Klaus Schmidt

ALGEBRAIC IDEAS IN ERGODIC THEORY
ALGEBRAIC IDEAS IN ERGODIC THEORY
This page intentionally left blank
Expository Lectures
from the CBMS Regional Conference
held at the University of Washington, Seattle
July 1989

Research supported by National Science Foundation Grants DMS-8814159 and DMS-8820716, as well as additional grants from the IBM Watson Research Center, the IBM Almaden Research Center, and the University of Washington.

1980 Mathematics Subject Classification (1985 Revision). Primary 28D05, 28D15, 28D20, 54C70.

Library of Congress Cataloging-in-Publication Data
Schmidt, Klaus, 1943-
Algebraic ideas in ergodic theory/Klaus Schmidt.
p. cm.—(Regional conference series in mathematics, ISSN 0160-7642; v. 76)
Includes bibliographical references and index.
ISBN 0-8218-0727-7
QA611.7.S36 1990 90-877
515.42—dc20 CIP

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Executive Director, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248.

The owner consents to copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that a fee of $1.00 plus $.25 per page for each copy be paid directly to the Copyright Clearance Center, Inc., 27 Congress Street, Salem, Massachusetts 01970. When paying this fee please use the code 0160-7642/90 to refer to this publication. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.

Copyright ©1990 by the American Mathematical Society. All rights reserved.
Printed in the United States of America
The American Mathematical Society retains all rights except those granted to the United States Government.
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
This publication was typeset using AMS-TEX, the American Mathematical Society's TeX macro system.

10 9 8 7 6 5 4 3 2 1 95 94 93 92 91 90
Contents

Introduction .. 1
1. Operator Algebras and Dynamical Systems 3
2. Cohomology of Equivalence Relations 18
3. Rokhlin's Lemma and Asymptotic Invariance 36
4. Dimension .. 43
5. Markov Shifts in Higher Dimensions 55
6. Markov Shifts and Markov Groups 64
7. The Dynamics of Abelian Markov Groups 67
References ... 79
Notation ... 87
Index ... 91
This page intentionally left blank
References

[Abel] N. H. Abel, Untersuchung der Functionen zweier unabhängig veränderlicher Größen x und y, welche die Eigenschaft haben, daß f(z, f(x, y)) eine symmetrische Function von z, x und y ist, J Reine Angew. Math. 1 (1826), 11–15.

factors, transformations.

\text{Math Type endomorphisms} the normalizers \(C^* \), and sequences, structure.

 flows of weights \(d \).

\[\text{Dixmier, } \text{Les } C^* - \text{algèbres et leurs représentations, Gauthier-Villars, 1969.} \]

\[\text{DixL} \] J. Dixmier and C. Lance, \text{Deux nouveaux facteurs de type } II_1 , Invent. Math. 7 (1969), 226–234.

\[\text{Eff} \] E. G. Effros, \text{Dimensions and } C^* - \text{algebras, CBMS Regional Conf. Ser. in Math., Amer. Math. Soc., Providence, RI, 1980.} \]

\[\text{EigS} \] S. J. Eigen and C. E. Silva, \text{A structure theorem for } N \text{-to-1 endomorphisms and existence of non-recurrent measures, preprint, 1988.} \]

\[\text{Ell} \] G. Elliott, \text{On the classification of inductive limits of sequences of semi-simple finite dimensional algebras, J. Algebra 38} (1976), 29–44.

\[\text{Fel} \] J. Feldman, \text{Lectures on orbit equivalence, preprint.} \]

\[\text{FelH} \] J. Feldman, P. Hahn, and C. C. Moore, \text{Orbit structure and countable sections for actions of continuous groups, Adv. in Math. 28} (1978), 186–230.

\[\text{FriO} \] N. Friedman and D. S. Omsenberg, \text{On the isomorphism of weak Bernoulli transformations, Adv. in Math. 5} (1970), 365–394.

\[\text{Fur} \] H. Furstenberg, \text{Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation, Math. Systems Theory 1} (1967), 1–49.
REFERENCES

[Han3] D. Handelman, Deciding eventual positivity of polynomials, Ergodic Theory Dynamical Systems 6 (1986), 57–79.

[Kat] I. Katznelson, Orbit equivalence, unpublished lecture notes.

[Kri2] W. Krieger, On nonsingular transformations of a measure space. II, Z. Wahrschein-

[Moz] S. Mozes, Tilings, substitution systems and dynamical systems generated by them, M. Sc.
REFERENCES

[Sch1] K. Schmidt, Cycles on ergodic transformation groups, MacMillan (Company of India, Ltd., Delhi), 1977.

REFERENCES

Notation

\[\alpha^N \] -action defined by a module \(N \)
\(\mathcal{A}(R), \mathcal{A}'(R) \) von Neumann algebras of a nonsingular equivalence relation
\(B^1(R, A) \) set of coboundaries of \(R \) with coefficients in a group \(A \)
\(B(H) \) = the set of bounded linear operators on a Hilbert space \(H \)
\(\beta_P \) beta-function of a Markov shift
\(\mathbb{C} \) = the complex numbers
\(c_B \) restriction of a cocycle \(c \) to a set \(B \)
\(c_p \) generator of \(\Gamma_p/\Delta_p \)
\(\mathcal{E}(R) \) a \(C^* \)-algebra of an equivalence relation \(R \)
\(\delta_{a, b} \) = the Kronecker delta (\(\delta_{a, b} = 1 \) if \(a = b \), and \(\delta_{a, b} = 0 \) otherwise)
\(\Delta_p \) a group associated with a nonnegative matrix \(P \)
\((\mathcal{D}(R), \mathcal{D}(R)^+) \) dimension module
\(\mathcal{E}(c), \mathcal{E}^-(c) \) essential range of a cocycle \(c \)
\(GL(n, \mathbb{Z}) \) = the group of invertible \(n \times n \) matrices with integer entries
\(\Gamma_p \) a group associated with a nonnegative matrix \(P \)
in an abelian group \(A \)
\(h(\cdot) \) entropy
\(H^1(R, A) \) first cohomology group of \(R \) with coefficients
in an abelian group \(A \)
\(\mathcal{J}_R : S \) index cocycle of a subrelation
\(k_\pi \) = algebraic closure of the prime field \(F_\pi = \mathbb{Z}_\pi \)
of characteristic \(\pi \)
\(K_0(\mathcal{A}) \) dimension group of a \(C^* \)-algebra
\(L_V \) nonsingular automorphism of \(R \) defined
by an automorphism \(V \in [R] \)
\(L_V, L'_V \) operators in \(\mathcal{A}(R) \) and \(\mathcal{A}(R) \) associated
with an automorphism \(V \in [R] \)
\(\lambda(V) \) module of \(V \in \mathcal{N}(R) \)
\(\mu_B \) = restriction of a measure \(\mu \) to a measurable
set \(B \) with \(\mu(B) > 0 \)
\(m_P \) measure of maximal entropy on a Markov shift
\(\mu_P \) Markov measure on a two-sided Markov shift \(X_P \)
\(\mu_R, \mu_R^{(L)}, \mu_R^{(R)} \) measures on a nonsingular equivalence relation \(R \)
\(\mathcal{M}(R), \mathcal{M}(R) \) algebra of multiplication operators in \(\mathcal{A}(R) \)
and \(\mathcal{A}(R) \)
\(\mathbb{N} \) = \(\{0, 1, 2, \ldots\} \)
\(\mathbb{N}^\times \) = \(\{1, 2, 3, \ldots\} \)
\[\nu_p \]
Markov measure on a one-sided Markov shift \(Y_p \)

\[\mathcal{N}(\mathbb{R}) \]
normalizer of an equivalence relation \(\mathbb{R} \)

\[P, P \]
nonnegative, irreducible matrix and the associated
stochastic matrix

\[\pi(V) \]
outer period of \(V \in \mathcal{N}(\mathbb{R}) \)

\[\mathbb{Q} \]
the rationals

\[\mathbb{R} \]
the real numbers

\[\mathbb{R}_+ \]
\([0, \infty) \subset \mathbb{R} \)

\[\mathbb{R}_+ \times \]
\(= \mathbb{R} \times \{0\} \)

\[\mathbb{R}_+ \]
\(= \mathbb{R}_+ \cap \mathbb{R}_+ \times \)

\[\Re(\alpha) \]
real part of a complex number \(\alpha \)

\[[\mathbb{R}] \]
full group of an equivalence relation

\[[[\mathbb{R}]] \]
ample group

\[\mathbb{R}_B \]
equivalence relation induced on \(B \)

\[r(c) \]
cohomology invariant

\[\mathbb{R}(c) \]
skew product relation defined by a cocycle \(c \)

\[\mathbb{R}(c, \mathbb{R}) \]
subrelation defined by a cocycle

\[\mathcal{R}_d \]
ring of Laurent polynomials

\[\mathbb{R}^P, \mathbb{R}^{P_P} \]
nonsingular equivalence relations on Markov shifts

\[[\mathbb{R}] : \mathbb{S} \]
index of a subrelation

\[\mathbb{R}^T \]
equivalence relation of a nonsingular group action \(T \)

\[\mathbb{R}^V \]
equivalence relation of a nonsingular automorphism or
endomorphism \(V \)

\[\mathbb{R}^V \]
nonsingular automorphism of \(\mathbb{R} \) associated with an
automorphism \(V \in [\mathbb{R}] \)

\[\rho_{\mathbb{R}, \mu} \]
Radon–Nikodym derivative of a nonsingular relation \(R \)

\[|S| \]
CARDINALITY OF A SET \(S \)

\[S_1 \]
\(= \{ z \in \mathbb{C} : |z| = 1 \} \)

\[\mathcal{S}_B \]
\(= \sigma \)-algebra \(\mathcal{S} \) induced on a set \(B \)

\[\sigma(\mathfrak{F}, P) \]
higher dimensional Markov shift

\[\text{SL}(n, \mathbb{Z}) \]
the group of \(n \times n \) matrices with integer entries and
determinant 1

\[S^P, S^{P_P} \]
nonsingular equivalence relations on Markov shifts

\[\sigma_P \]
Markov shift

\[\mathcal{S}^T \]
\(= \sigma \)-algebra of \(T \)-invariant subsets in \(\mathcal{S} \), where \(T \)
is a group action

\[S(f) \]
the support of a polynomial \(f \)

\[S^V \]
equivalence relation of a nonsingular endomorphism \(V \)

\[T \]
\(= \mathbb{R}/\mathbb{Z} \)

\[T^{(c)} \]
group action on a skew product

\[T^{(c)} \]
skew product action

\[\mathcal{F}(c) \]
\(\mathcal{F} \)-set of a cocycle

\[\mathcal{W}^u(x), \mathcal{W}^s(x) \]
stable and unstable sets of a point \(x \) in a two-sided
Markov shift

\[\mathcal{X}_{(\mathcal{F}, P)} \]
higher dimensional Markov shift space

\[(\mathcal{X}^V, \alpha^V) \]
dynamical system associated with a module

\[\mathcal{X}_P \]
two-sided Markov shift space associated with a nonnegative
matrix \(P \)

\[\mathcal{X}_P^* \]
set of doubly transitive points in \(\mathcal{X}_P \)
\(Y_P \) one-sided Markov shift space associated with a nonnegative matrix \(P \) 8
\(\mathbb{Z} \) = the integers
\(\mathbb{Z}/n\mathbb{Z} \)
\(\mathbb{Z}^1(\mathbb{R}, A) \) set of (1-)cocycles of \(\mathbb{R} \) with coefficients in a group \(A \) 18
This page intentionally left blank
Index

Adjoint operator, 10
AF-algebra, 13
Algebra
 AF, 14
 C^*, 10
 maximal abelian, 10
 von Neumann, 10
Allowed
 map, 56
 word, 56
Alphabet, 55
Amenable
 equivalence relation, 15
 group, 15
 group action, 15
Ample group, 13
Araki, 22
Asymptotically invariant sequence, 38
 trivial, 38
Automorphism
 of a measure space
 conservative, 6
 induced, 5
 measure preserving, 5
 nonsingular, 4
 of an equivalence relation, 4, 31
 inner, 4
Belinskaya, 31
Bernoulli action, 36
Beta function (of a Markov shift), 23
Borel
 equivalence relation, 4
 set, 3
 space, 3

C^*-algebra, 10
 of an equivalence relation, 12
 of a Markov shift, 12
Cellular automaton, 61

Central
 limit theorem, 21
 sequence, 38
Chain recurrence, 46
Coboundary
 of an equivalence relation, 18
 of a group action, 28
Cocycle, 18
 bounded, 29
 cohomologous, 18
 index, 24
 induced, 21
 information, 41
 of a group action, 28
 of a Markov shift, 41
 recurrent, 20
 transient, 20
Cohomologous, 18, 28
Cohomology, 18
 group, 18
 invariant, 19
 lemma, 23
Commutant (of a self-adjoint set of operators), 10
Completely positive entropy, 62
Conditional expectation, 17
Conjugacy
 of automorphisms of an equivalence relation, 31
 outer, 32
 of group actions, 5
 of Markov shifts, 68
 algebraic, 68
 metric, 7
 topological, 68
Connes, 14, 16, 23, 32, 35, 40
Containment of the trivial representation, 39
Continued fraction
 expansion, 10
 transformation, 9
of equivalence relations, 41
Hopf, 3, 21, 45
Hurewicz, 21
Hyperfinite
 equivalence relation, 15
 factor, 17

Index
 cocycle, 24
 of a subfactor, 24
 of a subrelation, 24
Information cocycle
 of an equivalence relation, 41
 of a Markov shift, 41
Injective factor, 16
Inner automorphism (of an equivalence relation), 4
Isomorphism,
 of C*-algebras, 11
 of equivalence relations, 4
 of Markov shifts, 7
 finitary, 7
 with finite expected code lengths, 7
 hyperbolic, 7

Jones, 24
Krieger, 7, 16, 17, 22, 32, 33, 35, 53, 55
Laurent polynomial, 49
Lehmer’s problem, 74

Mackey’s program, 3, 21
Mackey range (of a cocycle), 19
Mahler measure, 74
Markov
 equivalence relation, 25
 group, 65
 measure, 6
 shift, 6, 8
 higher dimensional, 55
 shift space
 higher dimensional, 55
 one-sided, 8
 two-sided, 6
Matrix
 aperiodic, 6
 compatible, 7
 irreducible, 6
 nonnegative, 6
 stochastic, 6
Maximal abelian subalgebra, 10
Mean (left or right invariant), 15
 on an equivalence relation, 15
 on a group, 15

Measure
 equivalent, 4
 ergodic, 4
 Haar, 68
 invariant, 5
 Mahler, 74
 Markov, 6
 of maximal entropy, 6, 8
 quasi-invariant, 5
Measure space, 3
Mixing
 of order r, 74
 shape, 75
 strong, 71
 weak, 40
Module, 32, 67
Moore, C. C., 1
Multiplication operator, 10
Murray, 3, 12, 43, 46
Normal subrelation, 24
Normalizer
 of an equivalence relation, 32
 of M(R), 11
Operator
 adjoint, 10
 multiplication, 10
 partial isometry, 43
 projection, 43
 unitary,
 Orbit equivalence, 31
Outer
 aperiodic, 32
 conjugate, 32
 period, 32
 Parry, 7, 23
 Periodic point, 56
 Permissible word, 56
 Pimsner, 46
 Poincaré flow
 of a cocycle, 19
 of an equivalence relation, 32
Polynomial
 (generalized) cyclotomic, 74
 Laurent, 49
Prime
 ideal, 68
 associated, 68
 filtration, 69
Projection, 43
 equivalent, 43
 finite, 43
 infinite, 43
INDEX

Property \((T)\),
 for equivalence relations, 39
 for groups, 39

Radon-Nikodym derivative, 5
Recurrence set (of a cocycle), 30
Reduced primary decomposition, 68
Representation
 of an equivalence relation, 39
 trivial, 39
Rieffel, 46
Rigidity theorem, 31
Rokhlin, 36
 lemma, 36
 set, 37
 tower, 36
Rotation algebra, 46
Rudolph, 59, 60

Saturation, 4
Self-adjoint subset (of an operator algebra), 10
Shape, 75
 mixing, 75
 nonmixing, 75
 minimal, 75
 regularly, 75
Shift
 action, 56
 equivalence, 48
 invariant, 55
Skew product, 28
Stable set, 7
Standard
 Borel space, 3
 measure space, 3
Strong
 ergodicity, 38
 mixing, 71
 topology (on an operator algebra), 10
Subgroup
 cofinite, 71
 lattice, 31

Subrelation, 4
 normal, 24
Subshift (of finite type), 55
Support (of a polynomial), 69, 77
Sutherland, 2

\(T\)-set (of a cocycle), 20
Takesaki, 35
Tiling, 59
Toral automorphism, 64, 72
Trace, 11
 normalized, 11
 semifinite, 11
Trivial representation, 39
Tuncel, 23, 48
Type
 of an equivalence relation, 22
 of a factor, 43
Undecidability, 56
Unitary
 operator, 7
 representation (of an equivalence relation), 39
Unstable set, 7

Velocity change, 31
von Neumann, 3, 11, 14
von Neumann algebra, 10
 equivalence relation, 11
 isomorphic, 11
 of a free group action, 11
 of a transitive equivalence relation, 12
Weak
 containment of trivial representation, 39
 mixing, 40
 Pinsker property, 62
Weiss, B., 14
Woods, 22

Zimmer, 14, 24, 31