Hodge Theory, Complex Geometry, and Representation Theory

Mark Green
Phillip Griffiths
Matt Kerr
Contents

Introduction 1
Acknowledgement 3

Lecture 1. The Classical Theory: Part I 5
 Beginnings of representation theory 13

Lecture 2. The Classical Theory: Part II 17

Lecture 3. Polarized Hodge Structures and Mumford-Tate Groups and Domains 31

Lecture 4. Hodge Representations and Hodge Domains 51

Lecture 5. Discrete Series and n-Cohomology 69
 Introduction 69
 Appendix to Lecture 5: The Borel-Weil-Bott (BWB) theorem 91

Lecture 6. Geometry of Flag Domains: Part I 95
 Appendix to Lecture 6: The GR- and KC- orbit structure of \(\tilde{D} \) and the GR-orbit structure of \(\mathcal{U} \) 120

Lecture 7. Geometry of Flag Domains: Part II 147
 Appendix to Lecture 7: The Borel-Weil-Bott theorem revisited 161

Lecture 8. Penrose Transforms in the Two Main Examples 165
 Appendix to Lecture 8: Proofs of the results on Penrose transforms for \(D \) and \(D' \) 178

Lecture 9. Automorphic Cohomology 191
 Appendix I to Lecture 9: The K-types of the TDLDS for \(SU(2,1) \) and \(Sp(4) \) 209
 Appendix II to Lecture 9: Schmid’s proof of the degeneracy of the HSSS for TDLDS in the \(SU(2,1) \) and \(Sp(4) \) cases 214
 Appendix III to Lecture 9: A general result relating TDLDS and Dolbeault cohomology of Mumford-Tate domains 218

Lecture 10. Miscellaneous Topics and Some Open Questions 221
 Appendix to Lecture 10: Boundary components and Carayol’s result 245

Bibliography 299

Index 303
Notations used in the talks
Bibliography

BIBLIOGRAPHY

[GG1] M. Green and P. Griffiths, Correspondence and Cycle Spaces: A result comparing their cohomologies, to appear in the volume in honor of Joe Harris’ 60th birthday.

[Sa] P. Sarnak, Notes on thin groups, lectures at MSRI.

Index

a representation that leads to a Hodge representation, 53
anisotropic maximal torus, 38
anti-dominant Weyl chamber, 71
arithmetic structure (on automorphic cohomology, 221
automorphic cohomology, 154

basic diagram, 149
Beilinson-Bernstein localization, 117
Blattner parameter, 202
Borel subgroup, 19
Borel-Weil-Bott theorem, 23
Bruhat cell, 181

canonical extension of the Hodge bundle, 18
Cartan decomposition, 53
Cartan involution, 53
Cartan sub-algebra, 19, 55
Cartan subgroup, 35
Cartan-Killing form, 55
Casimir operator, 200
Casselman-Osborne lemma, 194
Cauchy-Reimann subspace (of the tangent space), 135
Cauchy-Riemann tangent space, 99, 133
Cayley transform, 124, 254
center of the universal enveloping algebra, 70
character, 52
Chern form, 11, 75
Chow’s theorem, 238
classical flag domain, 27, 77
CM field, 48
do-character, 52
coroot vectors, 55
compact dual \tilde{D} of a period domain D, 34
compact dual of the period domain for Hodge structures of weight one, 8
compact roots, 62
completion of a variation of Hodge structure, 222
complex multiplication (CM) Hodge structure, 37, 46
congruence subgroup, 16
conservation law (for orbit codimensions, 128

correspondence diagram, 22
correspondence space, 21
correspondence space W, 95, 148
correspondence spaces, 27
cusp, 17
cusp form, 18
cuspidal automorphic cohomology, 221
cycle space \mathcal{U}, 95, 102
cycle spaces, 27

Deligne splitting (of a Hodge structure), 246
differential form, type of, 7
discrete series (DS), 69
discrete series for $SL_2(R)$, 14
dominant Weyl chamber, 55
dual pair, 111

enhanced flag variety, 147
exhaustion function, 96
exhaustion function modulo G_{R}, 108
expanding cohomology about \mathbb{Z}, 86
fan, 222, 272
flag domain, 14, 72
flag variety, 14, 72

(g_{C}, K_{C})-module, 71
grading, 53
grading associated to a filtration, 246
grading element, 227
Grauert domain, 107
Grothendieck residue symbol, 120
Gysin map, 33

Harish-Chandra module, 14, 70
Harish-Chandra parameter, 83, 202
Hermitian symmetric domain, 77
Hermitian type (of G), 109
Hermitian vector bundle, 35
highest weight, 56
highest weight vector, 72
Hilbert scheme, 104
Hochschild-Serre spectral sequence (HSSS), 88, 198
Hodge bundle, 9
Hodge bundles, 35
Hodge decomposition, 31
Hodge domain, 65
Hodge filtration, 31, 246
Hodge flag, 41
Hodge flags, 73
Hodge metric, 11
Hodge numbers, 34
Hodge representation, 51
Hodge structure of weight \(n \), 31
Hodge structure of weight one, 8
Hodge tensors, 34
Hodge’s theorem, 32
Hodge-Riemann bilinear relations, 8, 33
holomorphic automorphic form of weight \(n \), 17
holomorphic discrete series, 170
homogeneous complex manifold, 8
incidence variety \(I \), 95, 149
infinitesimal character, 72
infinitesimal period relation (IPR), 44
infinitesimal variation of Hodge structure (IVHS), 46
isogeny, 15
Iwasawa decomposition, 130

\(K \)-type, 83, 85, 87
Kostant class, 92, 225
Kostant form, 162

\(L \)-graded decomposition, 227
\(L^2 \)-cohomology group, 83
Lagangian Grassmannian \(\text{Gr}_L(h, \mathbb{C}^k) \), 35
Lagrange flag, 43
Lagrange line, 43, 44
Lagrange quadrilateral, 151
length \(l(w) \) of an element \(w \in W \), 228
Levi form (intrinsic), 142
Levi form (of an exhaustion function), 96
limiting mixed Hodge structure (LMHS), 248
limits of discrete series (LDS), 69
limits of discrete series for \(\text{SL}_2(\mathbb{R}) \), 14
local cohomology, 117
log analytic variety with slits, 273
logarithmic growth, 18

Matsuki duality, 14, 25, 111
Matsuki orbit triple, 124
Maurer-Cartan equation, 75, 174
Maurer-Cartan matrix, 76
mirror quintic variety, 42
mixed Hodge structure, 245
mixed Hodge structure split over \(\mathbb{R} \), 246
modular form, 18
monodromy group, 45
moving frame, 173
Mumford-Tate group, 36
Mumford-Tate group of a variation of Hodge structure, 45
neat (subgroups), 69
negative line bundle, 12
nilpotent cone, 222
nilpotent orbit, 249
nilpotent orbit theorem, 270
non-classical automorphic cohomology group, 165
non-classical flag domain, 27, 77
non-compact roots, 62
parabolic subgroup, 35
parabolic Picard modular forms, 236
Penrose transform, 23, 27, 162, 173, 181
period domain, 34
period domain Hodge structures of weight one, 8
period matrix, 6, 35
periods, 6
Picard modular forms, 173, 293
Plancherel formula, 69
polarized Hodge structure, 33
polarized Hodge structure of weight one, 8
positive line bundle, 12
positive root, 19
primitive decomposition, 248
primitive space, 248
projective frame, 149
property \(\text{W} \), 194
pseudo-concavity, 241

\(q(\mu) \), 77
\(q_e(\mu + \rho) \), 91
quartets, 122

rank of \(G \), 52
rationally connected complex manifold, 237
real form (of a complex Lie group, 14
reductive subgroup, 75
reference flag, 167
regular weight, 23, 69
relative differential, 153
restricted root system, 105, 129
restricted roots, 121
restriction of scalars, 54
root lattice, 19, 53
root spaces, 55
root vector, 19
root vectors, 55

(\(\sigma, \theta \))-stable, 121
\(\sigma \)-nilpotent orbit, 272
Schubert cell, 228
Schubert variations of Hodge structure, 228
semi-basic differential form, 174
Shimura curve, 222, 231, 232
Shimura varieties, 34
Siegel modular form, 178
Siegel’s generalized upper-half-plane \mathcal{H}_g, 35
sign reversal of the curvature, 12
simple Hodge structure, 37
simple root, 56
special divisor, 192
splitting of a mixed Hodge structure, 246
standard representation of \mathfrak{sl}_2, 19
strictness of a morphism, 32
structure theorem for a global variation of
Hodge structure, 46
sub-Hodge structure, 32
Tate Hodge structure, 33
Tate twist, 33
theta characteristic, 192
theta function, 24
theta-functions, 294
totally degenerate limit of discrete series
(TDLDS), 70
universal enveloping algebra, 70
universality, 104
variation of Hodge structure (VHS), 44
Vogan diagram, 59
$W^{(n)}_k$, 211
weight decomposition, 31
weight filtration, 246
weight filtration associated to a nilpotent
linear transformation, 248
weight lattice, 19, 52
weight space, 56
weight vector, 19
weights, 19
Weil operator, 32
Weyl group, 19, 55
Williams lemma, 194
Z-connected, 237
Zuckerman module, 117
Zuckerman tensoring, 214
Notations used in the talks

\(\wedge^{p,q} = \bigoplus_{r \leq p} \mathcal{I}^{r,s} \)

\(A^* = \text{the dual of a vector space } A \)

\(A^p,q(X) = C^\infty(p, q) \text{ forms on a complex manifold } X\)

\(A^r = \bigoplus_{p+q=r} = \text{polarized Hodge structure (PHS)} \)

\((A)_R = \text{real points in a complex vector space having a conjugation.} \)

\(b = \text{Borel subalgebra} \)

\(B = \text{unit ball in } \mathbb{C}^2 \subset \mathbb{P}^2 \)

\(B^c = \mathbb{P}^2 \setminus (\text{closure of } B) \)

\(B = \text{unit ball with conjugate complex structure} \)

\(B = \text{Cartan-Killing form or Borel subgroup, depending on the context} \)

\(B(N) = \text{set of nilpotent orbits (} F,N \text{), } F \in D \)

\(B(N) = \bar{B}(N) \text{ modulo rescalings} \)

\(c_\beta = \text{Cayley transform associated to a real, non-compact root } \beta \)

\(d_r = \text{relative differential} \)

\(D_n^\pm = \text{discrete series, and their limits, for } SL_2(\mathbb{R}) \)

\(D_\varphi = \text{Mumford-Tate domain} \)

\(F^p = \text{Hodge filtration bundles} \)

\(F^p_{\text{nil}} = \lim_{\text{Im } z \to \infty} \exp(zN) \cdot F \text{ for a nilpotent orbit } (F,N) \)

\(G = \mathbb{Q}\text{-algebraic group} \)

\(G_{\mathbb{R}}, G_{\mathbb{C}} = \text{corresponding real and complex Lie groups} \)

\(g^a, h, X_\alpha \text{ etc. are standard notations from Lie theory listed in Lecture 2} \)

\(g(W) = \text{set of gradings associated to a filtration } W \)

\(g_N = \ker(\text{ad } N) \cap \text{Im(} \text{ad } N) \)

\(\text{Gr } B(N) = \text{set of graded polarized Hodge structures associated to } B(N) \)

\(G_{\tilde{\varphi}} = \text{Mumford-Tate group of } (V, \tilde{\varphi}) \)

\(G_\varphi = \text{Mumford-Tate group of } (V, Q, \varphi) \)

\(W = \text{part of } G_{\mathbb{C}} \text{ lying over } W \)

\(\text{Gr}(n, E) = \text{Grassmannian of } n\text{-planes in a complex vector space } E \)

\(G(n, E) = \text{Grassmannian of } \mathbb{P}^{n-1}\text{'s in } \mathbb{P}E \)

\(G_L(n, E) = \text{Lagrangian Grassmannian of } n\text{-planes } P \text{ in a vector space } E \)

\(\text{having a bilinear form } Q \text{ and with } Q(P, P) = 0 \)

\(G_L^c(n, E) = \text{Lagrangian Grassmannian of Lagrangian } \mathbb{P}^{n-1}\text{'s in } \mathbb{P}E \).

\(h^{p,q} = \text{Hodge numbers and } f^p = \sum_{\frac{p}{2} \leq q} h^{p,q} \)

307
\[H^*_{\text{DR}}(\Gamma(M, \Omega^\bullet(F)); d_\pi) = \text{de Rham cohomology of global, relative } F\text{-valued holomorphic forms}\]

\[\mathcal{H} = \text{upper half plane}\]

\[J^P = \text{Deligne splitting of a mixed Hodge structure}\]

\[J = \text{incidence space}\]

\[\kappa_\mu = \text{Kostant class}\]

\[\{ a < p, b < q \} = \bigoplus I^{a,b}\]

\[n = \text{direct sum of negative root spaces (except in the appendix to Lecture 6)}\]

\[n_c = \text{direct sum of negative, compact root spaces}\]

\[n_{nc} = \text{direct sum of negative, non-compact root spaces}\]

\[\mathcal{O}_G = \text{global holomorphic functions on } G\]

\[\mathcal{O}_P^n(k) = \text{standard line bundle over projective space}\]

\[\omega_Z = \text{canonical line bundle for a complex manifold } Z\]

\[\Omega_\mu = \text{curvature form of } L_\mu \rightarrow D\]

\[\Omega_\pi = \text{sheaf of relative differential forms}\]

\[P = \text{weight lattice}\]

\[\pi^*F = \text{pullback of a vector bundle}\]

\[\pi^{-1}F = \text{pullback of a coherent analytic sheaf}\]

\[\Phi_+^c, \Phi_+^{nc} = \text{positive compact, respectively non-compact roots}\]

\[\Phi, \Phi^+ = \text{roots, respectively positive roots}\]

\[q(\mu) = \#\{ \alpha \in \Phi_+^c : (\mu, \alpha) < 0 \} + \#\{ \beta \in \Phi_+^{nc} : (\mu, \beta) > 0 \}\]

\[R = \text{root lattice}\]

\[\rho = (1/2) \text{ (sum of positive roots)}\]

\[\text{Res}_{\mathbb{C}/\mathbb{R}} = \text{restriction of scalars}\]

\[s_\alpha \in W \text{ is reflection in the } \alpha \text{ root plane}\]

\[\sigma_\mu = \text{Schmid class}\]

\[S = \mathbb{Q}-\text{algebraic group given by } \{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{Q} \text{ and } a^2 + b^2 = 1\}\]

\[\mathcal{U}(g_\mathbb{C}) = \text{universal enveloping algebra}\]

\[\mathcal{U} = \text{cycle space } \subset \mathcal{U} = G_\mathbb{C}/K_\mathbb{C}\]

\[V = \text{vector space defined over } \mathbb{Q}\]

\[V_\mathbb{R} = \text{real vectors in a complex vector space } V \text{ with a conjugation } \sigma\]

\[V_\mathbb{R}, V_\mathbb{C} = V \otimes_{\mathbb{Q}} \mathbb{R}, V \otimes_{\mathbb{Q}} \mathbb{C}\]

\[V^{p,q} = \text{Hodge } (p, q) \text{ spaces}\]

\[\mathbb{V}^{p,q} = \text{Hodge bundles}\]

\[(V, \bar{\phi}) = \text{general Hodge structure}\]

\[W = \text{Weyl group of } (g_\mathbb{C}, h)\]

\[W_K = \text{Weyl group of } (g_\mathbb{R}, t) \text{ = “compact” Weyl group}\]

\[(W(N), F) = \text{limiting mixed Hodge structure}\]

\[\mathcal{W} = \text{correspondence space included in its dual } \mathcal{W}\]

\[\chi_c = \text{infinitesimal character}\]

\[Z_G(H) = \text{centralizer in } G \text{ of a subgroup } H \subset G\]
This monograph presents topics in Hodge theory and representation theory, two of the most active and important areas in contemporary mathematics. The underlying theme is the use of complex geometry to understand the two subjects and their relationships to one another—an approach that is complementary to what is in the literature. Finite-dimensional representation theory and complex geometry enter via the concept of Hodge representations and Hodge domains. Infinite-dimensional representation theory, specifically the discrete series and their limits, enters through the realization of these representations through complex geometry as pioneered by Schmid, and in the subsequent description of automorphic cohomology. For the latter topic, of particular importance is the recent work of Carayol that potentially introduces a new perspective in arithmetic automorphic representation theory.

The present work gives a treatment of Carayol’s work, and some extensions of it, set in a general complex geometric framework. Additional subjects include a description of the relationship between limiting mixed Hodge structures and the boundary orbit structure of Hodge domains, a general treatment of the correspondence spaces that are used to construct Penrose transforms and selected other topics from the recent literature.