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Preface

This book presents and expands upon material presented at a July 2017 CBMS
lecture series on the geometry of tensors and applications. The expansion includes
two very exciting recent developments regarding tensors:

● Y. Shitov refuted two longstanding conjectures; V. Strassen’s 1973 addi-
tivity conjecture and P. Comon’s symmetric rank conjecture. I present a
detailed exposition of his refutation of Strassen’s conjecture after giving
a general introduction to Shitov’s perspective that allowed resolution of
these conjectures.

● Christandl-Vrana-Zuiddam introduced quantum spectral points, which
brought together Strassen’s spectral theory (developed for the study of
matrix multiplication) and quantum information theory, by employing
representation theory and rational moment polytopes. This work brings
together many interesting ideas and opens doors to future research. I give
a detailed exposition of their theory.

In addition to these two advances, I also present the following recent develop-
ments:

- In my lectures I had included what at the time were several open questions
regarding tensor network states, which I thought should be resolvable
with geometric techniques. My impression turned out to be too correct-
as I started writing up these notes, two of them were essentially solved
[MS,MSV]. I present expositions of both, as well as an introduction
to tensor network states with an emphasis on applications to solid state
physics.

- An exposition of the elementary proofs in [DM18] and [EGOW17] of
the limits of rank methods in proving border rank lower bounds.

- Recent approaches towards bounding the exponent of matrix multipli-
cation that include: a description of the use of the symmetrized matrix
multiplication polynomial to bound the exponent of matrix multiplication
[CHI+18,Con17], the potential use symmetry groups of tensors in the
laser method [CGLVb], and an exploration of Strassen’s generalization
of the conjecture that ω = 2 to all tight tensors [CGL+18].

Beyond the recent developments, these notes include expositions of Strassen’s
laser method, Strassen’s spectral theory, basics of quantum information theory,
the resolution of the quantum marginal problem by Klyatchko and independently
Christandl-Mitchison, and a largely self-contained exposition of moment polytopes
in projective algebraic geometry as developed by Brion.

vii



viii PREFACE

The book is divided into three parts.

● The first part is a brief introduction to tensors, complementary to the one
in [Lan12].

● The second part is a study of tensors by employing linear algebra. The
topics covered are as follows:

The use of determinantal equations for bounding border rank. In
the past few years, severe limits on determinantal methods were dis-
covered. I present elementary limitations due to Derksen-Makam and
Efremenko-Garg-Oliveira-Wigderson that complement the more subtle
and geometric limitations discovered by Buczynski-Galzacka (following
Bernardi-Ranestad) detailed in [Lan17, §10.2].

Shitov’s refutations discussed above appear in this part.
The remainder of this part is a discussion of tensor networks with an

emphasis on their use in condensed matter theory. To quote [PGVWC07]
Entanglement “is a blessing for quantum information theory - it facilitates
exponential speed-ups in quantum simulation and quantum computing –
it is often more a curse for condensed matter theory where the complexity
of such systems make them hardly tractable by classical means.” For con-
densed matter theory and other areas discussed in this chapter that are
haunted by the so-called “curse of dimensionality”, the problems are ap-
proached by reducing to linear algebra via tensor networks. This section
also includes pointers to the physics literature. I warn mathematicians
that the referenced papers do not always define their terms, as is consid-
ered mandatory in mathematics.

● The third part discusses the asymptotic geometry of tensors. This theory
is based on Shannon’s information theory and probability. I present the
requisite background material in Chapter 4. Then, in Chapter 5, I explain
how ideas from information theory were used to obtain upper bounds on
the exponent of matrix multiplication, and led to Strassen’s asymptotic
spectra. In order to discuss the quantum spectral points in context, in
Chapter 6 I give a very brief introduction to quantum information the-
ory. In reference to the quote from [PGVWC07] above, for quantum
information theory, representation theory is used to extract qualitative
information about tensors in the above-mentioned “cursed” spaces. The
topics of Chapters 4, 5 and 6 are brought together in Chapter 7 with the
quantum spectral points. The main result regarding the quantum spectral
points depends heavily on a very special case of Brion’s theorem on the
rational moment polytope. I give a proof of Brion’s theorem in general,
as well as a general introduction to moment maps and moment polytopes
in algebraic geometry in Chapter 8.

Acknowledgements. I have gotten substantial help in this project at every
step along the way. First I would like to thank C.J. Bott, Meighan Dillon, Paul
Goerlach, Christian Ikenmeyer, Matt Kerr, Mateusz Michalek, Luke Oeding, Rafael
Oliveira, Arpan Pal, Eric Sabo, Anna Seigal, Tim Seynnaeve, Jacob Turner, Péter
Vrana, Michael Walter, and Albert Werner for numerous comments, corrections and
suggestions. I am especially grateful to Luke Oeding, for suggesting, organizing,
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and running the lecture series, to Luke Oeding, Jacob Turner and Péter Vrana,
who read the entire text and were immensely helpful in improving it, to Yaroslov
Shitov, who took a week of his time to explain his results to Michalek, Seynnaeve
and myself, and to Mateusz Michalek and Tim Seynnaeve, who spent a second week
with me translating Shitov’s work into more geometric language.

J.M. Landsberg
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[Sch03] Rüdiger Schack, Quantum theory from four of Hardy’s axioms, Found. Phys. 33
(2003), no. 10, 1461–1468, DOI 10.1023/A:1026044329659. Special issue dedicated
to David Mermin, Part I. MR2039620

[Sei] A. Seigal, Ranks and symmetric ranks of cubic surfaces, preprint, arXiv:1801.05377.
[Sha48] C. E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27

(1948), 379–423, 623–656, DOI 10.1002/j.1538-7305.1948.tb01338.x. MR0026286

[Sha13] Igor R. Shafarevich, Basic algebraic geometry. 2, 3rd ed., Springer, Heidelberg,
2013. Schemes and complex manifolds; Translated from the 2007 third Russian
edition by Miles Reid. MR3100288

[Shi17] Yaroslav Shitov, A counterexample to Comon’s conjecture, SIAM J. Appl. Algebra
Geom. 2 (2018), no. 3, 428–443, DOI 10.1137/17M1131970. MR3852707

[Shi18] Yaroslav Shitov, A counterexample to Comon’s conjecture, SIAM J. Appl. Algebra
Geom. 2 (2018), no. 3, 428–443, DOI 10.1137/17M1131970. MR3852707

[Smi13] A. V. Smirnov, The bilinear complexity and practical algorithms for matrix mul-
tiplication (Russian, with Russian summary), Zh. Vychisl. Mat. Mat. Fiz. 53
(2013), no. 12, 1970–1984, DOI 10.1134/S0965542513120129; English transl., Com-
put. Math. Math. Phys. 53 (2013), no. 12, 1781–1795. MR3146566

[Smi14] A. V. Smirnov, A bilinear algorithm of length 22 for approximate multiplication of
2 × 7 and 7 × 2 matrices, Comput. Math. Math. Phys. 55 (2015), no. 4, 541–545,
DOI 10.1134/S0965542515040168. MR3343116
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slice rank, 111
SLOCC, 94

small Coppersmith-Winograd tensor, 16
special linear group, 101

spectral point, 71
spectrum, of operator, 86
stable vector, 120

standard Young tableau, 98
state space, 84

state vector, 84
Stirling’s formula, 52

stochastic matrix, 80
Strassen upper support function, 73
Strassen’s equations, 22

submodule, 95
substitution method, 27

support
of vector in module, 126

support of tensor, 72
symmetric algebra, 15



144 INDEX

symmetric border rank, 15
symmetric rank, 15
symmetric tensor, 14
symmetry group

of tensor, 15

tensor
symmetry group of, 15

tensor blow up, 26
tensor network state, 43
tensor product, 8
tensor rank, 10
tensors

isomorphic, 9
tight set, 62
tight tensor, 62
Toffoli gate, 79
toric degeneration, 62
total compressibility, 111
trivial representation, 95

Umegaki relative entropy, 90
unitary group, 83
universal spectral point, 72
unstable tensor, 112
unstable vector, 120

value of tensor, 61
Veronese map, 15
Veronese variety, 15
volume

of tensor, 61
von Neumann entropy, 89

W-state, 10

Waring rank, 15
wedge product, 15
weight, 102
weight vector, 105
Wielandt theorem, 41

Young diagram, 96
Young flattening, 26
Young flattenings, 23

Zariski topology, 10
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Tensors are used throughout the sciences, especially in 
solid state physics and quantum information theory. This 
book brings a geometric perspective to the use of tensors in 
these areas. It begins with an introduction to the geometry 
of tensors and provides geometric expositions of the basics 
of quantum information theory, Strassen's laser method for 
matrix multiplication, and moment maps in algebraic geom-
etry. It also details several exciting recent developments 
regarding tensors in general. In particular, it discusses and 
explains the following material previously only available in the original research 
papers: (1) Shitov's 2017 refutation of longstanding conjectures of Strassen on 
rank additivity and Common on symmetric rank; (2) The 2017 Christandl-Vrana-
Zuiddam quantum spectral points that bring together quantum information theory, 
the asymptotic geometry of tensors, matrix multiplication complexity, and moment 
polytopes in geometric invariant theory; (3) the use of representation theory in 
quantum information theory, including the solution of the quantum marginal 
problem; (4) the use of tensor network states in solid state physics, and (5) recent 
geometric paths towards upper bounds for the complexity of matrix multiplication.

Numerous open problems appropriate for graduate students and post-docs are 
included throughout.
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