q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra

George E. Andrews
q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra
This page intentionally left blank
q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra

George E. Andrews

Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society Providence, Rhode Island with support from the National Science Foundation

http://dx.doi.org/10.1090/cbms/066
Expository Lectures
from the CBMS Regional Conference
held at Arizona State University
May 1985

Research supported in part by National Science Foundation Grant DMS-8503708.

2000 Mathematics Subject Classification. Primary 05A19, 11Pxx, 33Dxx, 33Cxx, 33F10, 82B20.

Library of Congress Cataloging-in-Publication Data
Andrews, George E., 1938–
q-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra.
(Regional conference series in mathematics, ISSN 0160-7642; no. 66)
Bibliography: p.
1. q-series. I. Title. II. Series.
ISBN 0-8218-0716-1

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.

Copyright ©1986 by the American Mathematical Society. All rights reserved.
Printed in the United States of America
The American Mathematical Society retains all rights except those granted to the United States Government.
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

Visit the AMS home page at URL: http://www.ams.org/.

10 9 8 7 6 5 4 04 03 02 01 00
To
Joy, Amy, Katy, and Derek
This page intentionally left blank
Contents

Preface

Chapter 1. Found Opportunities
 1.1 Introduction
 1.2 L. J. Rogers
 1.3 S. Ramanujan
 1.4 W. N. Bailey
 1.5 Ramanujan's "Lost" Notebook
 1.6 Baxter's solution of the Hard Hexagon Model

Chapter 2. Classical Special Functions and L. J. Rogers
 2.1 Introduction
 2.2 Rogers's symmetric function theorem
 2.3 Rogers's symmetric function expansion
 2.4 Rogers's connection coefficient problem
 2.5 Rogers's first proof of the Rogers-Ramanujan identities

Chapter 3. W. N. Bailey's Extension of Rogers's Work
 3.1 Rogers's second proof
 3.2 Bailey's transform
 3.3 q-Pfaff-Saalschütz summation
 3.4 Bailey's lemma
 3.5 Applications of Bailey's lemma
 3.6 Recent work

Chapter 4. Constant Terms
 4.1 Introduction
 4.2 Eight identities of Rogers
 4.3 The Zeilberger-Bressoud theorem
 4.4 Gessel's evaluation of the Vandermonde determinant
 4.5 The Macdonald conjectures
 4.6 Hecke-Rogers modular form identities
Chapter 5. Integrals
5.1 Introduction
5.2 A continuous q-analog of the β-integral
5.3 A discrete q-analog of the β-integral
5.4 The Selberg integral
5.5 Extensions of Selberg's integral

Chapter 6. Partitions and q-Series
6.1 Introduction
6.2 q-Series and Schur’s theorem
6.3 Bressoud’s proof of Schur’s theorem
6.4 Bressoud’s proof of (4.11)
6.5 The Garsia-Milne bijective method

Chapter 7. Partitions and Constant Terms
7.1 Introduction
7.2 Jacobi’s Triple Product identity
7.3 Generalized Frobenius partitions
7.4 Kolitsch’s congruence for colored generalized Frobenius partitions
7.5 Garvan’s generalization of the Dyson rank
7.6 Asymptotics
7.7 Gordon’s theorem
7.8 Summary

Chapter 8. The Hard Hexagon Model
8.1 Introduction
8.2 Some statistical mechanics
8.3 The polynomial representations

Chapter 9. Ramanujan
9.1 Introduction
9.2 The idea
9.3 Identities (1.3) and (1.4)
9.4 Identities (1.5)–(1.8)
9.5 Comments on Ramanujan’s work

Chapter 10. Computer Algebra
10.1 Introduction
10.2 The L-M-W conjectures
10.3 Rogers’s first proof of the Rogers-Ramanujan identities
10.4 Bailey’s Lemma in computer algebra
10.5 Constant terms
10.6 Göllnitz’s theorem
10.7 Proposals
 10.7.A Solutions to q-difference equations
 10.7.B q-Series expansions
Appendix A. W. Gosper's Proof that \(\lim_{q \to 1^-} \Gamma_q(x) = \Gamma(x) \)

Appendix B. Rogers's Symmetric Expansion of \(\psi(\lambda, \mu, \nu, q, \theta) \)

Appendix C. Ismail's Proof of the \(_1\psi_1 \)-summation and Jacobi's Triple Product Identity

References
Preface

In recent years, q-series have popped up in work in physics, Lie algebras, transcendental number theory, and statistics, in addition to new developments in areas more familiar with q-series: classical analysis, combinatorics, and additive number theory. The immense amount of activity taking place makes it impossible to give a comprehensive account in ten chapters. Obviously the areas I choose to emphasize will be a matter of my own taste and reflect to some extent those projects that have most engaged my own interests and efforts. I have tried to include some accounting of major breakthroughs (e.g. Chapters 4 and 5) even though my own contributions may have been marginal.

There have been numerous serendipitous events that have marked the development of q-series in the last one hundred years. I try to discuss a few of these in Chapter 1. Chapters 2 and 3 might be called Rogers and Bailey revisited. In these two chapters I combine history with modern work. I redo Rogers's first proof of the Rogers-Ramanujan identities with the help of a modern symbolic manipulation computer language like SCRATCHPAD. Bailey's greatest discovery, Bailey's Lemma, is examined and used to set up the mathematical tools required for a complete treatment of some of the Hard Hexagon Model.

In Chapter 4 we examine recent work on constant term problems. The great recent achievement here is the Zeilberger-Bressoud proof of the q-Dyson conjecture. While it is impossible to give their proof, we can at least provide some relevant background. Chapter 5, Integrals, has obviously many common elements with Chapter 4. The most important aspect of this work is the re-emergence of Selberg's integral. We provide a full discussion following R. Askey's approach.

Chapters 6 and 7 are devoted to recent developments in additive number theory. Work of Bressoud, Garsia and Milne is discussed in Chapter 6 culminating in the Garsia-Milne Involution Principle. Chapter 7 presents generalized Frobenius partitions and the recent contributions of Garvan and Kolitsch. Chapter 8 is an expository introduction to Baxter's solution of the Hard Hexagon Model. I try to indicate how the machinery from Chapter 3 applies to this work and its extensions.

Chapter 9 looks at results closely related to Ramanujan's "Lost" Notebook. While few results due directly to Ramanujan are presented, the discussion is
primarily motivated, nonetheless, by an attempt to unify work from the "Lost" Notebook (see Chapter 1 and Andrews [27]).

We conclude with a discussion of how symbolic manipulation languages such as SCRATCHPAD can be utilized to further research on q-series.

As is clear I was helped directly and indirectly by the work of many in preparing this book. I wish to single out especially Richard Askey and Rodney Baxter. Chapter 6 especially relies heavily on Askey's work including his own not widely accessible proof of the Selberg integral. Much of the introductory material in Chapter 8 is taken from an expository lecture given by Baxter at Penn State in 1980. Also thanks are due to IBM (in particular, Dick Jenks and David Yun) who provided SCRATCHPAD to Penn State in a field test; four years ago computer algebra played only a minor part in my work. Now I do not know how I could get along without it.

I owe a great debt to many people who were involved with the NSF-CBMS Regional Conference at Arizona State University, in May 1985, where these lectures were presented. Mourad Ismail and Ed Ihrig organized the conference well and made it run quite smoothly. Kevin Kadell provided reliable transportation whenever I needed it. Richard Askey, whose ideas have had such importance in recent q-series research, helped in numerous ways to make the conference work. Bonnie Randolph capably and expeditiously typed the manuscript. To all these people, many thanks.

For special thanks I must single out my wife, Joy. Besides putting up with me during the several months preceding the conference, when I thought of little else, she also, at the last minute, averted my absence from the conference. On the Sunday afternoon before my initial lecture at nine o'clock Monday morning, she and I arrived at the University Park Airport to find that my flight to Pittsburgh was cancelled. There following her rapid unscheduled drive to Pittsburgh combined with creative double-parking and baggage management par excellence. Because of the United Airlines' strike, I would surely not have gotten to Tempe for several days if I had not caught that flight. As it was I was five minutes late, but the flight was delayed twenty minutes.

University Park, Pennsylvania
July 1985
References

Most of the following are referred to in the preceding pages; all are relevant to one or more of the topics presented.

Adiga, C., B. C. Berndt, S. Bhargava, and G. N. Watson

Agarwal, R. P.

Andrews, G. E.

[29] ETPHKA! \(\text{num} = \Delta + \Delta + \Delta \), J. Number Theory (to appear).
REFERENCES

Andrews, G. E. and R. Askey

Andrews, G. E., R. J. Baxter, and P. J. Forrester

Aomoto, K.

Askey, R.

Askey, R. and M. Ismail

REFERENCES

Askey, R. and J. A. Wilson

Atkin, A. O. L.

Atkin, A. O. L. and H. P. F. Swinnerton-Dyer

Bailey, W. N.

Baxter, R. J.

Baxter, R. J. and P. A. Pearce

Berndt, B. C.

REFERENCES

Berndt, B. C. and R. J. Evans

Berndt, B. C., R. J. Evans, and B. M. Wilson

Berndt, B. C. and P. T. Joshi

Berndt, B. C., P. T. Joshi, and B. M. Wilson

Berndt, B. C., R. L. Lamphere and B. M. Wilson

Berndt, B. C. and B. M. Wilson
Bressoud, D. M.

Bressoud, D. M. and D. Zeilberger

Cheema, M. S. and B. Gordon

Cipra, B. A. and L. W. Kolitsch

Dyson, F. J.

Euler, L.

[1] Introductio in analysin infinitorum, Lausanne, 1, 1748, Ch. 16, 253–275.

Evans, R.

Evans, R., M. Ismail, and D. Stanton

Evans, R. and D. Stanton

Feld, J. M.

REFERENCES

Feld, J. M. and P. Newman

Fine, N. J.

Forrester, P. J. and R. J. Baxter

Frobenius, G.

Garsia, A. M. and S. C. Milne

Garvan, F.

Gasper, G.

Gasper, G. and M. Rahman

Gessel, I.

Gessel, I. and D. Stanton
REFERENCES

Glaisher, J. W. L.

Göllnitz, H.

Good, I. J.

Gordon, B.

Gosper, W.

Gunson, J.

Gustafson, R. A.

Gustafson, R. A. and S. C. Milne

Hahn, W.

Hall, M.

Hanlon, P.
Hardy, G. H.

Hardy, G. H. and E. M. Wright

Hecke, E.

Heine, E.

Hirschhorn, M. D.

Holman, W. J.

Holman, W. J., L. C. Biedenharn, and J. D. Louck

Humphrey, J. E.

Ismail, M. E. H.

Ismail, M. E. H. and D. Stanton

Jackson, F. H.

Jenks, R. D.

Jimbo, M. and T. Miwa

Joichi, J. T. and D. Stanton

Kač, V. G. and D. H. Peterson

Kolitsch, L. W.

Macdonald, I. G.

MacMahon, P. A.

Milne, S. C.

Morris, W. G.
REFERENCES

Nassrallah, B. and M. Rahman

Newman, J. R.

O'Hara, K. M.

Padmavathamma

Paule, P.

Pavelle, R., M. Rothstein and J. Fitch

Pfaff, J. F.

Rahman, M.

Rahman, M. and A. Verma

Ramanathan, K. G.

Ramanujan, S.

Rankin, R. A.

Remmel, J.

Richards, D. St. P.

Ritt, J. F.

Rogers, L. J.

Saalschütz, L.

Schur, I.
REFERENCES

Selberg, A.

Slater, L. J.

Sloane, N. J. A.

Stanley, R. P.

Stembridge, J. R.

Stirling, J.

Stolarsky, K.

Stoutemyer, D. R. and D. Y. Y. Yun

Thomae, J.
[1] Beiträge zur theorie der durch die heinesche reihe; 1 + ((1 − q^α)(1 − q^β)/(1 − q)(1 − q^γ))x + · · · darstellbaren functionen, J. Reine Angew. Math. 70 (1869), 258–281.

Tracy, C.

Venkatachaliengar, K.
Watson, G. N.

Whittaker, E. T. and G. N. Watson

Witt, E.

Zeilberger, D.

Zeilberger, D. and D. M. Bressoud