Nonlinear Dispersive Equations
Local and Global Analysis
Terence Tao
Nonlinear Dispersive Equations
Local and Global Analysis
This page intentionally left blank
Nonlinear Dispersive Equations
Local and Global Analysis
Terence Tao
Tao, Terence, 1975–
Nonlinear dispersive equations: Local and global analysis / Terence Tao.
p. cm. — (Regional conference series in mathematics, ISSN 0160-7642 ; no. 106)
Includes bibliographical references.
1. Nonlinear wave equations. 2. Differential equations, Partial. I. Title. II. Series.
QA1.R33 no. 106
[QA927]
510 s—dc22
[530.124]
2006042820

Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy a chapter for use
in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Requests for such
permission should be addressed to the Acquisitions Department, American Mathematical Society,
201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by
e-mail to reprint-permission@ams.org.

© 2006 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.

Visit the AMS home page at http://www.ams.org/
10 9 8 7 6 5 4 3 2 1 11 10 09 08 07 06
To Laura, for being so patient.
This page intentionally left blank
Contents

Preface ix

Chapter 1. Ordinary differential equations 1
 1.1. General theory 2
 1.2. Gronwall’s inequality 11
 1.3. Bootstrap and continuity arguments 20
 1.4. Noether’s theorem 26
 1.5. Monotonicity formulae 35
 1.6. Linear and semilinear equations 40
 1.7. Completely integrable systems 49

Chapter 2. Constant coefficient linear dispersive equations 55
 2.1. The Fourier transform 62
 2.2. Fundamental solution 69
 2.3. Dispersion and Strichartz estimates 73
 2.4. Conservation laws for the Schrödinger equation 82
 2.5. The wave equation stress-energy tensor 88
 2.6. $X^{s,b}$ spaces 97

Chapter 3. Semilinear dispersive equations 109
 3.1. On scaling and other symmetries 114
 3.2. What is a solution? 120
 3.3. Local existence theory 129
 3.4. Conservation laws and global existence 144
 3.5. Decay estimates 153
 3.6. Scattering theory 162
 3.7. Stability theory 171
 3.8. Illposedness results 180
 3.9. Almost conservation laws 186

Chapter 4. The Korteweg de Vries equation 197
 4.1. Existence theory 202
 4.2. Correction terms 213
 4.3. Symplectic non-squeezing 218
 4.4. The Benjamin-Ono equation and gauge transformations 223

Chapter 5. Energy-critical semilinear dispersive equations 231
 5.1. The energy-critical NLW 233
 5.2. Bubbles of energy concentration 247
 5.3. Local Morawetz and non-concentration of mass 257
 5.4. Minimal-energy blowup solutions 262
CONTENTS

5.5. Global Morawetz and non-concentration of mass 271

Chapter 6. Wave maps
6.1. Local theory 277
6.2. Orthonormal frames and gauge transformations 299
6.3. Wave map decay estimates 310
6.4. Heat flow 320

Chapter A. Appendix: tools from harmonic analysis 329
Chapter B. Appendix: construction of ground states 347
Bibliography 363
Preface

Politics is for the present, but an equation is something for eternity.
(Albert Einstein)

This monograph is based on (and greatly expanded from) a lecture series given at the NSF-CBMS regional conference on nonlinear and dispersive wave equations at New Mexico State University, held in June 2005. Its objective is to present some aspects of the global existence theory (and in particular, the regularity and scattering theory) for various nonlinear dispersive and wave equations, such as the Korteweg-de Vries (KdV), nonlinear Schrödinger, nonlinear wave, and wave maps equations. The theory here is rich and vast and we cannot hope to present a comprehensive survey of the field here; our aim is instead to present a sample of results, and to give some idea of the motivation and general philosophy underlying the problems and results in the field, rather than to focus on the technical details. We intend this monograph to be an introduction to the field rather than an advanced text; while we do include some very recent results, and we imbue some more classical results with a modern perspective, our main concern will be to develop the fundamental tools, concepts, and intuitions in as simple and as self-contained a matter as possible. This is also a pedagogical text rather than a reference; many details of arguments are left to exercises or to citations, or are sketched informally. Thus this text should be viewed as being complementary to the research literature on these topics, rather than being a substitute for them.

The analysis of PDE is a beautiful subject, combining the rigour and technique of modern analysis and geometry with the very concrete real-world intuition of physics and other sciences. Unfortunately, in some presentations of the subject (at least in pure mathematics), the former can obscure the latter, giving the impression of a fearsomely technical and difficult field to work in. To try to combat this, this book is devoted in equal parts to rigour and to intuition; the usual formalism of definitions, propositions, theorems, and proofs appear here, but will be interspersed and complemented with many informal discussions of the same material, centering around vague “Principles” and figures, appeal to physical intuition and examples, back-of-the-envelope computations, and even some whimsical quotations. Indeed, the exposition and exercises here reflect my personal philosophy that to truly understand a mathematical result one must view it from as many perspectives as possible (including both rigorous arguments and informal heuristics), and must also be able to translate easily from one perspective to another. The reader should thus be aware of which statements in the text are rigorous, and which ones are heuristic, but this should be clear from context in most cases.

To restrict the field of study, we shall focus primarily on defocusing equations, in which soliton-type behaviour is prohibited. From the point of view of global existence, this is a substantially easier case to study than the focusing problem, in
which one has the fascinating theory of solitons and multi-solitons, as well as various mechanisms to enforce blow-up of solutions in finite or infinite time. However, we shall see that there are still several analytical subtleties in the defocusing case, especially when considering critical nonlinearities, or when trying to establish a satisfactory scattering theory. We shall also work in very simple domains such as Euclidean space \mathbb{R}^n or tori \mathbb{T}^n, thus avoiding consideration of boundary-value problems, or curved space, though these are certainly very important extensions to the theory. One further restriction we shall make is to focus attention on the initial value problem when the initial data lies in a Sobolev space $H^s_0(\mathbb{R}^d)$, as opposed to more localised choices of initial data (e.g. in weighted Sobolev spaces, or self-similar initial data). This restriction, combined with the previous one, makes our choice of problem translation-invariant in space, which leads naturally to the deployment of the Fourier transform, which turns out to be a very powerful tool in our analysis. Finally, we shall focus primarily on only four equations: the semilinear Schrödinger equation, the semilinear wave equation, the Korteweg-de Vries equation, and the wave maps equation. These four equations are of course only a very small sample of the nonlinear dispersive equations studied in the literature, but they are reasonably representative in that they showcase many of the techniques used for more general equations in a comparatively simple setting.

Each chapter of the monograph is devoted to a different class of differential equations; generally speaking, in each chapter we first study the algebraic structure of these equations (e.g. symmetries, conservation laws, and explicit solutions), and then turn to the analytic theory (e.g. existence and uniqueness, and asymptotic behaviour). The first chapter is devoted entirely to *ordinary differential equations* (ODE). One can view partial differential equations (PDE) such as the nonlinear dispersive and wave equations studied here, as infinite-dimensional analogues of ODE; thus finite-dimensional ODE can serve as a simplified model for understanding techniques and phenomena in PDE. In particular, basic PDE techniques such as Picard and Duhamel iteration, energy methods, continuity or bootstrap arguments, conservation laws, near-conservation laws, and monotonicity formulae all have useful ODE analogues. Furthermore, the analogy between classical mechanics and quantum mechanics provides a useful heuristic correspondence between Schrödinger type equations, and classical ODE involving one or more particles, at least in the high-frequency regime.

The second chapter is devoted to the theory of the basic linear dispersive models: the *Airy equation*, the *free Schrödinger equation*, and the *free wave equation*. In particular, we show how the Fourier transform and conservation law methods, can be used to establish existence of solutions, as well as basic estimates such as the dispersive estimate, local smoothing estimates, Strichartz estimates, and $X^{s,b}$ estimates.

In the third chapter we begin studying nonlinear dispersive equations in earnest, beginning with two particularly simple semilinear models, namely the *nonlinear Schrödinger equation* (NLS) and *nonlinear wave equation* (NLW). Using these equations as examples, we illustrate the basic approaches towards defining and constructing solutions, and establishing local and global properties, though we defer the study of the more delicate energy-critical equations to a later chapter. (The mass-critical nonlinear Schrödinger equation is also of great interest, but we will not discuss it in detail here.)
In the fourth chapter, we analyze the *Korteweg de Vries equation* (KdV), which requires some more delicate analysis due to the presence of derivatives in the nonlinearity. To partly compensate for this, however, one now has the structures of nonresonance and complete integrability; the interplay between the integrability on one hand, and the Fourier-analytic structure (such as nonresonance) on the other, is still only partly understood, however we are able to at least establish a quite satisfactory local and global wellposedness theory, even at very low regularities, by combining methods from both. We also discuss a less dispersive cousin of the KdV equation, namely the *Benjamin-Ono equation*, which requires more nonlinear techniques, such as gauge transforms, in order to obtain a satisfactory existence and wellposedness theory.

In the fifth chapter we return to the semilinear equations (NLS and NLW), and now establish large data global existence for these equations in the defocusing, energy-critical case. This requires the full power of the local wellposedness and perturbation theory, together with Morawetz-type estimates to prevent various kinds of energy concentration. The situation is especially delicate for the Schrödinger equation, in which one must employ the induction on energy methods of Bourgain in order to obtain enough structural control on a putative *minimal energy blowup solution* to obtain a contradiction and thus ensure global existence.

In the final chapter, we turn to the *wave maps equation* (WM), which is somewhat more nonlinear than the preceding equations, but which on the other hand enjoys a strongly geometric structure, which can in fact be used to renormalise most of the nonlinearity. The small data theory here has recently been completed, but the large data theory has just begun; it appears however that the geometric renormalisation provided by the harmonic map heat flow, together with a Morawetz estimate, can again establish global existence in the negatively curved case.

As a final disclaimer, this monograph is by no means intended to be a definitive, exhaustive, or balanced survey of the field. Somewhat unavoidably, the text focuses on those techniques and results which the author is most familiar with, in particular the use of the iteration method in various function spaces to establish a local and perturbative theory, combined with frequency analysis, conservation laws, and monotonicity formulae to then obtain a global non-perturbative theory. There are other approaches to this subject, such as via compactness methods, nonlinear geometric optics, infinite-dimensional Hamiltonian dynamics, or the techniques of complete integrability, which are also of major importance in the field (and can sometimes be combined, to good effect, with the methods discussed here); however, we will be unable to devote a full-length treatment of these methods in this text. It should also be emphasised that the methods, heuristics, principles and philosophy given here are tailored for the goal of analyzing the Cauchy problem for semilinear dispersive PDE; they do not necessarily extend well to other PDE questions (e.g. control theory or inverse problems), or to other classes of PDE (e.g. conservation laws or to parabolic and elliptic equations), though there are certain many connections and analogies between results in dispersive equations and in other classes of PDE.

I am indebted to my fellow members of the "I-team" (Jim Colliander, Markus Keel, Gigliola Staffilani, Hideo Takaoka), to Sergiu Klainerman, and to Michael Christ for many entertaining mathematical discussions, which have generated much of the intuition that I have tried to place into this monograph. I am also very
thankful for Jim Ralston for using this text to teach a joint PDE course, and providing me with careful corrections and other feedback on the material. I also thank Soonsik Kwon for additional corrections. Last, but not least, I am grateful to my wife Laura for her support, and for pointing out the analogy between the analysis of nonlinear PDE and the electrical engineering problem of controlling feedback, which has greatly influenced my perspective on these problems (and has also inspired many of the diagrams in this text).

Terence Tao

Notation. As is common with any book attempting to survey a wide range of results by different authors from different fields, the selection of a unified notation becomes very painful, and some compromises are necessary. In this text I have (perhaps unwisely) decided to make the notation as globally consistent across chapters as possible, which means that any individual result presented here will likely have a notation slightly different from the way it is usually presented in the literature, and also that the notation is more finicky than a local notation would be (often because of some ambiguity that needed to be clarified elsewhere in the text). For the most part, changing from one convention to another is a matter of permuting various numerical constants such as 2, π, i, and -1; these constants are usually quite harmless (except for the sign -1), but one should nevertheless take care in transporting an identity or formula in this book to another context in which the conventions are slightly different.

In this text, d will always denote the dimension of the ambient physical space, which will either be a Euclidean space \(\mathbb{R}^d \) or the torus \(\mathbb{T}^d := (\mathbb{R}/2\pi \mathbb{Z})^d \). (Chapter 1 deals with ODE, which can be considered to be the case \(d = 0 \).) All integrals on these spaces will be with respect to Lebesgue measure \(dx \). If \(x = (x_1, \ldots, x_d) \) and \(\xi = (\xi_1, \ldots, \xi_d) \) lie in \(\mathbb{R}^d \), we use \(x \cdot \xi \) to denote the dot product \(x \cdot \xi := x_1 \xi_1 + \ldots + x_d \xi_d \), and \(|x| \) to denote the magnitude \(|x| := (x_1^2 + \ldots + x_d^2)^{1/2} \). We also use \(\langle x \rangle \) to denote the inhomogeneous magnitude (or Japanese bracket) \(\langle x \rangle := (1 + |x|^2)^{1/2} \) of \(x \), thus \(\langle x \rangle \) is comparable to \(|x| \) for large \(x \) and comparable to 1 for small \(x \). In a similar spirit, if \(x = (x_1, \ldots, x_d) \in \mathbb{T}^d \) and \(k = (k_1, \ldots, k_d) \in \mathbb{Z}^d \) we define \(k \cdot x := k_1 x_1 + \ldots + k_d x_d \in \mathbb{T} \). In particular the quantity \(e^{i k \cdot x} \) is well-defined.

We say that \(I \) is a time interval if it is a connected subset of \(\mathbb{R} \) which contains at least two points (so we allow time intervals to be open or closed, bounded or unbounded). If \(u : I \times \mathbb{R}^d \to \mathbb{C}^n \) is a (possibly vector-valued) function of spacetime, we write \(\partial_t u \) for the time derivative \(\frac{\partial u}{\partial t} \), and \(\partial_x u, \ldots, \partial_{x_d} u \) for the spatial derivatives \(\frac{\partial u}{\partial x_1}, \ldots, \frac{\partial u}{\partial x_d} \); these derivatives will either be interpreted in the classical sense (when \(u \) is smooth) or the distributional (weak) sense (when \(u \) is rough). We use \(\nabla_x u : I \times \mathbb{R}^d \to \mathbb{C}^{n \times d} \) to denote the spatial gradient \(\nabla_x u = (\partial_{x_1} u, \ldots, \partial_{x_d} u) \). We can iterate this gradient to define higher derivatives \(\nabla_x^k u \) for \(k = 0, 1, \ldots \) Of course,

\(^1\)We will be using two slightly different notions of spacetime, namely Minkowski space \(\mathbb{R}^{1+d} \) and Galilean spacetime \(\mathbb{R} \times \mathbb{R}^d \); in the very last section we also need to use parabolic spacetime \(\mathbb{R}^+ \times \mathbb{R}^d \). As vector spaces, they are of course equivalent to each other (and to the Euclidean space \(\mathbb{R}^{d+1} \)), but we will place different (pseudo)metric structures on them. Generally speaking, wave equations will use Minkowski space, whereas nonrelativistic equations such as Schrödinger equations will use Galilean spacetime, while heat equations use parabolic spacetime. For the most part the reader will be able to safely ignore these subtle distinctions.
these definitions also apply to functions on \(\mathbb{T}^d \), which can be identified with periodic functions on \(\mathbb{R}^d \).

We use the Einstein convention for summing indices, with Latin indices ranging from 1 to \(d \), thus for instance \(x_j \partial_{x_j} u \) is short for \(\sum_{j=1}^d x_j \partial_{x_j} u \). When we come to wave equations, we will also be working in a Minkowski space \(\mathbb{R}^{1+d} \) with a Minkowski metric \(g_{\alpha\beta} \); in such cases, we will use Greek indices and sum from 0 to \(d \) (with \(x^0 = t \) being the time variable), and use the metric to raise and lower indices. Thus for instance if we use the standard Minkowski metric \(dg^2 = -dt^2 + |dx|^2 \), then \(\partial_0 u = \partial_t u \) but \(\partial^0 u = -\partial_t u \).

In this monograph we always adopt the convention that \(\int_s^t = -\int_t^s \) if \(t < s \). This convention will usually be applied only to integrals in the time variable.

We use the Lebesgue norms

\[
\|f\|_{L^p_x(\mathbb{R}^d \to \mathbb{C})} := (\int_{\mathbb{R}^d} |f(x)|^p \, dx)^{1/p}
\]

for \(1 \leq p < \infty \) for complex-valued measurable functions \(f : \mathbb{R}^d \to \mathbb{C} \), with the usual convention

\[
\|f\|_{L^\infty_x(\mathbb{R}^d \to \mathbb{C})} := \text{ess sup}_{x \in \mathbb{R}^d} |f(x)|.
\]

In many cases we shall abbreviate \(L^p_x(\mathbb{R}^d \to \mathbb{C}) \) as \(L^p(\mathbb{R}^d) \), \(L^p(\mathbb{R}^d) \), or even \(L^p \) when there is no chance of confusion. The subscript \(x \), which denotes the dummy variable, is of course redundant. However we will often retain it for clarity when dealing with PDE, since in that context one often needs to distinguish between Lebesgue norms in space \(x \), time \(t \), spatial frequency \(\xi \), or temporal frequency \(\tau \). Also we will need it to clarify expressions such as \(\|xf\|_{L^p_x(\mathbb{R}^d)} \), in which the expression in the norm depends explicitly on the variable of integration. We of course identify any two functions if they agree almost everywhere. One can of course replace the domain \(\mathbb{R}^d \) by the torus \(\mathbb{T}^d \) or the lattice \(\mathbb{Z}^d \), thus for instance

\[
\|f\|_{L^p_x(\mathbb{Z}^d \to \mathbb{C})} := (\sum_{k \in \mathbb{Z}^d} |f(k)|^p)^{1/p}.
\]

One can replace \(\mathbb{C} \) by any other Banach space \(X \), thus for instance \(L^p_x(\mathbb{R}^d \to X) \) is the space of all measurable functions \(u : \mathbb{R}^d \to X \) with finite norm

\[
\|u\|_{L^p_x(\mathbb{R}^d \to X)} := (\int_{\mathbb{R}^d} \|u(x)\|^p_X \, dx)^{1/p}
\]

with the usual modification for \(p = \infty \). In particular we can define the mixed Lebesgue norms \(L^p_I L^q_x(\mathbb{R}^d) \) for any time interval \(I \) as the space of all functions \(u : I \times \mathbb{R}^d \to \mathbb{C} \) with norm

\[
\|u\|_{L^p_I L^q_x(\mathbb{R}^d \to \mathbb{C})} := (\int_I \|u(t)\|_{L^q_x(\mathbb{R}^d)}^q \, dt)^{1/q} = (\int_{\mathbb{R}^d} (\int_I |u(t,x)|^r \, dt)^{q/r} \, dx)^{1/q}
\]

with the usual modifications when \(q = \infty \) or \(r = \infty \). One can also use this Banach space notation to make sense of the \(L^p \) norms of tensors such as \(\nabla f \), \(\nabla^2 f \), etc., provided of course that such derivatives exist in the \(L^p \) sense.

In a similar spirit, if \(I \) is a time interval and \(k \geq 0 \), we use \(C^k_I(\mathbb{R}^d) \) to denote the space of all \(k \)-times continuously differentiable functions \(u : I \to \mathbb{C} \).
the norm
\[\|u\|_{C^k(I \to X)} := \sum_{j=0}^k \|\partial_j^k u\|_{L^\infty(I \to X)}. \]

We adopt the convention that \(\|u\|_{C^k(I \to X)} = \infty \) if \(u \) is not \(k \)-times continuously differentiable. One can of course also define spatial analogues \(C^k_t(x) \) of these spaces, as well as spacetime versions \(C^k_{t,x}(I \times \mathbb{R}^d \to X) \). We caution that if \(I \) is not compact, then it is possible for a function to be \(k \)-times continuously differentiable but have infinite \(C^k_t \) norm; in such cases we say that \(u \in C^k_{t,\text{loc}}(I \to X) \) rather than \(u \in C^k_t(I \to X) \). More generally, a statement of the form \(u \in X_{\text{loc}}(\Omega) \) on a domain \(\Omega \) means that we can cover \(\Omega \) by open sets \(V \) such that the restriction \(u|_V \) of \(u \) to each of these sets \(V \) is in \(X(\Omega) \); under reasonable assumptions on \(X \), this also implies that \(u|K \in X(K) \) for any compact subset \(K \) of \(\Omega \). As a rule of thumb, the global spaces \(X(\Omega) \) will be used for quantitative control (estimates), whereas the local spaces \(X_{\text{loc}}(\Omega) \) are used for qualitative control (regularity); indeed, the local spaces \(X_{\text{loc}} \) are typically only Frechet spaces rather than Banach spaces. We will need both types of control in this text, as one typically needs qualitative control to ensure that the quantitative arguments are rigorous.

If \((X,d_X) \) is a metric space and \(Y \) is a Banach space, we use \(\dot{C}^{0,1}(X \to Y) \) to denote the space of all Lipschitz continuous functions \(f : X \to Y \), with norm
\[\| f \|_{\dot{C}^{0,1}(X \to Y)} := \sup_{x,x' \in X : x \neq x'} \frac{\| f(x) - f(x') \|_Y}{d_X(x,x')}. \]

(One can also define the inhomogeneous Lipschitz norm \(\| f \|_{\dot{C}^{0,1}} := \| f \|_{\dot{C}^{0,1}} + \| f \|_{\dot{C}^0} \), but we will not need this here.) Thus for instance \(\dot{C}^1(\mathbb{R}^d \to \mathbb{R}^m) \) is a subset of \(\dot{C}^{0,1}(\mathbb{R}^d \to \mathbb{R}^m) \), which is in turn a subset of \(C^0_{\text{loc}}(\mathbb{R}^d \to \mathbb{R}^m) \). The space \(\dot{C}^{0,1}_{\text{loc}}(X \to Y) \) is thus the space of locally Lipschitz functions (i.e. every \(x \in X \) is contained in a neighbourhood on which the function is Lipschitz).

In addition to the above function spaces, we shall also use Sobolev spaces \(H^s, W^{s,p}, H^s, W^{s,p} \), which are defined in Appendix A, and \(X^{s,b} \) spaces, which are defined in Section 2.6.

If \(V \) and \(W \) are finite-dimensional vector spaces, we use \(\text{End}(V \to W) \) to denote the space of linear transformations from \(V \) to \(W \), and \(\text{End}(V) = \text{End}(V \to V) \) for the ring of linear transformations from \(V \) to itself. This ring contains the identity transformation \(\text{id} = \text{id}_V \).

If \(X \) and \(Y \) are two quantities (typically non-negative), we use \(X \lesssim Y \) or \(Y \gtrsim X \) to denote the statement that \(X \leq CY \) for some absolute constant \(C > 0 \). We use \(X = O(Y) \) synonymously with \(|X| \lesssim Y \). More generally, given some parameters \(a_1, \ldots, a_k \), we use \(X \lesssim_{a_1, \ldots, a_k} Y \) or \(Y \gtrsim_{a_1, \ldots, a_k} X \) to denote the statement that \(X \leq C_{a_1, \ldots, a_k} Y \) for some (typically large) constant \(C_{a_1, \ldots, a_k} > 0 \) which can depend on the parameters \(a_1, \ldots, a_k \), and define \(X = O_{a_1, \ldots, a_k}(Y) \) similarly. Typical choices of parameters include the dimension \(d \), the regularity \(s \), and the exponent \(p \). We will also say that \(X \) is controlled by \(a_1, \ldots, a_k \) if \(X = O_{a_1, \ldots, a_k}(1) \). We use \(X \sim Y \) to denote the statement \(X \lesssim Y \lesssim X \), and similarly \(X \sim_{a_1, \ldots, a_k} Y \) denotes \(X \lesssim_{a_1, \ldots, a_k} Y \lesssim_{a_1, \ldots, a_k} X \). We will occasionally use the notation \(X \ll_{a_1, \ldots, a_k} Y \) or \(Y \gg_{a_1, \ldots, a_k} X \) to denote the statement \(X \leq c_{a_1, \ldots, a_k} Y \) for some suitably small quantity \(c_{a_1, \ldots, a_k} > 0 \) depending on the parameters \(a_1, \ldots, a_k \). This notation is...
somewhat imprecise (as one has to specify what “suitably small” means) and so we shall usually only use it in informal discussions.

Recall that a function $f : \mathbb{R}^d \to \mathbb{C}$ is said to be rapidly decreasing if we have
\[
\|\langle x \rangle^N f(x)\|_{L_2^\infty(\mathbb{R}^d)} < \infty
\]
for all $N \geq 0$. We then say that a function is Schwartz if it is smooth and all of its derivatives $\partial_x^\alpha f$ are rapidly decreasing, where $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{Z}_+^d$ ranges over all multi-indices, and ∂_x^α is the differential operator
\[
\partial_x^\alpha := \left(\frac{\partial}{\partial x_1} \right)^{\alpha_1} \cdots \left(\frac{\partial}{\partial x_d} \right)^{\alpha_d}.
\]
In other words, f is Schwartz if and only if $\partial_x^\alpha f(x) = O_{f,\alpha,N}(\langle x \rangle^{-N})$ for all $\alpha \in \mathbb{Z}_+^d$ and all N. We use $\mathcal{S}(\mathbb{R}^d)$ to denote the space of all Schwartz functions. As is well known, this is a Frechet space, and thus has a dual $\mathcal{S}'(\mathbb{R}^d)^*$, the space of tempered distributions. This space contains all locally integrable functions of polynomial growth, and is also closed under differentiation, multiplication with functions g of symbol type (i.e. g and all its derivatives are of polynomial growth) and convolution with Schwartz functions; we will not present a detailed description of the distributional calculus here.
This page intentionally left blank
Bibliography

Y equations, Schrödinger fields, a in of.
Inequality Schrödinger Comm and Hardy of. behavior n, the equation well-posedness and (2002) critical of.
hyperbolic 5, o.
s solutions 2, S.
space for nonlinear the wave 4 a.
s periodic maps equation, wave.
nonlinear normal parabolic, o.
s the small Sd, periodic maps for e in.
nonlinear f.
of small high-dimensional on low-regularity Korteweg-de existence s equations, aerodynamics, as asymptotic generalized k in map, With, introduction e.
e for e e global, and e Comm non-linearity, the o.
of nonlinear nonlinear f.
nonlinear e in.
nonlinear f.
onlinear f.
nonlinear f.
onlinear f.
nonlinear f.

BIBLIOGRAPHY

[Car] X. Carvajal, Sharp global well-posedness for a higher order Schrödinger equation, preprint.

Y. microlocal. nonlinearity, (2001) for nonlinear Schroedinger-Korteweg-de
rfs for values the equations system and e.
ns, semilinear related Klein-Gordon of,
n, initial Schroedinger-Benjamin-Ono energy-
s, solutions 1 rough The 4 of,.
s, generalisations a and Hamiltonian range of,.
Diff the, nonlinear systems of scattering, light,
Method generalisations with Ph immersions.
equations, singularities minimal critical singularities of with 9.
non-coercive Korteweg-de
8, asymptotic to the the Illposedness Commun.
Painleve scattering Commun. Manuscript equation, of.
n and energy Cauchy, behaviour, for.
s, related some equations fluids, in in, the, for.
equa-
l, Benjamin-Ono well-posedness Klein-Gordon and stratified,
scattering equation nonlinear bilinear 3 for.
equations quadratic 2 for.
equations e some transcendent, forms, well-posedness nonlinear dimensions, some equations spaces Anomalous problem for in.
equation, the, equation critical,
equation. a well-posedness 1-dimensional.
equations of 2-spheres, problem for in.
ederivative equation, waves dimensions and of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.
equations of 2-Korteweg-de, equation critical equation. a well-posedness 1-dimensional.

\bibitem[Schn]{Schn} G. Schneider, \textit{Approximation of the Korteweg-de Vries equation by the non-linear Schr"{o}dinger equation}, J. Differential Equations \textbf{147} (1998), 333--354.

\bibitem[Sel]{Sel} S. Selberg, \textit{Multilinear space-time estimates and applications to local existence theory for non-linear wave equations}, Princeton University Thesis.

[TVZ] T. Tao, M. Visan, X. Zhang, {\textit{The nonlinear Schrödinger equation with power type nonlinearities}}, preprint.

N. Tzvetkov, Ill-posedness issues for nonlinear dispersive equations, lecture notes.

M. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation, preprint.

This page intentionally left blank
Titles in This Series

106 Terence Tao, Nonlinear dispersive equations: Local and global analysis, 2006
105 Christoph Thiele, Wave packet analysis, 2006
104 Donald G. Saari, Collisions, rings, and other Newtonian N-body problems, 2005
103 Iain Raeburn, Graph algebras, 2005
102 Ken Ono, The web of modularity: Arithmetic of the coefficients of modular forms and q series, 2004
101 Henri Darmon, Rational points on modular elliptic curves, 2004
100 Alexander Volberg, Calderón-Zygmund capacities and operators on nonhomogeneous spaces, 2003
99 Alain Lascoux, Symmetric functions and combinatorial operators on polynomials, 2003
98 Alexander Varchenko, Special functions, KZ type equations, and representation theory, 2003
97 Bernd Sturmfels, Solving systems of polynomial equations, 2002
96 Niky Kamran, Selected topics in the geometrical study of differential equations, 2002
95 Benjamin Weiss, Single orbit dynamics, 2000
94 David J. Saltman, Lectures on division algebras, 1999
93 Goro Shimura, Euler products and Eisenstein series, 1997
91 J. P. May et al., Equivariant homotopy and cohomology theory, dedicated to the memory of Robert J. Piacenza, 1996
90 John Roe, Index theory, coarse geometry, and topology of manifolds, 1996
89 Clifford Henry Taubes, Metrics, connections and gluing theorems, 1996
88 Craig Huneke, Tight closure and its applications, 1996
87 John Erik Fornæss, Dynamics in several complex variables, 1996
86 Sorin Popa, Classification of subfactors and their endomorphisms, 1995
85 Michio Jimbo and Tetsuji Miwa, Algebraic analysis of solvable lattice models, 1994
84 Hugh L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, 1994
83 Carlos E. Kenig, Harmonic analysis techniques for second order elliptic boundary value problems, 1994
82 Susan Montgomery, Hopf algebras and their actions on rings, 1993
81 Steven G. Krantz, Geometric analysis and function spaces, 1993
80 Vaughan F. R. Jones, Subfactors and knots, 1991
78 Edward Formanek, The polynomial identities and variants of $n \times n$ matrices, 1991
77 Michael Christ, Lectures on singular integral operators, 1990
76 Klaus Schmidt, Algebraic ideas in ergodic theory, 1990
75 F. Thomas Farrell and L. Edwin Jones, Classical aspherical manifolds, 1990
74 Lawrence C. Evans, Weak convergence methods for nonlinear partial differential equations, 1990
73 Walter A. Strauss, Nonlinear wave equations, 1989
72 Peter Orlik, Introduction to arrangements, 1989
71 Harry Dym, J contractive matrix functions, reproducing kernel Hilbert spaces and interpolation, 1989
70 Richard F. Gundy, Some topics in probability and analysis, 1989
69 Frank D. Grosshans, Gian-Carlo Rota, and Joel A. Stein, Invariant theory and superalgebras, 1987
For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
Among nonlinear PDEs, dispersive and wave equations form an important class of equations. These include the nonlinear Schrödinger equation, the nonlinear wave equation, the Korteweg de Vries equation, and the wave maps equation. This book is an introduction to the methods and results used in the modern analysis (both locally and globally in time) of the Cauchy problem for such equations.

Starting only with a basic knowledge of graduate real analysis and Fourier analysis, the text first presents basic nonlinear tools such as the bootstrap method and perturbation theory in the simpler context of nonlinear ODE, then introduces the harmonic analysis and geometric tools used to control linear dispersive PDE. These methods are then combined to study four model nonlinear dispersive equations. Through extensive exercises, diagrams, and informal discussion, the book gives a rigorous theoretical treatment of the material, the real-world intuition and heuristics that underlie the subject, as well as mentioning connections with other areas of PDE, harmonic analysis, and dynamical systems.

As the subject is vast, the book does not attempt to give a comprehensive survey of the field, but instead concentrates on a representative sample of results for a selected set of equations, ranging from the fundamental local and global existence theorems to very recent results, particularly focusing on the recent progress in understanding the evolution of energy-critical dispersive equations from large data. The book is suitable for a graduate course on nonlinear PDE.