Ergodic Theory, Groups, and Geometry
About this Title
Robert J. Zimmer, University of Chicago, Chicago, IL and Dave Witte Morris, University of Lethbridge, Lethbridge, AB, Canada
Publication: CBMS Regional Conference Series in Mathematics
Publication Year
2008: Volume 109
ISBNs: 978-0-8218-0980-8 (print); 978-1-4704-1567-9 (online)
DOI: http://dx.doi.org/10.1090/cbms/109
MathSciNet review: MR2457556
MSC: Primary 37C85; Secondary 22F10, 28D15, 37A15, 53C24, 57S20
Table of Contents
Front/Back Matter
Chapters
- Lecture 1. Introduction
- Lecture 2. Actions in dimension 1 or 2
- Lecture 3. Geometric structures
- Lecture 4. Fundamental groups I
- Lecture 5. Gromov representation
- Lecture 6. Superrigidity and first applications
- Lecture 7. Fundamental groups II (Arithmetic theory)
- Lecture 8. Locally homogeneous spaces
- Lecture 9. Stationary measures and projective quotients
- Lecture 10. Orbit equivalence
- 11. Appendix. Background material