# Equivariant Homotopy and Cohomology Theory

### About this Title

**J. P. May**, *University of Chicago, Chicago, IL*, **Michael Cole**, **Gustavo R Comezana**, **Steven R Costenoble**, **Anthony D Elmendorf**, **John P Greenlees**, **L G Lewis**, **Robert J Piacenza**, **Georgia Triantafillou** and **Stefan Waner**

Publication: CBMS Regional Conference Series in Mathematics

Publication Year:
1996; Volume 91

ISBNs: 978-0-8218-0319-6 (print); 978-1-4704-2451-0 (online)

DOI: https://doi.org/10.1090/cbms/091

MathSciNet review: MR1413302

MSC: Primary 55P91; Secondary 18G99, 55N91, 55U35

### Table of Contents

**Front/Back Matter**

**Chapters**

- 1. Introduction
- Chapter I. Equivariant cellular and homology theory
- Chapter II. Postnikov systems, localization, and completion
- Chapter III. Equivariant rational homotopy theory (by Georgia Triantafillou)
- Chapter IV. Smith theory
- Chapter V. Categorical constructions; equivariant applications
- Chapter VI. The homotopy theory of diagrams (by Robert J. Piacenza)
- Chapter VII. Equivariant bundle theory and classifying spaces
- Chapter VIII. The Sullivan conjecture
- Chapter IX. An introduction to equivariant stable homotopy
- Chapter X. $G-\textrm {CW}(V)$ complexes and $RO(G)$-graded cohomology (by Stefan Waner)
- Chapter XI. The equivariant Hurewicz and suspension theorems (by L. Guance Lewis, Jr.)
- Chapter XII. The equivariant stable homotopy category
- Chapter XIII. $RO(G)$-graded homology and cohomology theories
- Chapter XIV. An introduction to equivariant $K$-theory (by J. P. C. Greenlees)
- Chapter XV. An introduction to equivariant cobordism (by S. R. Costenoble)
- Chapter XVI. Spectra and $G$-spectra; change of groups; duality
- Chapter XVII. The Burnside ring
- Chapter XVIII. Transfer maps in equivariant bundle theory
- Chapter XIX. Stable homotopy and Mackey functors
- Chapter XX. The Segal conjecture
- Chapter XXI. Generalized Tate cohomology (by J. P. C. Greenlees and J. P. May)
- Chapter XXII. Twisted half-smash products and function spectra (by Michael Cole)
- Chapter XXIII. Brave new algebra
- Chapter XXIV, Brave new equivariant foundations (by A. D. Elmendorf, L. G. Lewis, Jr., and J. P. May)
- Chapter XXV. Brave new equivariant algebra (by J. P. C. Greenlees and J. P. May)
- Chapter XXVI. Localization and completion in complex bordism (by J. P. C. Greenlees and J. P. May)
- Chapter XXVII. A completion theorem in complex cobordism (by G. Comezana and J. P. May)
- Chapter XXVIII. Calculations in complex equivariant bordism (by G. Comezaña)