Littlewood-Paley Theory and the Study of Function Spaces
About this Title
Michael Frazier, Björn Jawerth and Guido Weiss
Publication: CBMS Regional Conference Series in Mathematics
Publication Year
1991: Volume 79
ISBNs: 978-0-8218-0731-6 (print); 978-1-4704-2439-8 (online)
DOI: http://dx.doi.org/10.1090/cbms/079
MathSciNet review: MR1107300
MSC: Primary 42B25; Secondary 42C15, 46E35, 46M35
Table of Contents
Front/Back Matter
Chapters
- 1. Introduction
- 1. Calderón’s Formula and a Decomposition of $L^2(\mathbb {R}^n)$
- 2. Decomposition of Lipschitz Spaces
- 3. Minimality of $\dot {B}_1^{0, 1}$
- 4. Littlewood-Paley Theory
- 5. The Besov and Triebel-Lizorkin Spaces
- 6. The $\phi $-Transform
- 7. Wavelets
- 8. Calderón-Zygmund Operators
- 9. Potential Theory and a Result of Muckenhoupt-Wheeden
- 10. Further Applications
- 12. Appendix