Wave Packet Analysis

Christoph Thiele
TITLES IN THIS SERIES

68 J. William Helton, Joseph A. Ball, Charles R. Johnson, and John N. Palmer, Operator theory, analytic functions, matrices, and electrical engineering, 1987
67 Harald Upmeier, Jordan algebras in analysis, operator theory, and quantum mechanics, 1987
66 G. Andrews, q-Series: Their development and application in analysis, number theory, combinatorics, physics and computer algebra, 1986
65 Paul H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, 1986
64 Donald S. Passman, Group rings, crossed products and Galois theory, 1986
63 Walter Rudin, New constructions of functions holomorphic in the unit ball of $C^n$, 1986
62 Béla Bollobás, Extremal graph theory with emphasis on probabilistic methods, 1986
61 Mogens Flensted-Jensen, Analysis on non-Riemannian symmetric spaces, 1986
60 Gilles Pisier, Factorization of linear operators and geometry of Banach spaces, 1986
59 Roger Howe and Allen Moy, Harish-Chandra homomorphisms for p-adic groups, 1985
58 H. Blaine Lawson, Jr., The theory of gauge fields in four dimensions, 1985
57 Jerry L. Kazdan, Prescribing the curvature of a Riemannian manifold, 1985
56 Hari Bercovici, Ciprian Foiaş, and Carl Pearcy, Dual algebras with applications to invariant subspaces and dilation theory, 1985
55 William Arveson, Ten lectures on operator algebras, 1984
54 William Fulton, Introduction to intersection theory in algebraic geometry, 1984
53 Wilhelm Klingenberg, Closed geodesics on Riemannian manifolds, 1983
52 Tsit-Yuen Lam, Orderings, valuations and quadratic forms, 1983
51 Masamichi Takesaki, Structure of factors and automorphism groups, 1983
50 James Eells and Luc Lemaire, Selected topics in harmonic maps, 1983
49 John M. Franks, Homology and dynamical systems, 1982
48 W. Stephen Wilson, Brown-Peterson homology: an introduction and sampler, 1982
47 Jack K. Hale, Topics in dynamic bifurcation theory, 1981
45 Ronald L. Graham, Rudiments of Ramsey theory, 1981
44 Phillip A. Griffiths, An introduction to the theory of special divisors on algebraic curves, 1980
43 William Jaco, Lectures on three-manifold topology, 1980
42 Jean Dieudonné, Special functions and linear representations of Lie groups, 1980
41 D. J. Newman, Approximation with rational functions, 1979
40 Jean Mawhin, Topological degree methods in nonlinear boundary value problems, 1979
39 George Lusztig, Representations of finite Chevalley groups, 1978
38 Charles Conley, Isolated invariant sets and the Morse index, 1978
37 Masayoshi Nagata, Polynomial rings and affine spaces, 1978
36 Carl M. Pearcy, Some recent developments in operator theory, 1978
35 R. Bowen, On Axiom A diffeomorphisms, 1978
34 L. Auslander, Lecture notes on nil-theta functions, 1977
33 G. Glauberman, Factorizations in local subgroups of finite groups, 1977
32 W. M. Schmidt, Small fractional parts of polynomials, 1977
31 R. R. Coifman and G. Weiss, Transference methods in analysis, 1977

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
Titles in This Series

105 Christoph Thiele, Wave packet analysis, 2006
104 Donald G. Saari, Collisions, rings, and other Newtonian N-body problems, 2005
103 Iain Raeburn, Graph algebras, 2005
102 Ken Ono, The web of modularity: Arithmetic of the coefficients of modular forms and q series, 2004
101 Henri Darmon, Rational points on modular elliptic curves, 2004
100 Alexander Volberg, Calderón-Zygmund capacities and operators on nonhomogeneous spaces, 2003
99 Alain Lascoux, Symmetric functions and combinatorial operators on polynomials, 2003
98 Alexander Varchenko, Special functions, KZ type equations, and representation theory, 2003
97 Bernd Sturmfels, Solving systems of polynomial equations, 2002
96 Niky Kamran, Selected topics in the geometrical study of differential equations, 2002
95 Benjamin Weiss, Single orbit dynamics, 2000
94 David J. Saltman, Lectures on division algebras, 1999
93 Goro Shimura, Euler products and Eisenstein series, 1997
91 J. P. May et al., Equivariant homotopy and cohomology theory, dedicated to the memory of Robert J. Piacenza, 1996
90 John Roe, Index theory, coarse geometry, and topology of manifolds, 1996
89 Clifford Henry Taubes, Metrics, connections and gluing theorems, 1996
88 Craig Huneke, Tight closure and its applications, 1996
87 John Erik Fornaess, Dynamics in several complex variables, 1996
86 Sorin Popa, Classification of subfactors and their endomorphisms, 1995
85 Michio Jimbo and Tetsuji Miwa, Algebraic analysis of solvable lattice models, 1994
84 Hugh L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, 1994
83 Carlos E. Kenig, Harmonic analysis techniques for second order elliptic boundary value problems, 1994
82 Susan Montgomery, Hopf algebras and their actions on rings, 1993
81 Steven G. Krantz, Geometric analysis and function spaces, 1993
80 Vaughan F. R. Jones, Subfactors and knots, 1991
78 Edward Formanek, The polynomial identities and variants of n × n matrices, 1991
77 Michael Christ, Lectures on singular integral operators, 1990
76 Klaus Schmidt, Algebraic ideas in ergodic theory, 1990
75 F. Thomas Farrell and L. Edwin Jones, Classical aspherical manifolds, 1990
74 Lawrence C. Evans, Weak convergence methods for nonlinear partial differential equations, 1990
73 Walter A. Strauss, Nonlinear wave equations, 1989
72 Peter Orlik, Introduction to arrangements, 1989
71 Harry Dym, J contractive matrix functions, reproducing kernel Hilbert spaces and interpolation, 1989
70 Richard F. Gundy, Some topics in probability and analysis, 1989
69 Frank D. Grosshans, Gian-Carlo Rota, and Joel A. Stein, Invariant theory and superalgebras, 1987
Wave Packet Analysis

Christoph Thiele
NSF-CBMS Regional Conference on
Wave Packets, Multilinear Operators, and Carleson Theorems,
held at the Georgia Institute of Technology, May 23–28, 2004

Partially supported by the National Science Foundation

The author acknowledges support from the Conference Board of
Mathematical Sciences and NSF Grants DMS 0400879 and DMS 9985572.

2000 Mathematics Subject Classification. Primary 42–02;
Secondary 42A99, 47H60, 42A20.

For additional information and updates on this book, visit

www.ams.org/bookpages/cbms-105

Library of Congress Cataloging-in-Publication Data
Thiele, Christoph, 1968–
Wave packet analysis / Christoph Thiele.
p. cm. – (Regional conference series in mathematics, ISSN 0160-7642 ; no. 105)
Includes bibliographical references.
ISBN 0-8218-3661-7 (alk. paper)
1. Wave packets. 2. Wavelets (Mathematics) 3. Linear operators. 4. Walsh functions.
I. Title. II. Series.
QA1.R33 no. 105
[QA403.3]
510.s—dc22
[515'.2433]
2005057101

Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy a chapter for use
in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Requests for such
permission should be addressed to the Acquisitions Department, American Mathematical Society,
201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by
e-mail to reprint-permission@ams.org.

© 2006 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 11 10 09 08 07 06
Contents

Preface vii

Chapter 1. Introduction 1
Chapter 2. Wavelets and square functions 5
Chapter 3. Interpolation of multilinear operators 15
Chapter 4. Paraproducts 23
Chapter 5. Wave packets 31
Chapter 6. Multilinear forms with modulation symmetries 41
6.1. The bilinear Hilbert transform 51
Chapter 7. Carleson’s Theorem 53
Chapter 8. The Walsh model 63
8.1. The quartile operator 65
8.2. Almost everywhere convergence of Walsh series 68
Chapter 9. Further applications of wave packet analysis 75
9.1. Maximal bilinear operators 75
9.2. Degenerate and nearly degenerate \( \Gamma \) 77
9.3. More multilinear operators 80
Bibliography 85
This page intentionally left blank
Preface

These notes arose from a series of lectures I gave at the NSF/CBMS Regional Conference in the Mathematical Sciences at the Georgia Institute of Technology May 23-28 2004. The other speakers at that conference were A. Iosevich, I. Laba, X. Li, A. Magyar, C. Muscalu, K. Oskolkov, A. Seeger, all of whom I would like to thank, as well as all attendees of this conference.

My special thanks go to Michael Lacey and Gerd Mockenhaupt who organized the conference, for their warm hospitality and the smooth functioning of the conference.

Finally, I would like to thank Victor Lie, Paco Villarroja, and Tamara Kucherenko for reading early versions of the manuscript and making many suggestions which turned into improvements of the text.

Christoph Thiele
Bibliography

[1] Billard, P. Sur la convergence presque partout de la series de Fourier-Walsh des fonctions de l'espace $L^2([0,1])$ Studia math. 28 pp. 363-388 [1966/67]
[8] C. Demeter, C. Thiele, and T. Tao Maximal multilinear operators work in progress
[19] Lacey, M., Li, X., On the Hilbert transform and $C^{1+\epsilon}$ Families of Lines. preprint
[25] Li, X., Uniform bounds for the bilinear Hilbert transform II. preprint [2001]
[26] Li, X., PhD thesis, University of Missouri, Columbia [2001]


[34] Muscalu, C., Tao, T., Thiele, C. A Carleson type theorem for a Cantor group model of the scattering transform Nonlinearity 19 no. 1. pp. 219-246 [2003]


[37] Sjölin, P., Convergence almost everywhere of certain singular integrals and multiple Fourier series Arkiv f. Mat. 9 pp. 65-90 , [1971]


[40] Thiele, C. The bilinear Hilbert transform, Habilitationsschrift submitted to the Math and Science faculty of the Christian Albrechts Universität zu Kiel, [1998]


Wave Packet Analysis
The concept of “wave packet analysis” originates in Carleson’s famous proof of almost everywhere convergence of Fourier series of $L^2$ functions. It was later used by Lacey and Thiele to prove bounds on the bilinear Hilbert transform. For quite some time, Carleson’s wave packet analysis was thought to be an important idea, but that it had limited applications. But in recent years, it has become clear that this is an important tool for a number of other applications. This book is an introduction to these tools. It emphasizes the classical successes (Carleson’s theorem and the Hilbert transform) in the main development. However, the book closes with a dedicated chapter on more recent results.

Carleson’s original theorem is sometimes cited as one of the most important developments of 20th century harmonic analysis. The set of ideas stemming from his proof is now seen as an essential element in modern harmonic analysis. Indeed, Thiele won the Salem prize jointly with Michael Lacey for work in this area.

The book gives a nice survey of important material, such as an overview of the theory of singular integrals and wave packet analysis itself. There is a separate chapter on “further developments”, which gives a broader view on the subject, though it does not exhaust all ongoing developments.