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Preface 

These lectures are designed to provide a survey of modern intersection theory 
in algebraie geometry. This theory is the result of many mathematicians' work over 
many deeades; the form espoused here was developed with R. MaePherson. 

In the first two chapters a few epsisodes are selected from the long history of 
intersection theory which illustrate some of the ideas which will be of most concern 
to us here. The basic construction of intersection products and Chern classes is 
described in the following two chapters. The remaining chapters contain a sampling 
of applications and refinements, including theorems of Verdier, Lazarsfeld, Kempf, 
Laksov, Gillet, and others. 

No attempt is made here to State theorems in their natural generality, to provide 
complete proofs, or to cite the literature carefully. We have tried to indicate the 
essential points of many of the arguments. Details may be found in [16]. 

I would like to thank R. Ephraim for organizing the Conference, and C. Ferreira 
and the AMS staff for expert help with preparation of the manuscript. 

Preface to the 1996 printing 

In this revision, we have taken the opportunity to correct some errors and 
misprints. In addition, a section of notes has been added, to point out some of the 
work that has been done since the first edition was written that is closely related to 
ideas discussed in the text. Superscripts in the text refer to these notes. As in the 
text, no attempt is made to survey the large and growing literature in intersection 
theory. 

I am grateful to Jeff Adler for preparing and improving the manuscript and 
diagrams. 

William Fulton 
Chicago, IL 
December, 1995 
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1. (ñ. 5) For a description of the interseetion ring of the spaee of eomplete 
quadries, see 

C. De Coneini and C. Procesi, Complete Symmetrie varieties, IL Intersee
tion theory, in Algebraic Groups and Related Topics, Advanced Studies in 
Pure Math., vol. 6, North-Holland, 1985, pp. 481-513. 

The Chow ring of these varieties is still only partially understood. 

2. (pp. 20, 69) An elementary construetion of this fundamental elass, follow-
ing [23], is given in Appendix Â of 

W. Fulton, Young tableaux, with applieations to representation theory and 
geometry, Cambridge University Press, to appear. 

3. (p. 23) Grothendieck had proved this in [10] under the weaker assumption 
that Å is an affine bündle over X. Gillet proved it with no group acting on the 
bündle, in 

H. Gillet, Riemann-Roch theorems for higher algebraic Ê-theory, Advances 
in Math. 40 (1981), 203-289. 

For an application to a stronger Splitting principle for Chow groups, see the second 
reference in Note 10. 

4. (p. 33) For more along these lines, see 

R. Smith and R. Varley, Singularity theory applied to Q-divisors, Springer 
Lecture Notes in Mathematics 1479 (1991), 238-257. 

5. (p. 39) Another proof of this functoriality can be found in 

A. Vistoli, Interseetion theory on algebraic Stacks and on their moduli 
Spaces, Invent. Math. 97 (1989), 613-670. 

6. (p. 41) Although Computing Chow groups and rings of general smooth pro-
jeetive varieties remains a very hard problem, there are now many more varieties 
about which something is known. Á careful survey of this could take a volume by 
itself. Here is a small sampling of references: 
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Á. Beauville, Sur Vanneau de Chow d'une variete abelienne, Math. Annalen 
273 (1986), 647-651. 

G. Ellingsrud and S. A. Str0mme, On the Chow ring of á geometric quo-
tient, Ann. of Math. 130 (1989), 159-187. 

A. Collino and W. Fulton, Intersection rings of Spaces of triangles, Mem. 
Bull. Soc. Math. France 117 (1989), 75-117. 

C. Faber, Chow rings of moduli Spaces of curves. I. The Chow ring of 
M 3 ; IL Some results on the Chow ring o /M 4 , Ann. of Math. 132 (1990), 
331-419, 421-449. 

G. Ellingsrud and S. A. Str0mme, Towards the Chow ring of the Hubert 
scheme o/P2 , J. Reine Angew. Math. 441 (1993), 33-44. 

S. Keel, Intersection theory of moduli space of stable n-pointed curves of 
genus zero, Trans. Amer. Math. Soc. 330 (1992), 545-574. 

K. H. Paranjape, Cohomological and cycle-theoretic Connectivity, Ann. of 
Math. 139 (1994), 641-660. 

W. Fulton, R. MacPherson, F. Sottile, and B. Sturmfels, Intersection theory 
on spherical varieties, J. Alg. Geom. 4 (1995), 181-193. 

Many other calculations of Chow groups are contained in other papers mentioned 
elsewhere in these notes. 

7. (p. 44) For higher degrees, it is still the case that only a few of these numbers 
are known. For some modern work on this, see 

P. Aluffi, The enumerative geometry of plane cubics I: smooth cubics, Trans. 
Amer. Math. Soc. 317 (1990), 501-539. 

S. Kleiman and R. Speiser, Enumerative geometry of nonsingular plane cu
bics, in Algebraic Geometry: Sundance 1988, Contemp. Math. 116 (1991), 
85-113. 

8. (p. 50) These formulas are now special cases of a general formula for degen-
eracy loci of maps between two bundles with flags of subbundles. There is such a 
locus for each permutation, and the corresponding formula is given by the corre-
sponding "double Schubert polynomial" of Lascoux and Schützenberger. The proof 
of the general formula is easier than those described here, in that it requires only a 
knowledge of P^bundles in place of the calculations of Gysin formulas. For details, 
see 

W. Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal 
formulas, Duke Math. J. 65 (1992), 381-420. 

9. (p. 51) For this, see 

P. Pragacz, Cycles of isotropic subspaces and formulas for Symmetrie de
generacy loci, in Topics in Algebra, Banach Center Publications, vol. 26, 
part 2, 1990, pp. 189-199. 
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10. (ñ. 52) As in Note 8, these formulas have become part of a more general 
story of degeneracy loci. For each of the classical groups, there is such a locus for 
each element in the corresponding Weyl group. For this, see 

W. Fulton, Determinantal formulas for orthogonal and symplectic degen
eracy loci, to appear in J. Diff. Geom. 

W. Fulton, Schubert varieties in flag bundles for the classical groups, to ap
pear in Proceedings of Conference in Honor of Hirzebruch 's 65th Birthday, 
Bar Ilan, 1993, Amer. Math. Soc. 

P. Pragacz and J. Ratajski, Formulas for Lagrangian and orthogonal de
generacy loci; the Q-polynomials approach, preprint. 

The second reference includes the deduction of the general case from the case 
when L is a Square; as Totaro points out, this deduction is not as simple as had 
been thought, since there is no "squaring principle" for line bundles that includes 
2-torsion. 

11. (p. 54) In case one is intersecting with divisors in one linear System, it is 
possible to find a further refinement of these intersection products, at a possible 
cost of extending the ground field. For the strongest results in this direction, see 

L. van Gastel, Excess intersections and á correspondence principle, Invent. 
Math. 103 (1991), 197-211. 

Vogel and his coauthors have continued to study the refinements of Bezout's theo-
rem. For example, see 

H. Flenner and W. Vogel, Improper intersections and á converse to Bezout's 
theorem, J. of Algebra 159 (1993), 460-476. 

In case the ambient variety is projective space, the paper of van Gastel includes 
an explanation of how to translate between the constructions of Vogel and the 
intersection theory described in this book. 

12. (p. 55) In fact, all of the conics can be real! We discovered this in 1986, but 
did not publish a proof. Recently a detailed proof has been given: 

F. Ronga, A. Tognoli, and T. Vust, The number of conics tangent to five 
given conics: the real case, preprint. 

F. Sottile, in his 1994 University of Chicago PhD thesis, proved analogous results 
for intersections of Schubert cycles in any Grassmannian of lines in any projective 
space. The methods in all cases are by explicit deformations. It is intriguing 
to speculate about how general this phenomenon is, when the problem is one of 
counting how many figures of some kind have a given position with respect to some 
given general figures. 

13. (p. 56) The general case of this has now been proved: 
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S. Kleiman, J. Lipman, and B. Ulrich, The source double-point cycle of á 
finite map of codimension one, in Complex Projective Geometry, London 
Math. Soc. Leeture Note Series 179 (1992), 199-212. 

14. (p. 57) For more about multiple point formulas, see 

S. Kleiman, Multiple point formulas I: iteration, Acta Math. 147 (1981), 
13-49. 

S. Kleiman, Multiple point formulas II: the Hubert scheme, in Enumerative 
Geometry (Sitges, 1987), Springer Leeture Notes in Math. 1436 (1990), 
101-138. 

15. (p. 61) For a generalization, see 

W. Fulton, Positive polynomials for filtered ample vector bundles, Amer. J. 
Math. 117 (1995), 627-633. 

16. (p. 68) For a deduetion of the Singular case from the nonsingular case, see 

B. Angeniol and F. El Zein, Theoreme de Riemann-Roch par desingularis-
ation, Bull. Sei. Math. France 116 (1988), 385-400. 

17. (pp. 68, 74) P. Roberts has used these ideas, especially the graph construc-
tion, to prove part of a conjecture of Serre about the vanishing of the intersection 
number in local algebra: 

P. Roberts, Local Chem characters and intersection multiplicities, in Al-
gebraic Geometry, Bowdoin 1985, Proc. Sympos. Pure Math. 46 part 2, 
Amer. Math. Soc, 1987, pp. 389-400. 

An independent proof was also given by Gillet and Soule using ÜT-theory and Adams 
Operations: 

H. Gillet and C. Soule, Intersection theory using Adams Operations, Invent. 
Math. 90 (1987), 243-277. 

More on the graph construetion can be found in: 

H. Gillet and C. Soule, An arithmetic Riemann-Roch theorem, Invent. 
Math. 110 (1992), 493-543. 

18. (p. 70) There has been considerable progress on the relations between cycles 
and intermediate Jacobians. For example: 

C. Voisin, Une approche infinitesimal du theoreme de H. Clemens sur les 
cycles dJune quintique generale de P4 , J. Algebraic Geometry 1 (1992), 
157-174. 

M. Nori, Algebraic cycles and Hodge-theoretic Connectivity, Invent. Math. 
111 (1993), 349-373. 
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Í . Suwa, Sur Vimage de Vapplication d'Abel-Jacobi de Bloch, Bull. Sei. 
Math. France 116 (1988), 69-101. 

H. Esnault and M. Levine, Surjectivity of cycle maps, in Journees de 
Geometrie Algebrique d'Orsay, Asterisque 218 (1993), 203-216. 

19. (p. 72) Totaro has shown by examples why this cannot exist in general: 

B. Totaro, Chow groups, Chow cohomology, and linear varieties, to appear 
in J. Alg. Geom. 

20. (p. 73) Kleiman and Thorop have given some variations on this theme, in 
section 3 of 

S. Kleiman, Intersection theory and enumerative geometry; á decade in 
review, Proc. Symp. Pure Math. Amer Math Soc. 46 (2), 1987, pp. 321-
370. 

Practical methods for calculating these groups have also been given: 

S. Kimura, Fractional intersection and bivariant theory, Communications 
in Algebra 20 (1992), 285-302. 

Kimura's paper also explains how rational intersection numbers for curves on nor
mal surfaces can be interpreted by means of these operational Chow cohomology 
groups. For another approach to Chow cohomology, see 

A. Susiin and V. Voevodsky, Relative cycles and Chow sheaves, preprint. 

21. (p. 74) There has been some progress on this question: 

G. Barthel, J.-P. Brasselet, K.-H. Fieseier, O. Gabber, and L. Kaup, Releve-
ment de cycles algebriques et homomorphismes associes en homologie d'in
tersection, Ann. of Math. 141 (1995), 147-179. 

22. (p. 74) This development has taken place and is continuing. Á general theory 
has been developed: 

H. Gillet and C. Soule, Arithmetic intersection theory, Inst. Hautes Etudes 
Sei. Publ. Math. 72 (1991), 94-174. 

For a survey, with references, see 

C. Soule, D. Abramovich, J.-F. Burnol, and J. Kramer, Lectures on Arakelov 
Geometry, Cambridge Studies in Advanced Mathematics, vol. 33, Cam
bridge University Press, 1992. 
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These notes have only deseribed some reeent work in interseetion theory as it 
relates to topies discussed in the book. There have also been several important 
developments that go well beyond what was envisioned in 1984. We mention only 
a few of these5 with a small sampling of referenees: 

Bloeh's higher Chow groups, and relations to higher i^-theory and Beilinson's reg-
ulator: 

S. Bloch, Algebraic cycles and higher Ê-theory, Adv. in Math. 61 (1986), 
267-304. 

C. Deninger, The Beilinson conjectures, in L-functions and Arithmetic 
(Durham, 1989), London Math. Soc. Lecture Note Series 153 (1991), 173-
209. 

H. Esnault and E. Viehweg, Deligne-Beilinson cohomology, in Beilinson's 
Conjectures on Special Values of L-functions, Perspectives in Mathematics, 
vol. 4, Academic Press, 1988, pp. 43-92. 

Motives and Chow groups: 

J.-P. Murre, On the motive of an algebraic surface, J. Reine Angew. Math. 
409 (1990), 190-204. 

U. Jannsen, Motivic sheaves and filtrations on Chow groups, in Motives 
(Seattle WA 1991), Proc. Sympos. Pure Math. 55, part 1, 1994, pp. 245-
302. 

V. Voevodsky, Triangulated categories of motives over á field, preprint. 

Á theory, based on homotopy groups of Chow varieties, called Lawson homology, 
that interpolates between ordinary homology and Chow groups of algebraic vari
eties: 

H. B. Lawson, Algebraic cycles and homotopy theory, Ann. of Math. 129 
(1989), 253-291. 

E. M. Friedlander and H. B. Lawson, Á theory of algebraic cocycles, Ann. 
of Math. 136 (1992), 361-428. 

Interseetion theory on moduli spaces, especially as influenced by physics: 

E. Witten, Two-dimensional gravity and interseetion theory on moduli 
space, in Surveys in Differential Geometry (Cambridge, MA, 1990), Lehigh 
Univ., 1991, pp. 243-310. 

M. Kontsevich, Interseetion theory on the moduli space of curves, Funct. 
Anal, and Appl. 25 (1991), 123-129. 

E. Looijenga, Interseetion theory on Deligne-Mumford compactifications 
(after Witten and Kontsevich), Seminaire Bourbaki, Exp. 768, 1992-93, 
Asterisque 216 (1993), 187-212. 

Quantum cohomology, with applications to enumerative geometry: 

M. Kontsevich and Yu. Manin, Gromov- Witten classes, quantum cohomol
ogy, and enumerative geometry, Comm. Math. Phys. 164 (1994), 525-562. 

P. Di Francesco and C. Itzykson, Quantum interseetion rings, preprint. 
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W. Fulton and R. Pandharipande, Notes on stable maps and quantum co-
homology, preprint. 

Kleiman and Thorup (see Note 20) defined the notion of an Alexander scheme. The 
Chow groups of such a variety, at least after tensoring with Q, have a natural ring 
structure. These are now quite well understood: 

A. Vistoli, Alexander duality in intersection theory, Compositio Math. 70 
(1989), 199-225. 

S. Kimura, On the characterization of Alexander schemes, Compositio 
Math. 92 (1994), 273-284. 

Most of the intersection theory described here has been extended to Deligne-
Mumford Stacks: See Vistoli (Note 5) and 

H. Gillet, Intersection theory on algebraic Stacks and Q-varieties, J. Pure 
and Appl. Algebra 39 (1984), 193-240. 

Finally—with apologies to the many whose papers should be included in such a 
list—a few other papers that may be of interest to readers of these notes: 

S. Bloch, M. P. Murthy, and L. Szpiro, Zero-cycles and the number of 
generators of an ideal, Mem. Soc. Math. France 38 (1989), 51-74. 

J.-P. Demailly, Monge-Ampere Operators, Lelong numbers and intersection 
theory, Complex Analysis and Geometry, Plenum, 1993, pp. 115-193. 

S. Keel, Intersection theory of linear embeddings, Trans. Amer. Math. Soc. 
335 (1993), 195-212. 

X. Wu, Residual intersections and some applications, Duke Math. J. 75 
(1994), 733-758. 

P. Aluffi, Singular schemes of hyper surfaces, preprint. 
There have been many interesting and important papers on enumerative goemetry 
besides those mentioned in these notes. Some of these can be found in Kleiman's 
survey in Note 20, but it would take another volume to describe thje work in this 
area during the succeeding decade. 
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