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Preface to the AMS Chelsea edition

This edition reproduces the book initially published in 1977 by North-Holland.
In its presentation, it has been fully retypeset by AMS. In its content, except for
some minor editing, it is identical to the third revised version published in 1984. It
is likely that, if written now, the book would be different in several respects. On the
other hand, introducing changes in this new edition would have required extensive
work with doubtful results and a high probability of introducing new errors. Hence
it has been decided to reproduce the book as it was in its last edition.

The new material in this book is Appendix III, reproducing a survey article
which first appeared in a volume published by Birkh&auser. This appendix contains
a few aspects not addressed in the earlier edition, in particular: a short derivation
of the Navier-Stokes equations from the basic conservation principles in continuum
mechanics, some further historical perspectives, and some indications on new de-
velopments. It also surveys some aspects of related equations which are not the
purpose of the book: the Euler equations and the compressible Navier-Stokes equa-
tions. It is suggested to the reader to peruse this appendix before reading the core
of the book.

If the book were to be written or rewritten now, the following difficulty would
have to be addressed: in the writing of the first edition, it was attempted, to some
extent, to include all the material available on the existence and uniqueness of
solutions for the Navier-Stokes equations and their approximation. The body of
knowledge has considerably expanded since then, and now a single book could not
comprehend all this material; hence choices would have to be made. As we say
elsewhere the numerical aspects have expanded into a field of their own, Compu-
tational Fluid Dynamics. On the theoretical side, there are a large number of new
developments which are described in Appendix III. Let us mention here some of
these developments which are close to this volume. New simpler proofs were de-
rived for technical results very often used in this book (see e.g. the footnote before
Proposition 1.1.1, Remark 1.2.7 and Remark 2.1.6 iii). The space-periodic case
has been very much studied: it is conceptually simpler and Fourier series can be
used, but many of the difficulties are the same as for the no-slip case studied here.
The main simplifications are due to the absence of the difficulties related to the
boundary layer (another subject under development at this time, absent from this
book). New results on time and space analyticity were proven (analyticity in time
and Gevrey regularity in space). Although results of analyticity were available at
the time of the writing of this book, the proofs of the new results are much closer
to the spirit of this book. Substantial developments occured also on the large time
behavior of the solutions to the Navier-Stokes equations and the relation with tur-
bulence theory. Most of these new results not developed in this book are available
in the lecture notes of R. Temam (1995) and in the forthcoming book by C. Foias,



x PREFACE TO THE AMS CHELSEA EDITION

O. Manley, R. Rosa and R. Temam (2001) which serve as possible continuations
of this book. Finally the control of turbulent flows is another subject under devel-
opment which became accessible and which is not present in this book, except for
some remarks at the end of Appendix III, with two figures representing the results
of extensive numerical simulations.

I am very pleased that the American Mathematical Society decided to republish
this book and I hope this new edition will be useful. I would like to thank espe-
cially Susan Friedlander who initiated this project and Sergei Gelfand who very
effectively managed it. I would also like to thank a number of young colleagues
who helped me read (once more!) this book, and made a number of corrections
and remarks, namely Didier Bresch, Brian Ewald, Olivier Goubet, Changbing Hu,
Frangois Jauberteau, Jean-Michel Rakotoson, Jie Shen, Shouhong Wang, Xiaoming
Wang, and Mohammed Ziane.

As evidenced by the numerous references to his work, this book has been very
much influenced by what I learned from my teacher Jacques-Louis Lions. Further
back in the history of the Navier-Stokes equations, we owe to Jean Leray (1906-
1998) considerable pioneering work on the theory of the Navier-Stokes equations
(see the Introduction to Appendix III). He has also done considerable pioneering
work in several other areas of mathematics. In his collected works published in
1999, and elsewhere, he is recognized as one of the most prominent mathematicians
of the twentieth century.

It was given to me to speak at Jean Leray’s seminar at the College de France in
Paris, or simply to attend it, in the ancient “Salle 5” full of history: it was always
a humbling and unforgettable experience for a young researcher. In grateful remi-
niscence of the kind support and attention that he devoted to the young researcher
that I was when I wrote this book, I dedicate this new edition, with deep respect,
to his memory.

September 2000



Preface to the third (revised) edition

Since the publication of this book, numerous articles have appeared, connected
with the theory of the numerical approximation of the Navier-Stokes equations.
The increasing interest for these equations is due in part to the important role
that they play in many scientific and industrial applications of current interest like
aeronautical sciences, meteorology, thermo-hydraulics, petroleum industry, plasma
physics, etc... It is also due to the development of the computing power which
is now available with the new computers and the computing power which we can
foresee for a near future with supercomputers. The process of solving problems in
fluid dynamics numerically on a computer is called Computational Fluid Dynamics
(CFD). This subject has considerably expanded in recent years; there are now
thousands of researchers, many applications, and an enormous literature in CFD,
and the expansion will likely continue.

This present book stands at the boundary between computational fluid dy-
namics and mathematical analysis to which CFD is firmly tied. Even if we restrict
ourselves to the theory and numerical analysis of the Navier—-Stokes equations for
incompressible fluids, the rapid expansion of these subjects make it now impossible
to include in a single volume a comprehensive presentation of them. However, we
have though that the basic questions studied in this volume will be of interest for
some time and that the book, in its present form remains useful. For the readers
interested in the most recent developments or more specialized ones. this new edi-
tion contains a revision and an updating of the bibliography. It contains also (in
the Additional comments to the revised edition, p. 381) a description, necessarily
uncomplete, of the directions in which progresses have been made recently.

Paris, January 1984

xi






Foreword

In the present work we derive a number of results concerned with the theory
and numerical analysis of the Navier—Stokes equations for viscous incompressible
fluids. We shall deal with the following problems: on the one hand, a description of
the known results on the existence, the uniqueness and in a few cases the regularity
of solutions in the linear and non-linear cases, the steady and time-dependent cases;
on the other hand, the approximation of these problems by discretization: finite
difference and finite element methods for the space variables, finite differences and
fractional steps for the time variable. The questions of stability and convergence
of the numerical procedures are treated as fully as possible. We shall not restrict
ourselves to these theoretical aspects: in particular, in the Appendix we give de-
tails of how to program one of the methods. All the methods we study have in fact
been applied, but it has not been possible to present details of the effective imple-
mentation of all the methods. The theoretical results that we present (existence,
uniqueness,...) are only very basic results and none of them is new; however we
have tried as far as possible to give a simple and self-contained treatment. Energy
and compactness methods lie at the very heart of the two types of problems we
have gone into, and they form the natural link between them.

Let us give a more detailed description of the contents of this work: we consider
first the linearized stationary case (Chapter 1), then the non-linear stationary case
(Chapter 2), and finally the full non-linear time-dependent case (Chapter 3). At
each stage we introduce new mathematical tools, useful both in themselves and in
readiness for subsequent steps.

In Chapter 1, after a brief presentation of results on existence and uniqueness,
we describe the approximation of the Stokes problem by various finite-difference and
finite-element methods. This gives us an opportunity to introduce various methods
of approximation of the divergence-free vector functions which are also vital for the
numerical aspects of the problems studied in Chapters 2 and 3.

In Chapter 2 we introduce results on compactness in both the continuous and
the discrete cases. We then extend the results obtained for the linear case in the
preceding chapter to the non-linear case. The chapter ends with a proof of the
non-uniqueness of solutions of the stationary Navier—Stokes equations, obtained by
bifurcation and topological methods. The presentation is essentially self-contained.

Chapter 3 deals with the full non-linear time-dependent case. We first present
a few results typical of the the present state of the mathematical theory of the
Navier—Stokes equations (existence and uniqueness theorems). We then present
a brief introduction to the numerical aspects of the problem, combining the dis-
cretization of the space variables discussed in Chapter 1 with the usual methods
of discretization for the time variable. The stability and convergence problems are

xiii



xiv FOREWORD

treated by energy methods. We also consider the fractional step method and the
method of artificial compressibility.

This brief description of the contents will suffice to show that this book is in
no sense a systematic study of the subject. Many aspects of the Navier—Stokes
equations are not touched on here. Several interesting approaches to the exis-
tence and uniqueness problems, such as semi-groups, singular integral operators
and Riemannian manifold methods, are omitted. As for the numerical aspects of
the problem, we have not considered the particle approach nor the related methods
developed by the Los Alamos Laboratory.

We have, moreover, restricted ourselves severely to the Navier-Stokes equa-
tions; a whole range of problems which can be treated by the same methods are
not covered here; nor are the difficult problems of turbulence and high Reynolds
number flows.

The material covered by this book was taught at the University of Maryland
in the first semester of 1972-3 as a part of a special year on the Navier—Stokes
equations and non-linear partial differential equations. The corresponding lecture
notes published by the University of Maryland constitute the first version of this
book.

I am extremely grateful to my colleagues in the Department of Mathematics
and in the Institute of Fluid Dynamics and Applied Mathematics at the University
of Maryland for the interest they showed in the elaboration of the notes. Direct
contributions to the preparation of the manuscript were made by Arlett Williamson,
and by Professors J. Osborn, J. Sather and P. Wolfe. I should like to thank them
for correcting some of my mistakes in English and for their interesting comments
and suggestions, all of which helped to improve the manuscript. Useful points were
also made by Mrs Pelissier and by Messrs Fortin and Thomasset. Finally, I should
like to express my thanks to the secretaries of the Mathematic Departments at
Maryland and Orsay for all their assistance in the preparation of the manuscript.

Roger Temam



Comments

Chapter 1

Section I contains a preliminary study of the basic spaces V and H: the trace
theorem is proved by the methods of J.L. Lions and E. Magenes, see ref. [1]. The
characterization of H' given here is based on a theorem of G. de Rham of the
currents theory. A more elementary proof is given in O.A. Ladyzhenskaya [1] for
n = 3. A simplyfied version of O.A. Ladyzhenskaya’s proof valid for all dimensions,
was given in R. Temam [9]. Remark 1.9 gives another way for avoiding de Rham’s
theorem; see also the end of the footnote before Proposition 1.1.

We have not given any systematic study nor review concerning the Sobolev
spaces. We restricted ourselves to recalling properties of theses spaces when needed
(Section 1.1 of Chapter 1 and 2 in particular). As mentioned in the text, the
reader is referred for proofs and further material to R.S. Adams [1], S. Agmon [1],
J.L. Lions [1], J.L. Lions and E. Magenes [1], J. Necas [1], L. Sobolev [1], and
others.

The variational formulation of Stokes equation was first introduced (in the
general frame of the non-linear case) by J. Leray [1, 2, 3], for the study of weak
or turbulent solution of the Navier—Stokes equations. The existence of a solution
of the Stokes variational problem is easily obtained by the classical Projection
Theorem, whose proof is recalled for the sake of completeness. The study of the
non-variational Stokes problem, and the regularity of solutions is based on the
paper of L. Cattabriga [1] (if n = 3) and on the paper of S. Agmon, A. Douglis
and L. Nirenberg [1] on elliptic systems (any dimension); these results are recalled
without proofs. For another approach to the regularity cf. V.A. Solonnikov and
V.E. Scadilov [1]. See also V.A. Solonnikov [4], I.I. Vorovich and V.I. Yudovich [1].

The concept of approximation of a normed space and of a variational problem
was studied in particular by J.P. Aubin [1] and J. Cea [1]; the presentation followed
here is that of R. Temam [8]. The discrete Poincaré Inequality (Section 3.3) and
the approximation of V' by finite differences are in J. Cea [1]. The approximation
of V' by conforming finite elements was first studied and used by M. Fortin [2]; our
description of the approximations (APX2), (APX3) (conforming finite elements),
follows essentially M. Fortin [2]. In this reference one can also find many results of
computations using this type of discretization. The idea of using the bulb function
is due to P.A. Raviart; the presentation of the approximation (APX2') given here is
new. The approximation (APX4) has been studied and used by J.P. Thomasset [1].
The material related to the non-conforming finite elements for the approximation of
divergence free vector functions is due to M. Crouzeix, R. Glowinski, P.A. Raviart,

Note to the reader: These comments are those of the initial edition of the book (1977). More
recent comments appear on page 337 and in Appendix III.

381



382 COMMENTS

and the author. Other aspects of the subject (non-conforming finite elements of
higher degree and more refined error estimates) can be found in M. Crouzeix and
P.A. Raviart [1]; for numerical experiment, see F. Thomasset [2] and also P. Lailly
[1] in the case of an axisymmetric three-dimensional flow.

For other applications of finite elements in fluid mechanics, see J.T. Oden,
0O.C. Zienkiewicz, R.H. Gallagher and T.D. Taylor [1], and the proceedings of the
conference held in Italy, June 1976 (to appear). Concerning the general theory of
finite elements, let us mention the synthesis works of I. Babuska and A.K. Aziz [1],
P.G. Ciarlet [1], P.A. Raviart [2], G. Strang and G. Fix [1], and the proceedings
edited by A.K. Aziz [1]. For more references on finite elements (in general situ-
ations) the reader is referred to the bibliography of these works. The description
of finite elements methods given here is almost completely self-contained: we only
assume a few specific results whose proofs would necessitate the introduction of
tools quite remote from our scope.

After discretization of the Stokes problem, we have to solve a finite-dimensional
linear problem where the unknown is an element uy, of a finite-dimensional space V.
There are two possibilities:

(a) either this space V', possesses a natural and simple basis, such that the
problem is reduced to a linear system with a sparse matrix for the compo-
nents of uy in this basis; in this case we solve the problem by resolution of
this linear system,;

(b) or, if not, the finite-dimensional problem is not so simple to solve (ill-
conditioned or non-sparse matrix), even if it possesses a unique solution.
In this case, appropriate algorithms must be introduced in order to solve
these problems; this is the purpose of Section 5.

The algorithms described in Section 5 were introduced in the frame of op-
timization theory and economics in K.J. Arrow, L. Hurwicz and H. Uzawa [1];
the application of these procedures to problems of hydrodynamics is studied in
J. Céa, R. Glowinski and J.C. Nedelec [1], M. Fortin [2], M. Fortin, R. Peyret, and
R. Temam [1]. See in D. Bégis [1], M. Fortin [2], and experimental investigation of
the optimal choice of the parameter ¢ (or p and «); a theoretical resolution of this
problem in a very particular case is given in Crouzeix [2].

The approximation of incompressible fluids by the penalty method was first
studied in R. Temam [2a, 2b]. The full asymptotic development of u. given here
is due to M.C. Pelissier [1].

Chapter 2

Section 1 develops a few standard results concerning the existence and unique-
ness of solution of the nonlinear stationary Navier—Stokes equations. We follow
essentially O.A. Ladyzhenskaya [1] and J.L. Lions [2]. A more complete discussion
of the regularity of solutions and of the theory of hydrodynamical potentials can
be found in O.A. Ladyzhenskaya [1]; for regularity, see also H. Fujita [1]. The
stationary Navier—Stokes equations in an unbounded domain have been studied by
R. Finn [1]-]5], R. Finn and D.R. Smith [1, 2], and J.G. Heywood [1, 3].

Some recent theoretical results concerning the stationary Navier—Stokes equa-
tions are given in C. Foias and R. Temam [2, 3], C. Foias and J.C. Saut [2],
J.C. Saut and R. Temam [2], D. Serre [1, 2, 3], R. Temam [11, 16].
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Section 2 gives discrete Sobolev inequalities and compactness theorem, whose
proofs are very technical. The principle of the proofs in the case of finite-differences
parallels the corresponding proofs in the continuous case (see, for instance, J.L. Li-
ons [1], J.L. Lions-E. Magenes [1]). The proof of the discrete Sobolev inequalities
has not been published before, the proof of the discrete compactness theorem can
be found in P.A. Raviart [1]. For conforming finite elements the proofs are much
simpler: in particular, for discrete compactness theorem, the problem is reduced
by a simple device to the continuous case. For non-conforming finite elements the
proof of the Sobolev inequality is based on specific techniques of non-conforming
finite element theory. The discrete compactness theorem is proved by comparison
between conforming and non-conforming elements: these results are new.

The discussion of the discretization of the stationary Navier—Stokes equations
follows the principles developed in Chapter 1. The general convergence theorem is
similar to that of Chapter 1 and the same types of discretization of V' are consid-
ered; differences lie in the lack of uniqueness of solutions of the exact problem. The
numerical algorithms of Section 3.3 have been introduced and tested in M. Fortin,
R. Peyret, and R. Temam [1]. The modification of the trilinear form b (Chap-
ter 2, (3.23)) corresponds to the introduction of the stabilizing term 1 (divu)u and
its discrete analog when the functions are not solenoidal; this modification was
introduced and used in R. Temam [2a, 2b, 3, 4].

The non-uniqueness of stationary solutions of the Navier—Stokes and related
equations has been investigated in recent years. The main results in this direction
are due to P.H. Rabinowitz [2] and W. Velte [1, 2]. In [2] Rabinowitz establishes
the non-uniqueness of solutions of the convection problem by explicitly constructing
two different solutions (the first is the trivial one when the fluid is at rest, the
second is constructed by an iterative procedure). The work of W. Velte is based
on topological methods, the bifurcation theory and the topological degree theory;
the problem considered in [1] is the convection problem as in P.H. Rabinowitz
[2]. In [2], W. Velte proves the non-uniqueness of solution of the Taylor problem
and the situation is very similar to the problem for which existence is proved in
Section 1, although not identical. Section 4 follows closely this presentation. For
other applications of bifurcation theory see in particular, J.B Keller and S. Antman
[1], L. Nirenberg [1], P.H. Rabinowitz [4, 6] and volume 3, number 2 of the Rocky
Mountain J. of Math (1973).

Chapter 3

The existence and uniqueness results for the linearized Navier—Stokes equations
(Section 1) are a special case of general result of existence and uniqueness of solution
of linear variational equations (see for instance, J.L. Lions-E. Magenes [1, vol. 2]).
For completeness we have given an elementary proof of some technical results, which
are usually established as easy consequences of deeper results [i.e., Lemma 1.1 which
is more natural in the frame of vector valued distribution theory (L. Schwartz [2]) or
Lemma 1.2 which can be proved by interpolation methods (J.L. Lions—E. Magenes
1))

Theorem 2.1 is one of the standard compactness theorems used in the theory of
nonlinear evolution equations. Other compactness theorems are proved and used in
J.L. Lions [2]. A recent generalization of these result can be found in R. Temam [16].
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The existence and uniqueness results related to the non-linear Navier—Stokes
equations and given in Sections 3 and 4 are now classical and prolong the early works
of J. Leray [1, 2, 3]; see E. Hopf [1, 2], O.A. Ladyzhenskaya [1], J.L. Lions [2, 3],
J.L. Lions and G. Prodi [1], and J. Serrin [3]. Further results on the regularity
of solutions and the study of the existence of classically differentiable solutions
of the Navier—Stokes equations can be found in the second edition of O.A. La-
dyzhenskaya [1]. For the analyticity of the solutions see C. Foias and G. Prodi [1],
H. Fujita and K. Masuda [1], C. Kahane [1], K. Masuda [1], J. Serrin [3], C. Foias
and R. Temam [4].

Let us mention also two completely different approaches to the existence and
uniqueness theory that we did not treat here. The first one is that of E.B. Fabes,
B.F. Jones, and N.M. Riviere [1] based on singular integral operator methods and
giving existence and uniqueness results in LP spaces. The other one is the method
of V. Arnold [1] and D.G. Ebin and J. Marsden [1] connecting the Navier—Stokes
initial value problem with the geodesics of a Riemann manifold and thus using the
methods of global analysis.

The material of Section 5 containing a discussion of the stability and conver-
gence of simple discretization schemes for the Navier—Stokes equation is essentially
new; a similar study for different equations or different schemes was presented in
R. Temam [2a, 2b, 3, 4]. Stability and convergence of some unconditionally stable
one step schemes are given in O.A. Ladyzhenskaya [5]; for fractional step schemes
see also A.J. Chorin [2], O.A. Ladyzhenskaya and V.I. Rivkind [1]. In all these ref-
erences except in A.J. Chorin [2] the convergence is proved, as here, by obtaining
appropriate a priori estimates of the approximated solutions and the utilization of
a compactness theorem; in [2] A.J. Chorin assumes the existence of a very smooth
solution and compares the approximated and exact solutions.

Section 7.1 is essentially an introduction to Section 7.2. The fractional step
scheme described in Section 7.2 (the Projection Method) was independently intro-
duced by A.J.Chorin [1, 2, 3] and the author R. Temam [3]; A.J. Chorin considers
a slightly different form of the scheme, without the stabilizing term §(divw)u (i.e.,
without replacing b by ZA)) Applications and other aspects of this scheme are devel-
oped in particular in C.K. Chu and G. Johansson [1], C.K. Chu, K.V. Morton and
K.V. Roberts [1], M. Fortin, R. Peyret and R. Temam [1], M. Fortin [1], M. Fortin
and R. Temam [1], G. Marshall [1, 2] and C.S. Peskin [1]. This scheme is a gener-
alization of the fractional step method introduced and studied by G.I. Marchuk [1]
and N.N. Yanenko [1] (see Section 8).

The approximation of the Navier—Stokes equations by the equations of slightly
compressible fluids (Subsection 8.1) was introduced independently by A.J. Chorin
[1] and R. Temam [3]. In [1], N.N. Yanenko considers slightly more complicated
perturbed equations. The introduction of these perturbations permits the utiliza-
tion of the fractional step method which is studied in Subsection 8.2. Let us point
out that the schemes of Section 7 are fractional step schemes not needing the con-
sideration of perturbed equations.

The proof of convergence of the fractional step scheme which is given here is
due to R. Temam [3, 4] and follows the method introduced in R. Temam [1]. For
other aspects of the Fractional Step Method, see G.I. Marchuk [1], N.N. Yanenko
[1, 2] and their bibliographies; see also R. Temam [1, 6, 7]. Other types of per-
turbed problems, whose purpose is to overcome the difficulties of the constraint
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“diva = 0” (but not to apply fractional step methods) are studied in J.L. Lions
[4] and R. Temam [2a, 2b]. For the alternating direction methods and further
results on fractional step methods, see O.A. Ladyzhenskaya and V.I. Rivkind [1],
V.I. Rivkind and B.S. Epstein [1], and B.S. Epstein [1].

The material of Section 5 to 8 is only a very small part of a considerable amount
of work on the approximation of fluid mechanic equations; up-to-date results and
very useful references can be found in the proceeding edited by O.M. Belotserkovskii
[1], M. Holt [2], H. Cabannes and R. Temam [1], R.D. Richtmyer [1], F. Thomasset
[1] and T. Kawai [1]. See also the list of the references compiled by the Los Alamos
Scientific Laboratory.

Many other problems can be handled by the methods used here. For the Navier—
Stokes equations properly speaking one can consider different boundary conditions
(see Tooss [1]), or periodic solutions (G. Prouse [1, 2]), variational inequalities
(J.L. Lions [2]). Stochastic Navier—Stokes equations are studied in A. Bensoussan
and R. Temam [1], C. Foias [1], C. Foias and R. Temam [5, 9], M.I. Vishik and
A.V. Fursikov [1, 2, 3]. Optimal control problems for systems governed by the
Navier—Stokes equations appear in M. Cuvelier [1] (see the end of Appendix III for
more recent results).

The difficulties encountered in the mathematical theory of the Navier—Stokes
equations lead several authors to reconsider the fluid mechanic hypotheses leading
to these equations and to propose new models with a better mathematical behavior;
see S. Kaniel [1], O.A. Ladyzhenskaya [1].

Similar models involving other equations (most often the Navier—Stokes equa-
tions coupled with other equations) are: the convection equations whose treatment
is almost identical to the treatment of the Navier—Stokes equations, several fluid
models, pollution (G. Marshall [1]) or blood models (C.S. Peskin [1]), and oceanog-
raphy models (having the appearance of a concentration equation). More elabo-
rated are the magnetohydrodynamic equations and the Bingham equations (see G.
Duvaut and J.L. Lions [1, 2]) which are an example of non-Newtonian fluids.

The mathematical theory of the Euler equations has not been developed here.
For a treatment based on analytical methods, cf. C. Bardos [1], T. Kato [1, 2],
J.L. Lions [2], R. Temam [10, 12], V.I. Yudovich [1].

Some results related to the behavior of the Navier—Stokes equations as v — 0
are given in J.L. Lions [2], V.I. Yudovich [1]. A similar problem for a model equation
related to the Burgers equation is completely studied in C.M. Brauner, P. Penel and
R. Temam [1], P. Penel [1]; cf. also C. Bardos, U. Frish, P. Penel and P.L. Sulem
in R. Temam [12].






Additional comments to the third (revised) edition

We give here some indications on the most recent result on the theory and nu-
merical analysis of the Navier-Stokes equations. These results are mainly oriented
in three directions:

(a) Ezistence, uniqueness and regularity of solutions

For the time-dependent Navier—Stokes equations it is known since the work of
J. Leray [1, 2, 3] and E. Hopf [1] that, provided the data are sufficiently smooth,
there exists a unique smooth solution to the initial value problem, which is defined
on some interval of time (0, 7), and this solution can be extended for subsequent
time as a possibly less regular solution (see Chap. 3, Sec. 3 and 4). We do not
yet know whether the solutions remain smooth for all time. Following the idea
of B. Mandelbrot [1, 2], there has been some recent studies on the Hausdorff
dimension of the set of singularities of solutions (the set where the velocity is
infinite): see V. Scheffer [1]-[4], C. Foias and R. Temam [4] and the most recent
article by L. Caffarelli, R. Kohn and L. Nirenberg [1] which contains the best
available estimates for the Hausdorff dimension of the singular set.

Other recent results on the existence and regularity of solutions include:

— The study of the set of stationary for the flow in a bounded domain (C. Foias
and J.C. Saut [2], C. Foias and R. Temam [2, 3], J.C. Saut and R. Temam
2]).

— The existence and the regularity of solutions corresponding to non-smooth
data, and in particular a non-smooth domain; this applies to classical sit-
uations like the Couette-Taylor flow or the flow in a cavity; see D. Serre
[2, 3]. Let us mention also for the flow in an unbounded domain the result
of D. Serre [1] who finds, in some cases, a whole straight line of solutions (in
the function space) which is rather unusual for a non-degenerate nonlinear
problem.

— Some new a priori estimates for the weak solutions to the time dependent
Navier-Stokes equations, implying that the L>°-norm is L' in time (u €
LY(0,T; L>(Q2)?) in dimension of space 3); see C. Foias, C. Guillopé and
R. Temam [1].

— The derivation of the compatibility conditions which are the necessary and
sufficient conditions on the data for the regularity of the solution of the time
dependent equations near ¢ = 0 (of course this has noting to do with the
possible singularities at time ¢ > 0); see R. Temam [15].

(b) Long time behavior and turbulence

If the volume forces are independent of time, then time does not appear ex-
plicitly in the Navier—Stokes equations and the equations become an autonomous
infinite dimensional dynamical system. A question of interest, in relation with the
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understanding of the turbulence phenomenon is then the behavior for ¢ — oo of the
solutions of the time dependent Navier—Stokes equations.

The asymptotic analysis of the Navier—Stokes equations has been recently stud-
ied: bounds at infinity for the different norms, number of determining modes
(or parameters) for the flow, structure and properties of an attractor, etc. ...
See A.V. Babin and M.I. Vishik [1]-[4], P. Constantin, C. Foias, O. Manley and
R. Temam [1], P. Constantin, C. Foias and R. Temam [2], C. Foias and R. Temam
[4, 10], C. Foias and J.C. Saut [1], C. Guillope [1], C. Foias, O. Manley, R. Temam
and Y. Treve [1], E. Lieb [1], D. Ruelle [1], R. Temam [16], O.A. Ladyzhenskaya
(6, 7], .M. Vishik [2]

(¢) Numerical approxzimation

Numerous papers, on the numerical approximation of the Navier—Stokes equa-
tions have appeared. They contain in particular investigations on the finite element
methods, practical aspects of the implementation of finite element methods, appli-
cation of the penalty method (see Chap. 1, Sec. 6) to fluid flow problems, study of
the behavior of the solution of the Galerkin approximation on a large interval of
time: see among many references, M. Bercovier [1], V. Girault and P.A. Raviart [1],
R. Glowinski [1], F. Thomasset [2], T. Kawai [1], J.G. Heywood and R. Rannacher
[1], P. Constantin, C. Foias and R. Temam [1] and the bibliographies contained in
these references. Monographs developing other aspects of computational fluid dy-
namics include M. Holt [4], D. Gottlieb and S. Orszag [1], R. Peyret and T.D. Taylor
[1] (see also the bibliographies of these references).
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