Mogens Flensted-Jensen

ANALYSIS ON NON-RIEMANNIAN
SYMMETRIC SPACES

supported by the national science foundation
published by the american mathematical society
ANALYSIS ON NON-RIEMANNIAN SYMMETRIC SPACES
This page intentionally left blank
Conference Board of the Mathematical Sciences
REGIONAL CONFERENCE SERIES IN MATHEMATICS

supported by the
National Science Foundation

Number 61

ANALYSIS ON NON-RIEMANNIAN
SYMMETRIC SPACES

Mogens Flensted-Jensen

Published for the
Conference Board of the Mathematical Sciences
by the
American Mathematical Society
Providence, Rhode Island
Expository Lectures
from the CBMS Regional Conference
held at the University of Georgia
June 18–22, 1984

This conference was supported in part by National Science Foundation Grant DMS-8403741.

Library of Congress Cataloging in Publication Data
Flensted-Jensen, Mogens, 1942–
Analysis on non-Riemannian symmetric spaces.
(Regional conference series in mathematics, ISSN 0160-7642; no. 61)
Bibliography: p.
1. Symmetric spaces. I. Title. II. Series.
QA649.F55 1986 515'.2433 85-30694
ISBN 0-8218-0711-0 (alk. paper)

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Executive Director, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940.

The owner consents to copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that a fee of $1.00 plus $.25 per page for each copy be paid directly to the Copyright Clearance Center, Inc., 21 Congress Street, Salem, Massachusetts 01970. When paying this fee please use the code 0160-7642/86 to refer to this publication. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotion purposes, for creating new collective works, or for resale.

Copyright ©1986 by the American Mathematical Society. All rights reserved.
Printed in the United States of America
The American Mathematical Society retains all rights except those granted to the United States Government.
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Contents

Acknowledgments vii

Introduction ix

I. Structure and Classification of Symmetric Spaces 1
 1. Affine symmetric spaces 1
 2. Reductive symmetric spaces 3
 3. Classification of irreducible semisimple symmetric spaces and examples 5
 4. Symmetric triples—association and duality 9
 Notes 11

II. Harmonic Analysis on Semisimple Symmetric Spaces 13
 1. Invariant differential operators 14
 2. The Plancherel formula and eigenspace representations 16
 3. Examples 19
 Notes 23

III. The Noncompact Riemannian Form \(X' \) of a Semisimple Symmetric Space \(X \) 25
 1. The duality principle 25
 2. Examples 27
 Notes 31

IV. The Poisson Transform on a Symmetric Space of the Noncompact Type 33
 1. The Poisson transform 33
 2. Helgason’s conjecture 34
 3. Applications to the non-Riemannian case 37
 Notes 40

V. The \(H^d \)-Orbits on the Boundary and the Corresponding Representations of \(G \) 43
 1. Classification of the \(H^d \)-orbits on \(G^d/P^d \) 44
 2. Examples 45
 3. Eigenspace representations in \(\mathcal{E}_\lambda(X) \) determined by the \(H^d \)-orbits 46
 Notes 47
VI. Representations Related to the Closed H^d-Orbits
 1. Distributions on G^d/P^d supported on a closed H^d-orbit 49
 2. The (\mathfrak{u}_C, H^d)-modules $\mathcal{Z}_{\lambda, H^d}(\emptyset)$ for the closed H^d-orbits 51
 3. The main result 58
 Notes 59

VII. The Discrete Series for a Semisimple Symmetric Space 61
 1. Existence and almost classification of the discrete series 61
 2. Examples 66
 Notes 67

VIII. A Few Final Remarks 69
 1. The nonclosed orbits 69
 2. Discrete series for G/H and Zuckerman’s derived functor modules 71

Bibliography 73
Acknowledgments

This book is based on ten expository lectures given at a CBMS conference at the University of Georgia, Athens, June 18–22, 1984. I should like to thank Kenneth D. Johnson, who directed the conference, and the other participants for an inspiring feedback during the lectures. The final manuscript was written in the spring of 1985 in Paris. I want to thank the Department of Mathematics at the Université de Paris VII and, in particular, M. Duflo for hospitality during this period. For helpful comments on the material in this book I want to thank S. Helgason, T. H. Koornwinder, T. Oshima, E. van den Ban and, in particular, H. Schlichtkrull. For typing the manuscript very efficiently I want to thank K. Astrup and R. Crifling. Finally, a very special thanks to my wife Inger.
This page intentionally left blank
Introduction

Harmonic analysis on symmetric spaces is for me a very inspiring combination of analysis, geometry and algebra. In this book I shall try to present this subject with special emphasis on those pseudo-Riemannian symmetric spaces which have a semisimple group of isometries. We shall call these the semisimple symmetric spaces.

Harmonic analysis on Riemannian semisimple symmetric spaces is very well established, primarily through the work of H. Weyl, E. Cartan, Harish-Chandra and S. Helgason.

Among the non-Riemannian semisimple symmetric spaces are, for example, the noncompact semisimple groups and the hyperbolic spaces. For these special examples of non-Riemannian symmetric spaces there is also a well-established harmonic analysis. However, for the general semisimple symmetric spaces, harmonic analysis is far less developed, and many basic questions have not yet found a final answer.

My own contribution to this subject is primarily the idea of how to construct the discrete series for such a space. I hope I am excused for putting some emphasis on this aspect. In [e], where I first presented the construction, I tried to show that the construction is very elementary and direct. In this book I have chosen to let the general ideas behind the construction play a fundamental role—that is, the duality principle and the orbit picture related to it and also the definition of representations by means of distributions on the orbits. At the same time I have tried to give a rather systematic treatment of the basic problems in harmonic analysis on symmetric spaces and to discuss some of the more important recent developments in the theory.

There are a few new results in the text. In Example B of Chapter III there is a new and simple proof of the Paley-Wiener theorem for Riemannian symmetric spaces of the noncompact type. In §3 of Chapter IV it is proved that any “H-finite” joint eigenfunction on a Riemannian symmetric space is the Poisson transform of a distribution on the boundary. This result implies that we, to a large extent, can avoid mentioning hyperfunctions in our construction of representations.
In Chapters VI and VII several results are generalized, and there are indications of simplifications of proofs compared to the existing literature.

To follow the presentation, at least for the later chapters, I think that the reader should have some familiarity with the basic structure theory of semisimple Lie groups and Lie algebras. After each chapter I have included some very brief notes indicating related results, historical aspects or references to proofs not mentioned in the text.
Bibliography

J. D. Adams
Discrete spectrum of the dual reductive pair $(O(p, q), Sp(2m))$. Invent. Math. 74 (1983), 449–475.

J.-P. Anker and N. Lohoué
Multiplication sur certains espaces symétriques, 1984 (preprint).

K. Aomoto

J. Arthur

E. van den Ban

E. van den Ban and H. Schlichtkrull
Distribution boundary values of eigenfunctions on Riemannian symmetric spaces (to appear).

A. Beilinson and J. Bernstein

M. Berger

A. Borel

F. Bruhat

J. Carmona, J. Dixmier and M. Vergne (eds.)

J. Carmona and M. Vergne (eds.)

P. Cartier

W. Casselman and D. Milčić
BIBLIOGRAPHY

L. Clozel and P. Delorme

P. Delorme
[b] Formules limites et formules asymptotiques pour les multiplicités dans $L^2(G/T)$, 1985 (preprint).

G. van Dijk

G. van Dijk and M. T. Kosters

G. van Dijk and M. Poel
The Plancherel formula for the pseudo-Riemannian space $\text{SL}(n, \mathbb{R})/\text{GL}(n-1, \mathbb{R})$, Leiden, 1984 (preprint).

J. Dixmier

M. Duflo

J. J. Duistermaat, J. A. C. Kolk and V. S. Varadarajan
Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups, Compositio Math. 49 (1983), 309–398.

J. Faraut

M. Flensted-Jensen

M. Flensted-Jensen and K. Okamoto

R. Gangolli

Harish-Chandra
[f] Harmonic analysis on real reductive groups.
I: The theory of the constant term, J. Funct. Anal. 19 (1975), 104–204;
III: The Maass-Selberg relations and the Plancherel formula, Ann. of Math. (2) 104 (1976),
117–201.

S. Helgason
[a] A duality for symmetric spaces with applications to group representations, Adv. in Math. 5 (1970),
1–154.
[b] A duality for symmetric spaces with applications to group representations. II: Differential
751–774.
[d] Some results on eigenfunctions on symmetric spaces and eigenspace representations, Math. Scand.
41 (1977), 79–89.
[e] Differential geometry, Lie groups and symmetric spaces, Pure and Appl. Math., vol. 80,
[f] Groups and geometric analysis. Integral geometry, invariant differential operators and spherical

A. G. Helminck
Algebraic groups with a commuting pair of involutions and semisimple symmetric spaces, Thesis,
Amsterdam, May, 1985.

R. Herb et al. (eds.)
Lie group representations (Proc. Maryland, 1982–1983), Lecture Notes in Math., vols. 1024,

R. A. Herb and J. A. Wolf
The Plancherel theorem for general semisimple groups, 1983 (preprint).

B. Hoogenboom

L. Hörmander

M. Kashiwara and T. Oshima
Systems of differential equations with regular singularities and their boundary value problems,

M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Oshima and M. Tanaka
Eigenfunctions of invariant differential operators on a symmetric space, Ann. of Math. (2) 107

T. Kengmana
Characters of the discrete series for pseudo-Riemannian symmetric spaces, Representation Theory

A. W. Knapp
Representation theory of semisimple Lie groups. An overview based on examples (to appear,
Princeton University Press).

S. Kobayashi and K. Nomizu

T. H. Koornwinder
Jacobi functions and analysis on noncompact semisimple groups. Special Functions: Group-Theo-

M. T. Kosters

W. A. Kosters

J. B. Lewis
Eigenfunctions on symmetric spaces with distribution valued boundary forms, J. Funct. Anal. 29
O. LOOS

T. MATSUMI
[b] Closure relations for orbits on affine symmetric spaces under the action of minimal parabolic subgroups, 1985 (preprint).

G. OLAFFSON
[b] Die Darstellungreihe zu einem affinen symmetrischen Raum, preprint Univ. of Iceland, 1983.

T. OSHIMA

T. OSHIMA and T. MATSUMI

T. OSHIMA and J. SEKIGUCHI

N. S. POULSEN
On C^∞-vectors and intertwining bilinear forms for representations of Lie groups, J. Funct. Anal. 9 (1972), 87–120.

M. RAIS

W. ROSSMAN

S. SANO

H. SCHLICHTKRULL

H. SCHLICHTKRULL and H. STETKAER
W. Schmid

J. Sekiguchi

R. S. Strichartz

P. D. Trombi (ed.)

V. S. Varadarajan

D. Vogan

D. Vogan and G. Zuckerman

N. Wallach

J. A. Wolf