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Preface

This monograph is based on the marathon lecture series given at the NSF-CBMS
Regional Conference on Extremal Graph Theory held in June 1984 at Emory
University, Atlanta. The author is grateful to Dwight Duffus, Ron Gould, and
Peter Winkler for their superb organization of the meeting; the additional lectures
by Dick Duke, Ralph Faudree, Ron Graham, and Tom Trotter greatly enriched
the conference.

Since the publication of the author’s book, Extremal Graph Theory (Academic
Press, London, New York, and San Francisco, 1978, to be referred to as EGT), a
number of important results have been proved, and one of the aims of the lectures
was to update EGT by presenting some of these developments.

Over the past few years a noticeable shift has been taking place in extremal
graph theory towards probabilistic methods. The most obvious sign is that
random graphs are used more and more, but that is not all. Even more signifi-
cantly, a probabilistic frame of mind was needed to find many of the proofs,
which on the surface have nothing to do with probabilistic ideas. In several
beautiful and difficult proofs the underlying philosophy is that we do not have to
care about single vertices, say, for it suffices to make use of the fact that there are
many subsets of vertices of a given cardinality with the right properties. To give a
simple example, one often makes use of the fact that if X, X,,..., X, are
nonnegative integers bounded by 4, IV, X; = Na and 0 < b < a, then at least
(a — b)N/(A — b) of the X,’s are greater than b. Equivalently, if X; is a random
variable,0 < X < A and E(X) = a, then
(1) P(X>b)>(a—-b)/(A—-b) forall0 <b<a.

Inequality (1) has the following reformulation in graph-theoretic terms. If B is
a bipartite graph with bipartition (X,Y), X = {x},x,,...,x,}, Y =
(Y1 Y255} d(y) < Aforall j,1<j<n,thenford <d=2XY" d(x;)/n
there are at least (d — d")n/(A — d’) vertices y; of degree at least d’.

Needless to emphasize, in the great majority of the cases the merit is in finding
the need for probabilistic inequalities and applying them cleverly, and not in
proving the inequalities. The main aim of the lecture was to show how fruitful a
probabilistic frame of mind is in tackling main line extremal problems.
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The notation in these notes is taken from EGT. In particular, |G| is the order of
a graph G, i.e. the number of vertices, and e(G) is the size of G, i.e. the number of
edges. The cardinality of a set U is denoted by |U|, and the collection of r-subsets
of U is U'". Though these notes are practically self-contained, familiarity with at
least some parts of EGT will certainly help the reader. A conscious effort has
been made to prevent the lectures from turning into a long catalogue of results;
without this effort, the monograph could have ended up with several hundred
results. However, there seems little doubt that it is much more useful to present
just a few of the deeper results and thereby leave time to dwell on the proofs.

The first two sections are closely related. They deal with subdivisions of graphs
and subcontractions. Both areas owe a considerable amount to Mader, who
proved that for every p € N there are constants s( p), c( p) such that every graph
of order n and size greater than s( p)n contains a topological complete graph of
order p, and every graph of order n and size greater than c(p)n has a
subcontraction to K?. (Needless to say, s(p) and c(p) are taken to be the
smallest values that will do in the statements above.) Consequently for every fixed
graph H there is a constant s(H) such that every graph of order n and size
greater than s(H)n contains a subdivision of H and there is an analogous
constant ¢(H). Bollobas started the study of subdivisions of graphs with some
constraints on the subdivisions one allows. For example, we may wish to restrict
the number of times we subdivide an edge, at least modulo some integer k. The
main aim of §1 is to present recent result of Thomassen in this area, with a
considerably better bound than the original one given by Thomassen.

The second section, on subcontractions, is devoted to a new result of Thomason
and Kostochka, improving the upper bound on c¢( p) proved by Mader. Together
with a rather easy result of Bollobas, Catlin, and Erdos, this result implies that the
order of ¢(p)is p(log p)'/?, a fact not many of us would have expected.

The third and fourth sections concern different aspects of essentially the same
problem. At least how many vertices must we have if the minimal degree is § and
the girth is at least g? At most how many vertices can we have if the maximal
degree is at most A and the diameter is at most D? An “ideal” graph would
answer both questions, but the trouble is that there are very few such ideal
graphs. One is left with approximating the appropriate functions either by
constructing suitable functions or by showing, usually by probabilistic methods,
that suitable graphs do exist. As far as the bounds are concerned, the noncon-
structive methods due to Erdds, Sachs, Bollobas, de la Vega, and others give
better results, but the constructions have obvious advantages. In these sections the
emphasis is on new constructive methods due to Bermond, Delorme, Farhi,
Leland, Solomon, Jerrum, Skyum, and Margulis.

In §5 we concentrate on a substantial recent result of Gyarfas, Komlos, and
Szemerédi concerning the distribution of cycle lengths in graphs with fairly many
edges. Though the theorem is interesting, it is the proof, rich in ideas and
techniques, that really justified spending two lectures on the result.
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The sixth section contains a telegraphic review of the theory of random graphs.
The highlights are the classical theorem of Erdds and Rényi on the evolution of
random graphs and its recent extensions due to Bollobas.

In §7 we present a surprising and beautiful result of Beck on size Ramsey
numbers. As a simple application of random graphs, Beck proved that there are
graphs G,, G,, ... such that G, has at most ci edges, where ¢ is a constant, and in
any coloring of the edges of G; with two colors we can find a monochromatic
path of length s.

Saturated graphs were introduced over twenty years ago by Erdos, Hajnal, and
Moon. Their result was extended considerably by Bollobas, who also introduced
weakly saturated graphs. The main conjecture concerning weakly saturated graphs
was proved recently by Alon, Frankl, and Kalai; the simple and elegant proof,
based on exterior products (!), is presented in §8.

The last section, §9, concerns restricted colorings of graphs. We know from
Vizing’s theorem that a graph of maximal degree A is (A + 1)-colorable. What
happens if we prescribe a list for each edge from which the color of the edge has
to be chosen? What is the maximal length of the lists that always let us color our
graph? It has been conjectured that lists of length A + 1 will do. This conjecture,
if true, would clearly be best possible.

At the moment, the conjecture is far from being proved and many graph
theorists suspect it to be false. The main aim of the section is to present a recent
result of Bollobas and Harris, implying that for some constant ¢ < 2 lists of size
at most cA will do for every graph of maximal degree A > 3. As a trivial
consequence of this result, Bollobas and Harris made the first substantial progress
towards a proof of a long-standing conjecture of Behzad concerning the total
chromatic number.

It is a pleasure to thank Fan Chung, Dwight Duffus, Ron Graham, Hal
Kierstead, and Andrew Thomason for their ideas and suggestions, many of which
have been incorporated into the text. Finally, I would like to express my gratitude
to all participants of the conference for their enthusiasm for the subject and the
warm reception of the lectures.

Research was partially supported by National Science Foundation Grant
DMS-8400643.
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