavor. 

The theme of these lectures is illustrated in the following diagram. 
Differential 

-^ topology Chain COmplex algebra , , , 
Dynamics * ^ , . . < >• Homology 
~ descnption EsL 

(basic sets 
and unstable 
manifolds) 
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The left-hand arrow indicates that techniques of differential topology provide a connec-
tion between unstable manifolds (which we will see often form a cell decomposition) and a 
homological description of the System at the chain complex level. The right-hand arrow re-
presents many algebraic results relating chain complex behavior with corresponding homo­
logical behavior. The bidirectionality of the arrows reflects the need, given one set of data, 
to understand what are the possibilities for the corresponding data at the other end of the 
arrow. The ultimate aim, of course, is to answer questions like, "In a given homological 
configuration, what kinds of dynamics can occur?" or "Given a dynamical configuration 
what are its homological implications?" This underlying theme recurs throughout these notes 
in many different guises, applied to many different classes of flows and diffeomorphisms. 

In choosing the topics of these lectures compatibility with this theme has been my 
first criterion. In addition I have tried not to overlap too much with previous sets of lec­
tures [B2, C, Gu, Mar, New, Sh], all of which deal with dynamical Systems. This considera-
tion and the unfortunate realization that I cannot include everything has led me to omit, for 
example, any discussion of the entropy conjecture, which has an unquestionable right to be 
in any treatise on homology and dynamical Systems. In defense of its Omission here I can 
only refer the reader to Chapter 5 of [B2]. 

Many conversations with coDeagues too numerous to mention have been invaluable 
during the preparation of these lectures. Special thanks, however, are due to Steve Batterson, 
who is responsible for the existence of these lectures, as well as some of the theorems in 
them. I also wish to thank George Francis for drawing the illustrations to Appendix B. 
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