Contents

Preface to the Revised English Edition v
Foreword to the Second Edition vii
Introduction 1

Chapter I. Review of Matrices and Quadratic Forms 9
1. Matrices and operations on matrices 9
2. Sylvester’s identity 12
3. Eigenvalues and eigenvectors of a matrix 14
4. Real symmetric matrices 21
5. Reduction of a quadratic form to the principal axes 23
6. Reduction of a quadratic form to a sum of squares 28
7. Positive quadratic forms 34
8. Hadamard’s inequality 36
9. Simultaneous reduction of two quadratic forms to sums of squares 42
10. Minimax properties of eigenvalues of a pencil of forms 50
11. Reduction of a matrix to a triangular form 60
12. Polynomials of matrices 63
13. Associated matrices and the Kronecker theorem 64

Chapter II. Oscillatory Matrices 67
1. Jacobi matrices 67
2. Oscillatory matrices 74
3. Examples 76
4. Perron’s theorem 83
5. Eigenvalues and eigenvectors of an oscillatory matrix 86
6. A fundamental determinantal inequality 91
7. Criterion for a matrix to be oscillatory 97
8. Properties of the characteristic determinant of an oscillatory matrix 105
9. Eigenvalues of an oscillatory matrix as functions of its elements 108

Chapter III. Small Oscillations of Mechanical Systems with n Degrees of Freedom 113
1. Equations of small oscillations 113
2. Oscillations of Sturm systems 118
3. Second method of setting up the equations of small oscillations of mechanical systems 129
4. Influence functions 131
5. Chebyshev systems of functions 136
6. The oscillatory character of the influence function of a segmental continuum 142
7. Influence function of a string 146
8. Influence function of a rod 148
9. Small oscillations of an elastic continuum with n concentrated masses 157
10. Small oscillations of a segmental continuum 160
11. Oscillations of a system of concentrated masses placed on a multi-span beam 163

Chapter IV. Small Oscillations of Mechanical Systems with an Infinite Number of Degrees of Freedom 167
1. Principal premises 167
2. Oscillations of a segmental continuum and oscillatory kernels 177
3. Oscillatory properties of the vibrations of an everywhere-loaded continuum 180
4. Vibrations of an arbitrarily loaded continuum 191
5. Harmonic oscillations of multiply supported rods 205
6. Oscillatory properties of forced vibrations 210
7. Oscillations of an elastically supported string 220
8. Forced oscillations of a string 223
9. The resolvent of an oscillatory single-pair kernel 225
10. The Sturm–Liouville equations 234

Chapter V. Sign-Definite Matrices 245
1. Basic definitions 245
2. Oscillating systems of vectors 246
3. Markov systems of vectors 258
4. Eigenvalues and eigenvectors of sign-definite matrices 263
5. Approximation of a sign-definite matrix by a strictly sign-definite one 268

Supplement I. A Method of Approximate Calculation of Eigenvalues and Eigenvectors of an Oscillatory Matrix 275

Supplement II. On a Remarkable Problem for a String with Beads and Continued Fractions of Stieltjes 283
Remarks 299
References 305
Index 309
Preface to the Revised English Edition

In preparing this publication, the following sources were used:

1. Ф. Р. Гантмахер, М. Г. Крейн, Осцилляционные матрицы ядра и мальные колебания механических систем, ГИТТЛ, Москва–Ленинград, 1950;

I tried to preserve the terminology and the unique style of the authors (for example, they never use set-theoretic terminology). The only important exception was made for systematic use of the words “eigenvalue” and “eigenvector” in this translation, instead of “characteristic numbers” and “proper vectors” used in the original. We warn the reader that an eigenvalue of a Fredholm integral equation is not the same as an eigenvalue of the corresponding Fredholm operator, but rather its reciprocal. This terminology is traditional and well established in the theory of integral equations (see, for example, [8]) and it is consistent with physical interpretation of these eigenvalues as squares of frequencies.

The modern literature on the subjects originated with this book is enormous, so no attempt was made to compose a complete up-to-date bibliography. Only few modern books and survey papers have been added.

This new English edition was made possible by generous support of Purdue University and Humboldt Foundation. David Drasin helped very much with correction of English, and Betty Gick typed the manuscript in TeX.

Alex Eremenko, Editor of Translation
Foreword to the Second Edition

The present edition of this book differs from the first edition, published in 1941, at the beginning of the Great Patriotic War, under the title “Oscillatory Matrices and Small Vibrations of Mechanical Systems” in the following respects:

Chapter II, devoted to the theory of oscillatory matrices, has been substantially revised. The treatment of the theory is now made more accessible and purposeful. We retain in Chapter II only the material that has direct relation to oscillatory matrices and is used in the application of these matrices to the theory of oscillations of mechanical systems (Chapters III and IV).

In Chapter III, devoted to small oscillations of systems with \(n \) degrees of freedom, there has been a substantial revision in the section that explains the mechanical properties that cause the oscillatory nature of the matrix of the influence coefficients of a linear continuum (a string or a rod). In addition, this chapter contains a new section (Sec. 5), in which the properties of Chebyshev systems of functions are explained. These systems of functions are used in Chapters III and IV.

Chapter IV is essentially new. The main results of this chapter were contained as Appendix I in the first edition in outline form. Chapter IV is a natural continuation and generalization of Chapters II and III. It treats problems of vibrations of systems with infinite number of degrees of freedom. Whereas the mathematical basis for Chapter III is the theory of oscillatory matrices, the natural mathematical tool of Chapter IV is the theory of loaded integral equations with symmetric oscillatory kernel. This theory in its complete form is presented in this book for the first time.

In Chapter V various generalizations and supplements to the algebraic investigations of the preceding chapters are gathered. In the first edition, these results were partially covered in Chapter II, and partially in appendices.

Two appendices at the end of this book contain new material which was absent in the old edition.

In Appendix I we give a development of the iteration method of approximate calculation of eigenvalues and eigenvectors for a class of oscillatory matrices.

Appendix II is devoted to the application of continued fractions to the inverse problems of the theory of oscillations – the construction of a mechanical system with finite number of degrees of freedom from its spectral characteristics.

We shall not mention here various less important additions, refinements and corrections in various parts of the book.

All that is required to understand the entire material of the book, with the exception of Chapter IV, is that the reader be familiar with the principles of calculus and the theory of determinants. Chapter IV requires familiarity with the theory of linear integral equations (at least with symmetric kernels).
In Chapter V the authors used many valuable comments from the late doctoral candidate of the Academy of Sciences, U.S.S.R., Vitold Lvovich Shmulyan, who was killed in action in the Great Patriotic War. These remarks concerning the first edition of the book were sent by him from the front in August 1942.

The authors take this opportunity to pay our last homage to the cherished memory of this talented mathematician and patriot.
Index

a-line, 70
amplitude, 115
antinode, 137
beam, 129
Bernoulli, D., 119
Birkhoff, 303
C-orthogonal vectors, 44
C-orthonormal vectors, 45
Cauchy function, 243
characteristic determinant, 16
characteristic equation, 16, 49
generalized, 42
Chebyshev system, 6, 137, 181, 194
Chebyshev–Hermite polynomials, 128
Chebyshev–Posse polynomials, 128
Collatz, 303
complete system of eigenvectors, 18
compound pendulum, 127
costant, 117
continuum, 131
segmental, 142
d’Alembert, 119
Davidoglo, 300
defect, 16
density of a minor, 259
Descartes Rule, 28
diametral hyperplane, 27
differential operator, 236
Dimentberg, 303
discriminant, 24
eigenvalue, 49
of a boundary value problem, 237
of a matrix, 16
of a pencil, 49
of an integral equation, 168
eigenvector, 16
energy
kinetic, 113
potential, 113
Euler, 119
exponent of an oscillatory matrix, 76
Fekete, 259, 261, 303
forced oscillation, 175
Fourier, 173
Fredholm
determinant, 168
minor, 169
symbol, 178
frequency, 116
Fundamental Determinantal Inequality, 91
fundamental frequency, 117
fundamental function, 168
Green function, 237
Hadamard’s inequality, 36, 38, 39, 135
harmonic oscillation, 115, 117
heat kernel, 140
inertia, 117
influence
coefficients, 2, 130
function, 2, 130, 131
integral equation
loaded, 168
Jacobi
formula, 32
matrix, 67
Janczewski, 300
Jentzsch, 304
Kalafati, 303
Kellog, 180
Kellogg kernel, 180
even or odd, 302
kernel
oscillatory, 3, 178, 179
single-pair, 220
Kotelanski, 299
Kronecker
theorem, 65
Kronelcher
identity, 32
Lagrange, 119
equations, 114
Laguerre polynomials, 128
law of inertia, 29
loaded integral equation, 3
Markov
sequence, 6, 181, 194
system, 7, 258
matrix, 9
 adjoint, 12
 associated, 64
 fundamental, 18
 generalized Vandermonde, 76
 normal Jacobi, 70
cf of class d^+, 245
 orthogonal, 25
 oscillatory, 3
 sign-definite, 245
 sign-regular, 75
 similar, 60
 single-pair, 78
 strictly sign-definite, 245
 strictly sign-regular, 75
 symmetric, 19
totally non-negative, 74
totally non-negative of class d, 245
totally positive, 74
totally positive of class d, 245
transposed, 19
triangular, 61
 with simple structure, 18
maximin, 53
Maxwell reciprocity principle, 132
Mercer expansion, 170
Mersenne’s Law, 123
minimax, 53, 171
minor
 almost principal, 91
 quasi-principal, 99
movable point, 131, 142
natural oscillations, 117
nodal place, 148
node, 2
 of a line, 70
 of a function, 137
 of a vector, 70
normal coordinates, 114
number of sign changes
 exact, 87
 maximal, 86
oscillate in the same way, 254
oscillatory
 influence function, 143, 146
 matrix, 76
 properties, 1, 177
overtone, 117
pencil of forms, 49
phase, 115
Picard, 300
place
 nodal, 148
 zero, 148
Poincaré, 173
Poisson, 173
positive pair, 284
principal vector, 27, 49
Principle of Fixed Points, 304
property
 D^+, 248
 D^-, 248
 T^+, 246
 T^-, 246
quadratic form, 23
 non-negative, 34, 35
 normal Jacobi, 118
positive, 34, 35
 rank of, 25
 singular, 24
quasi-resonance, 177
resolvent, 169
 mechanical interpretation, 176
resonance, 176
Routh, 299
Schoenberg, 253, 303
secular
 determinant, 1
 equation, 1, 16
 segmental continuum, 1
shaft, 124
single-pair kernel, 6
singular boundary conditions, 237
stability, 115
stiffness, 117
Sturm, 1, 4, 5, 299
 1 sequence, 105
 system, 5, 118
Sturm’s rule, 68
Sturm–Liouville, 7
 boundary value problem, 235
 support, 133
Sylvester’s
 formula, 30
 identity, 12, 13
 symmetry condition, 283
Terskikh, 303
theorem
 Binet–Cauchy, 10
 Mercer, 170
 Perron, 83, 182
thread with beads, 119
Volterra equation, 225
zero place, 148