Gilles Pisier

FACTORIZATION OF LINEAR OPERATORS AND GEOMETRY OF BANACH SPACES

supported by the national science foundation
published by the american mathematical society
Conference Board of the Mathematical Sciences
REGIONAL CONFERENCE SERIES IN MATHEMATICS

supported by the
National Science Foundation

Number 60

FACTORIZATION OF LINEAR OPERATORS
AND GEOMETRY OF BANACH SPACES

Gilles Pisier

Published for the
Conference Board of the Mathematical Sciences
by the
American Mathematical Society
Providence, Rhode Island
Expository Lectures
from the CBMS Regional Conference
held at the University of Missouri-Columbia
June 25–29, 1984

Research supported in part by National Science Foundation Grant DMS 84-01302.
1980 Mathematics Subject Classifications (1985 Revision). Primary 46B99, 47B10,
46M05; Secondary 46B30, 46J15, 46C99, 46L30.

Library of Congress Cataloging-in-Publication Data
Pisier, Gilles, 1950—
Factorization of linear operators and geometry of Banach spaces.
(Regional conference series in mathematics; no. 60)
“Lectures presented at the NSF-CBMS regional conference, University of Missouri-
Columbia, June 25–29, 1984”—
Includes bibliographies.
1. Linear operators. 2. Factorization of operators. 3. Banach spaces. I. Conference
Board of the Mathematical Sciences. II. Title. III. Series.
QA1.R33 no. 60 510s [515.7’246] 81-18605
[QA329.2]

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting
for them, are permitted to make fair use of the material, such as to copy an article for use in teaching
or research. Permission is granted to quote brief passages from this publication in reviews, provided the
customary acknowledgment of the source is given.
Republication, systematic copying, or multiple reproduction of any material in this publication
(including abstracts) is permitted only under license from the American Mathematical Society. Requests
for such permission should be addressed to the Executive Director, American Mathematical Society, P.O.
Box 6248, Providence, Rhode Island 02940.
The owner consents to copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright
Law, provided that a fee of $1.00 plus $.25 per page for each copy be paid directly to the Copyright
Clearance Center, Inc., 21 Congress Street, Salem, Massachusetts 01970. When paying this fee please
use the code 0160-7642/86 to refer to this publication. This consent does not extend to other kinds of
copying, such as copying for general distribution, for advertising or promotion purposes, for creating
ew collective works, or for resale.

Copyright ©1986 by the American Mathematical Society. All rights reserved.
Reprinted with corrections 1987
Printed in the United States of America
The American Mathematical Society retains all rights
except those granted to the United States Government.
The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability. ☭
FACTORIZATION OF LINEAR OPERATORS
AND GEOMETRY OF BANACH SPACES
This page intentionally left blank
Contents

Introduction vii

Chapter 0. Preliminary Results and Background 1
- a. General notation 1
- b. An introduction to tensor products. The approximation property. Nuclear operators 2
- c. Local reflexivity 6

Chapter 1. Absolutely Summing Operators and Basic Applications 9
- a. Absolutely summing operators 9
- b. Applications to Banach spaces 16
- c. An introduction to duality theory. Integral operators 18
 Notes and references 19

Chapter 2. Factorization through a Hilbert Space 21
- a. Operators factoring through a Hilbert space 21
- b. A duality theorem 25
 Notes and references 30

Chapter 3. Type and Cotype. Kwapien's Theorem 31
- a. Type and cotype. Definitions 31
- b. Kwapien's theorem 32
- c. Supplementary results 34
- d. Type and cotype and the geometry of Banach spaces 38
 Notes and references 40

Chapter 4. The “Abstract” Version of Grothendieck's Theorem 41
- a. The factorization theorem 41
- b. An application to harmonic analysis 49
 Notes and references 51
Chapter 5. Grothendieck’s Theorem 53
 a. Preliminaries. Localization techniques. \(L_p \)-spaces 53
 b. Operators on \(C(K) \)-spaces 54
 c. Operators on \(L_1 \)-spaces 57
 d. Cotype 2 spaces and absolutely summing operators 62
 e. Best constants. Krivine’s proof 64
 f. A proof of G.T. using harmonic analysis 68
 Notes and references 69

Chapter 6. Banach Spaces Satisfying Grothendieck’s Theorem 71
 a. G.T. spaces 71
 b. G.T. spaces of cotype 2 73
 c. Quotients of \(L_1 \) by a reflexive subspace 78
 d. Bourgain’s theorem on \(L_1/H^1 \) 83
 Notes and references 86

Chapter 7. Applications of the Volume Ratio Method 89
 Notes and references 95

Chapter 8. Banach Lattices 97
 a. The Banach lattice version of G.T. 97
 b. Ultraproducts. Factorization through an \(L_p \)-space 101
 c. Local unconditional structure. The Gordon-Lewis property 104
 d. Examples of Banach spaces without l.u.st. 108
 e. Finite-dimensional spaces with extreme l.u.st. constants 113
 f. G.T. spaces with unconditional basis 114
 g. Infinite-dimensional Kašin decompositions 114
 Notes and references 118

Chapter 9. C*-Algebras 119
 a. The noncommutative version of G.T. 119
 b. Applications 130
 Notes and references 132

Chapter 10. Counterexamples to Grothendieck’s Conjecture 135
 a. Outline of the construction 135
 b. Extensions of a Banach space 137
 c. The construction 140
 d. Particular cases of the conjectures 145
 e. Some open problems 146
 Notes and references 147

References 149
Introduction

In 1956 Grothendieck published a fascinating paper entitled Résumé de la théorie métrique des produits tensoriels topologiques. This paper, which is now referred to as “the Résumé”, has had a considerable influence on the development of Banach space theory since 1968. It contained a general theory of tensor norms on tensor products of Banach spaces, described several operations to generate new tensor norms from some known ones, and studied the duality theory of these norms. But the highlight of the Résumé is a result that Grothendieck called “the fundamental theorem of the metric theory of tensor products” and which is now called Grothendieck’s theorem (or sometimes Grothendieck’s inequality). Among its many consequences, it implies that every bounded operator from L_∞ into L_1 factors through L_2. This theorem remained practically unnoticed until 1968, when Lindenstrauss and Pełczyński revived it and gave a detailed proof (cf. [L-P]). Although there are now numerous simple proofs of this theorem (cf. e.g. Chapter 5), it remains a nontrivial result.

The aim of the present lecture notes is to describe the contributions made since 1968 in the directions opened by the Résumé. Although our title is very general, we will limitate ourselves to the work which is directly related to the questions raised in Grothendieck’s paper. The Résumé ends with a list of six problems with comments on each of them. Thanks to the considerable progress achieved in Banach space theory in the last 15 years, these problems are now all solved (except perhaps for the exact value of the Grothendieck constant), and these lecture notes will include the various results which led to their solution. These six problems are actually all linked together and related to several central questions. To summarize simply the contents of these notes, we might say that they revolve around the following questions: When does an operator $u : X \to Y$ (between two Banach spaces) factor through a Hilbert space? For which spaces X, Y does this happen for all operators u? We will examine the particular case of operators defined on a Banach lattice, a C^*-algebra, or the disc algebra and H^∞.

The topics that we cover have many connections or applications outside Banach space theory, and we hope that they will have even more in the future. With this in mind, we have tried to make this material accessible to nonspecialists, so that our redaction is usually quite detailed and self-contained. For the same
reason, we have deliberately kept to a minimum the use of the duality theory via
the trace, since we feel that this might turn off the readers who are not familiar
with it. Nevertheless, we urge the readers who want to go deeper in the theory to
get acquainted with the principles of this duality (cf. [P1 or Pe4]). We should
mention that our restricted selection has left out several important topics. We
refer to [P1] for the general theory of operator ideals which was developed by
Pietsch and his school since the late sixties. The characterization of L_p-spaces (or
subspaces of L_p or subspaces of quotients of L_p) by operator theoretic properties
is a major omission. For this, we refer the reader to the beautiful paper of
Kwapień [Kw3] and to its references. Also, the factorization theorems of Maurey
(and the important work of Rosenthal [R2]) are not included here; we refer the
reader to [M1]. We do discuss, however, the general theory of type and cotype,
but briefly and without proofs. We will be mainly concerned here with type 2 or
cotype 2. In general, we have concentrated on the problem of factoring an
operator through L_2, and we have left out the natural extensions for the
factorization through L_p. In our exposition, we will come across most of the line
of investigation which forms the so-called local theory of Banach spaces—i.e., the
study of Banach spaces by finite-dimensional methods. We have tried to indicate
in the references, as often as possible, the ramifications of this currently very
active area.

Let us now review the contents of these notes. In Chapter 0, we introduce the
projective and injective tensor products and the approximation property (in short
A.P.). Among the six problems at the end of the Résumé, the first and most
famous one was the approximation problem: Does every Banach space possess
the A.P.? Enflo [E] gave a counterexample in 1972, which opened a new era in
functional analysis.

In Chapter 0, we have insisted on the necessary distinction between nuclear
operators and elements of the projective tensor product, which is essential in
Chapter 10.

In Chapter 1, we present in detail the basic theory of p-summing operators and
its first applications to Banach space theory: For every n-dimensional subspace E
of a space X, there is a projection $P: X \to E$ such that $\|P\| \leq \sqrt{n}$ and an
isomorphism $T: l_2^n \to E$ such that $\|T\|\|T^{-1}\| \leq \sqrt{n}$.

In §6, we briefly introduce p-integral operators and some rudiments of duality
theory, but this is not used in the sequel. We note in passing that the Radon-
Nikodým property (which is crucial to compare integral and nuclear operators) is
not discussed at all here; we refer the reader to [D-U] for this topic. In Chapter 2,
we give the Lindenstrauss-Pelczyński criterion for an operator to factor through a
Hilbert space. This can be viewed as an application of the Hahn-Banach theorem
provided a certain duality theorem is explicitied; we do this in §2.b. In Chapter 3,
we introduce the notions of type and cotype and prove Kwapień’s theorem that
every space of type 2 and of cotype 2 is isomorphic to a Hilbert space. The theory
of type and cotype provides a useful scale to measure how close a given space is
from a Hilbert space. We briefly review the main points of this theory in §3.3 (we use only the extreme cases of type 2 or cotype 2 in the sequel). In Chapter 4, we prove a factorization theorem which links Kwapieński’s theorem and Grothendieck’s theorem: If X^* and Y are of cotype 2, then every approximable operator from X into Y factors through a Hilbert space. This result plays a crucial rôle in the construction of Chapter 10. As an application, in §4.b, we show that Sidon sets in the dual of a compact Abelian group G are characterized by the fact that they span a cotype 2 space in $C(G)$. This generalizes an earlier result of Varopoulos [VI]. In Chapter 5, we concentrate on Grothendieck’s theorem, which we abbreviate G.T. Chapter 5 contains at least four proofs of that theorem. In §5.a, we briefly introduce L_p-spaces (there is more information in §§8.b and 8.c). We are mainly concerned here with the cases $p = 1$ and $p = \infty$. This allows us to state and prove G.T. in the framework of [L-P]: Every operator from an L_1 space into an L_2 space is 1-summing. This is proved in §5.c. In §5.b we give the (somewhat dual) formulation about operators defined on a $C(K)$-space or on an L_∞-space. We tried to give explicitly all the various forms in which the theorem can be used, and we distinguished carefully between the easy part (which we call the “little G.T.”) and the more delicate part of this theorem. We first give a proof derived from the more “abstract” result of Chapter 4, but §5.d contains another proof, more direct and of independent interest.

In §5.3, we include Krivine’s proof of G.T., which gives the best known upper bound for the constant K_G. In problem 3 in the Résumé, Grothendieck asked for the exact value of various constants (see 5.3 for details); this is the only problem which is not completely solved (but of course, it is probably the least important one!). In 5.f, we give a very quick proof of G.T., based on a property of the space H^1, due to Pelczyński and Wojtaszczyk.

In Chapter 6, we study the Banach spaces satisfying G.T., which we call G.T. spaces. We include several characterizations of these spaces, but we insist more on the a priori smaller class of G.T. spaces of cotype 2. The latter enjoys nicer stability properties and includes all the known examples of G.T. spaces. In 6.c, we show that if R is a hilbertian (or, more generally, a reflexive) subspace of L_1, then L_1/R is a G.T. space of cotype 2.

We come here to problem 5 in the Résumé. A stronger formulation of this problem was given by Lindenstrauss and Pełczyński, who asked whether the \mathcal{L}_1-spaces are the only spaces satisfying G.T. The above result of 6.c (due to Kisliak and the author) gives a negative answer to this question (and a fortiori to problem 5) since the quotients L_1/R are never \mathcal{L}_1-spaces when R is a reflexive infinite-dimensional subspace of L_1.

It is rather easy to give concrete examples of hilbertian subspaces of L_1: for example, the span of the Rademacher functions. However, it is more delicate to produce “very large” such spaces. For this purpose, we present in Chapter 7 a method based on volume estimates which yields an orthogonal decomposition of $l_1^{2^n}$ into two parts which are uniformly (with respect to n) isomorphic to l_2^n. This
result originates in the work of Kašin, but the method was developed in [Sz2] and
[S-T].

We also give in §8.g an infinite-dimensional version of this decomposition, obtained recently by Krivine.

In Chapter 8, we turn to Banach lattices and start by a reformulation of G.T. in this context. In 8.b, we introduce ultraproducts with several simple illustrative applications. Problem 2 in the Résumé asked whether a specific property (involving tensor norms) was always satisfied. This was answered negatively by Gordon-Lewis [G-L1]. Their paper showed that this property (now called the G.L. property) provides a useful criterion to decide whether or not a given space is isomorphic to a Banach lattice (or more generally to a space with l.u.st.). This is the subject of 8.c; in 8.d, we show that, for \(p \neq 2 \), the Schatten classes \(C_p \) do not have the G.L. property (cf. [G-L1, Se]). Many more spaces without l.u.st. are now known. Moreover, one can construct, for any \(n \), an \(n \)-dimensional space with l.u.st. constant greater than \(\delta \sqrt{n} \), for some \(\delta > 0 \) independent of \(n \). This “worst possible” case can be exhibited in 8.e very quickly (following [F-K-P]), using Chapter 7. In §8.g, we show (following [L-P]) that an atomic Banach lattice which satisfies G.T. must be isomorphic to \(l_1(\Gamma) \) for some set \(\Gamma \).

In Chapter 9, we present the \(C^* \)-algebraic version of G.T., as conjectured by Grothendieck. Here we mainly follow [Pi7] and Haagerup’s work [H1]. This was problem 4 in the Résumé. In §7.b, we discuss (without proofs) several applications of these results to the theory of derivations and representations of \(C^* \)-algebras (cf. [Bu, C1, C2, H2, H3]).

Finally, in Chapter 10, we construct (following [Pi10]) several Banach spaces \(X \) such that \(X \otimes X = X \otimes X \). This gives a negative solution to the sixth and last problem in the Résumé. Grothendieck conjectured there that this could happen only in the finite-dimensional case. The reader who has reached this point will be rewarded to find that all the results used in the construction have been included (with complete proofs) in the preceding chapters (mainly in Chapters 4, 7 and 6.c).

Each chapter is followed by a notes and references section where the reader will find the credits for the corresponding results, as well as some additional comments. In general, we give references in the text itself for the statements which we quote without proof.

ACKNOWLEDGMENTS. This is an expanded version of lectures delivered at the C.B.M.S. Conference held in June 1984 at the University of Missouri-Columbia. It gives me great pleasure to have this occasion to thank the organizers of this meeting and, in particular, Elias Saab. I am also very grateful to Nigel Kalton for his help with the manuscript. I am grateful to P. Wojtaszczyk and U. Haagerup for helpful editorial comments. I would like to thank also Karen Robinson, DeAnna Walkenbach, Karen Brewer, Susan Freie, Suzy Cook, and Regina Teson for their typing of the preprint version.
References

[C3] ———, Similarities of Π_1 factors with property Γ, Kopenhagen, 1984 (preprint).

...spaces, of spaces.

A. spaces, analytic. J.

5 of example. Probability, lattices inequalities the, associated Minkowski roughly, d approximation, Canad of d subspaces of 3 n, and the metric algorithm, convex Banach. the o subspaces a non l, y d Minkowski the theory, almost, J between n of d conjecture, n in the Littlewood An, nuclear, forms s, d C*-algebras, Schur s t.

5 theorem. finite uniformly compactum Paley for with, n Finite spaces, d spherical local tensoriels Grothendieck.

REFERENCES

[H5] , An example of a non nuclear C*-algebra which has the metric approximation, Invent. Math. 50 (1978), 279–293.

REFERENCES

REFERENCES

[R3] ______. A characterization of c_0 and some remarks concerning the Grothendieck property, Longhorn Notes, Univ. of Texas, Functional Analysis Seminar 82/83, pp. 95–108.

REFERENCES

