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Introduction 

An NSF-CBMS regional Conference on " A^-theory and Dynamics" was held 
in Gainesville, Florida from January 9th to the 14th, 1989. The Conference 
was funded by the National Science Foundation and hosted by the Univer-
sity of Florida. C. W. Stark was the Conference director and the organizing 
committee consisted of D. Fried, L. E. Jones, and J. B. Wagoner. F. T. Far-
rell was the principal lecturer and this book is based on those lectures. The 
more technical topics have been deleted. Some results which were obtained 
since the Conference are discussed in an epilogue (Chapter 6). This epilogue 
also contains some theorems, not mentioned at the Conference but obtained 
in the last ten years, showing there are many aspherical manifolds which are 
not classical. The ten lectures were primarily concerned with classical aspher­
ical manifolds; e.g., those arising as double coset Spaces of Lie groups or from 
synthetic geometry. The main problem addressed was the topological char-
acterization of compact (closed) classical aspherical manifolds. The problem 
has been mostly solved; 3-dimensional and 4-dimensional manifolds present 
the most important unsolved aspects. (Poincare's conjecture is closely related 
to the 3-dimensional problem.) 

We wish to express our special thanks to Chris Stark. His efforts made 
possible both the Conference and this book. 

F. Thomas Farrell 
L. Edwin Jones 
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48 EPILOGUE 

6.3. COROLLARY (Farrell and Jones [1990]). Let Á be any finitely gener-
atedfreeabeliangroup, including 0. Then Wh(n{MxA) ~ 0. Consequently, 
WhTTjM, KQ{Zn[M)iNi\{ZnlN) and Êç(Æð÷Ì)  (where ç < 0) all van-
ish. 

PROOF. Let Tn be a flat torus such that ð{Ô
ç ~ A. Then Ì  ÷ Tn is 

a closed nonpositively curved manifold and ð{Ì  ÷ Tn ~ ^Af ÷ ^4. We 
may assume ç > 4. Thus it suffices to consider the case where Á = 0 and 
dimAf > 4. Let ÷ e Wh^Af and (W, Ë/) be a A-cobordism such that 
ô( W, M) = ÷ . Let Í  be the top of W and f: Í  -+ Ì  be the composite 
of the inclusion Í  into Ŵ  with a retraction of W onto Ì , then / is 
homotopic to a homeomorphism ^: Í  —> Ì,  because of 5.1. Let J£ be the 
mapping torus of ö . There is a homotopy equivalence g\ ^£ -^ MxS such 
that x(g) is ó #(÷), where ó: ð , Ì - ^ ^ M x C is the inclusion map onto the 
first factor. Note that ó# is monic, because Wh is a functor. Consequently 
it suffices to show that z(g) = 0. But g is homotopic to a homeomorphism 
because of 5.1. Therefore, 1.13 shows that r(g) = 0. D 

Farrell and Jones [1990] show that the weak homotopy type of ^(M) is 
calculable in terms of 3P{S ) through a stable ränge of dimensions. This 
generalizes 3.14. The calculation is in terms of the structure of families 
of closed geodesics in Ì . When Ì  is a locally Symmetrie space of rank 
> 1 , this structure can be complicated. Here are some consequences of this 
calculation and of a generalization of 6.1 which is analogous to 5.8. 

6.4. THEOREM (Farrell and Jones [1990]). Let ç be any positive integer 
and í  = [(n + l)/2]!, then Whn(n{M) <8>Z[£] = 0 and consequently 

Êç(Æð{Ì)  ®Q = Hn{M, Q) È  {®^{Hn_^4i(M9 Q)). 

Assume m = dim Ì  is greater than 10, then the following calculations hold 
provided 1 < ç < (m - 7)/3 : 

nn(TovM)®Z[±] = 0, and 

^DiffMl^i^--^·«· ifm'S°äd 

[ 0 , ifm is even. 

We now turn to a discussion of some recent construetions of non-classical 
closed aspherical manifolds. It had been conjectured that the total Space of 
the universal cover of a closed aspherical manifold must be homeomorphic 
to Euclidean space. All the classical examples mentioned in Chapter 1 satisfy 
this conjeeture. But Davis [1983] construeted, for each dimension ç > 4, 
tf-dimensional closed aspherical manifolds Í  such that the total space of the 
universal cover of Í  is not homeomorphic to Rn . 

It also seemed reasonable that a closed aspherical manifold should Sup­
port a smooth structure. But Davis and Hausmann [1989] give examples of 
closed aspherical manifolds which do not support a smooth structure. In 
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EPILOGUE 49 

fact, Davis and Januszkiewicz [to appear] have constructed such examples in 
every dimension > 4. (Such examples cannot exist in dimensions 1, 2 and 
3.) Moreover, they construct a four-dimensional closed asphericai manifold 
which cannot be triangulated; i.e., it is not homeomorphic to the geometric 
realization of a finite simplicial complex. 

It had also been conjectured that every strictly negatively curved, closed 
Riemannian manifold is diffeomorphic to a locally Symmetrie space. Mostow 
and Siu [1980] gave a four-dimensional counterexample to this conjeeture. 
Gromov and Thurston [1987] gave counterexamples in every dimension > 3 . 

Let N{ and N2 be a pair of closed strictly negatively curved manifolds 
with isomorphic fundamental groups. By results of Eells and Sampson [1964], 
Hartman [1967] and APber [1968], there exists a unique harmonic map / : 
TV, —• N2 inducing this isomorphism. Since N{ and N2 are asphericai, / is 
a homotopy equivalence. When N{ and N2 are hyperbolic (and dim N{ > 2) 
1.25 implies that / is an isometry. This led Lawson and Yau to conjeeture 
that / is always a diffeomorphism. Farrell and Jones [1989c] gave the first 
counterexample to this conjeeture. It is a consequence of the following result. 

6.5. THEOREM (Farrell and Jones [1989c]). Let Í  be á closed hyperbolic 
manifold with dim Í  > 4. Given any e > 0, there exists á finite sheeted 
cover JV of Í  such that the following is true. 

(1) The connected sum JV#L , where Ó is any closed smooth manifold 
homotopically equivalent to Sm , supports á Riemannian metric such that all 
its sectional curvatures are pinched within e of -1. 

(2) Let Ó, and Ó2 be any nondiffeomorphic pair of closed smooth man­
ifolds which are both homotopically equivalent to Sm . Then Jf#Lx is not 
diffeomorphic to JV#L2 . 

COUNTEREXAMPLE TO LAWSON-YAU CONJECTURE. Pick a closed smooth 
manifold Ó such that Ó is homeomorphic to Sm {m > 4) but not dif­
feomorphic to Sm . Milnor [1956] and Kervaire-Milnor [1963] give many 
such Ó. Borel's Theorem 4.5 yields the existence a closed hyperbolic m-
dimensional manifold Nm . Let e be any positive number less than 1 and Jf 
be the covering space of Í  posited in 6.5. Then NX-JV and N2 = JV#L, 
where Jf is given the hyperbolic metric induced from Í  and Jf #Ó the 
metric posited in (1) of 6.5. 

REMARK. Á partial positive result related to the Lawson-Yau conjeeture 
is a consequence of 6.1 (cf. Farrell and Jones [1989 b]). Namely, there 
is always a homeomorphism inducing the isomorphism between nxNx and 
ð{Í 2 provided dimTVj ^ 3 , 4 . 

http://dx.doi.org/10.1090/cbms/075/06
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