KNOTS AND LINKS
Yggdrasil. The tree of Norse mythology whose branches lead to heaven. Realized as Alexander’s horned sphere in this etching by Bill Meyers.

Previous Page: This knot (7_4 in the table) is one of the eight glorious emblems of Tibetan Buddhism. Just as a knot does not exist without reference to its embedding in space, this emblem is a reminder of the interdependence of all things in the phenomenal world.
KNOTS AND LINKS

DALE ROLFSEN

AMS CHELSEA PUBLISHING
American Mathematical Society • Providence, Rhode Island
To Amy, Catherine and Gloria
Preface to the AMS Chelsea edition

This book was written as a textbook for graduate students or advanced undergraduates, or for the nonexpert who wants to learn about the mathematical theory of knots. A very basic understanding of algebraic topology is assumed (and outlined in Appendix A).

Since the first edition appeared in 1976, knot theory has been transformed from a rather specialized branch of topology to a very popular, vibrant field of mathematics. The impetus for this change was largely the work of Vaughan Jones, who discovered a new polynomial invariant of knots through his work in operator algebras. This led to astonishing connections between knot theory and physics, and such diverse disciplines as algebraic geometry, Lie theory, statistical mechanics and quantum theory.

Friends have encouraged me to revise Knots and Links to include an account of these exciting developments. I decided not to do this for several reasons. First of all, a number of good books on knot theory have appeared since Knots and Links, which cover these later developments. Secondly, the present book is already a fairly large tome, and it would be doubled in size if I were to do justice to advances in the field since publication. This didn't seem like a good idea. Finally, I believe this book remains valuable as an introduction to the exciting fields of knot theory and low dimensional topology. For similar reasons, the "forthcoming entirely
Preface to the AMS Chelsea edition

new book’’ mentioned in the preface to the second printing will very likely never materialize.

Knots and Links would not have existed in the first place, had it not been for Mike Spivak, owner and founder of *Publish or Perish Press*. Spivak has been a faithful friend and constant source of encouragement. It was he who suggested I use my class notes as the basis for a book -- this book was the result. It was also his suggestion that, when the last printing of the book by *Publish or Perish* ran out recently, I seek another publisher. I am extremely pleased that, with the new AMS Chelsea Classics edition, this book will remain available in a high-quality format and at a reasonable price. I'd also like to thank Edward Dunne and Sergei Gelfand and the staff at AMS Books for facilitating this edition.

Finally, I would like to extend my gratitude to a number of friends and colleagues who have pointed out errors in the previous editions. Nathan Dunfield verified all the Alexander polynomials of the knots and links in the tables, and found exactly four errors, which are corrected in this edition (9^2_{29}, 9^2_{55}, 9^2_{57}, and 9^2_{59}). Other corrections for this new edition are a matrix entry on page 220, correction of Lemma 8E18, p. 222, and an exercise at the bottom of page 353. These last two were pointed out by Steve Boyer. Thanks also to Jim Bailey, Steve Bleiler, Jim Hoste, Peter Landweber, Olivier Collin and others whose help I may have forgotten. No doubt there are still errors, which I would be glad to hear about. Any future corrections will be posted on the AMS Books website. The url is given on the copyright page.

Dale Rolfsen

(rolfsen@math.ubc.ca)

Vancouver, June, 2003
PREFACE TO THE SECOND PRINTING

This new printing is essentially the same as the original edition, except that I have corrected the errors that I know about. Several colleagues and students have been very helpful in pointing out these errors, and I wish to thank them for their help. Special thanks to Professors Jim Hoste and Peter Landweber for finding lots of them and sending me detailed lists. One of the most embarrassing errors is the duplication in the knot table: 10_{141} and 10_{142} are really the same knot, as K. Perko has pointed out. Also, in the table, the drawing of 10_{144} was wrong.

I didn't make any attempt to update the book with new material. I took the advice of a kind friend who told me not to tamper with a "classic." A lot has happened in knot theory in the decade and a half since this book was written. I will do my best to report that in a forthcoming entirely new book. However, some notable developments really ought to be mentioned. The old conjecture that knots are determined by their complements was recently solved in the affirmative by C. Gordon and J. Leucke. Likewise, we now know the Smith Conjecture to be true, although the Poincaré and Property P conjectures still stand. Equally exciting is the "polynomial fever" rampant for the past five years, inspired by V. Jones' discovery of a new polynomial so powerful that it could distinguish the two trefoils. This breakthrough led to the discovery of plenty of new polynomials, giving us a large new collection of very sharp tools and adding fundamentally to our understanding of that wonder of our natural world: knots.
The best thing that has happened to knot theory, however, is that many more scientists are now interested in it -- not just topologists -- and contributing in their unique ways. Jones led the way by introducing operator algebras and representation theory to the subject. Since then deep contributions have been made by algebraic and differential geometry, and by mathematical physics. Surprising connections with statistical mechanics and quantum field theory are just now being explored and promise to make the end of the 20th century a real golden age for knot theory. Knot theory is not only utilizing ideas from other disciplines, but is beginning to return the favor. Besides stimulating new directions of research in mathematics and physics, ideas of knot theory are being used effectively in such fields as stereochemistry and molecular biology. So knot theory can begin to call itself applied mathematics!

Since the appearance of "Knots and Links," several excellent books on the subject of mathematical knot theory have appeared. Most notable are "Knots," by Burde and Zieschang, and "On knots," by Kauffman. These are highly recommended. Each has an emphasis different from the present work, and the three can be regarded as mutually complementary.

Finally, my sincere thanks go to my publisher, Mike Spivak, for agreeing to put out this new printing, for his patience in making the corrections, and for his realization that it was hopeless to expect my promised new book on knots in the very near future.

Dale Rolfsen

Vancouver, Canada

February 9, 1990
This book began as a course of lectures that I gave at the University of British Columbia in 1973–74. It was a graduate course officially called "Topics in geometric topology." That would probably be a more accurate title for this book than the one it has. My bias in writing it has been to treat knots and links, not as the subject of a theory unto itself, but rather as (1) a source of examples through which various techniques of topology and algebra can be illustrated and (2) a point of view which has real and interesting applications to other branches of topology. Accordingly, this book consists mainly of examples.

The students in that course were graduate level and all had some background in point-set topology and a little algebraic topology. But I think an intelligent undergraduate mathematics student, who is willing to learn algebraic topology as he goes along, should be able to handle the ideas here. As part of my course, the students lectured to each other from Rourke and Sanderson's book [1972] on piecewise-linear topology. So I've used some PL techniques without much explanation, but not to excess.

If you scan through the pages you'll find that there are lots of exercises. Some are routine and some are difficult. My philosophy in teaching the course was to have the students prove things for themselves as much as possible, so the exercises are central to the ideas developed in these notes. Do as many as you can.
I would like to express my thanks to the people who helped me to prepare this manuscript during rather nomadic times for me. They are: Cathy Agnew (Vancouver), Yit-Sin Choo (Vancouver), Cynthia Coddington (Heriot Bay, B. C.), Joanne Congo (Vancouver), Sandra Flint (Cambridge), Judy Gilbertson (Laramie, Wyoming), Carol Samson (Vancouver) and Maria del Carmen Sanchez del Valle (Mexico City). Special thanks are due to Jim Bailey, who took notes in the course on which this book is based, compiled the table which forms appendix C, and helped in many other ways. Also to his friend Ali Roth who drew the knots and links so beautifully. David Gillman gave an excellent series of three lectures on Dehn's Lemma, and I'm grateful to him for writing up the notes for inclusion here as appendix B.

Many friends and mathematicians have given me encouragement and advice, both mathematical and psychological. Among them are Andrew Casson, Francisco Gonzalez-Acuna, Cameron Gordon, Cherry Kearton, Robion Kirby, Raymond Lickorish and Joe Martin, whose own lecture notes were very helpful to me. Finally I want to thank Mary-Ellen Rudin for her advice, which I should have followed sooner: "Don't try to get everything in that book."
TABLE OF CONTENTS

CHAPTER ONE. INTRODUCTION

A. Notation and definitions .. 2
B. Some examples of linking .. 4

CHAPTER TWO. CODIMENSION ONE AND OTHER MATTERS

A. Knots in the plane ... 9
B. The Jordan curve theorem and chord theorem 13
C. Knots in the torus ... 17
D. The mapping class group of the torus 26
E. Solid tori ... 29
F. Higher dimensions ... 33
G. Connected sum and handlebodies 39

CHAPTER THREE. THE FUNDAMENTAL GROUP

A. Knot and link invariants ... 47
B. The knot group .. 51
C. Torus knots ... 53
D. The Wirtinger presentation ... 56
E. Regular projections ... 63
F. Computations for links ... 65
G. Chains .. 70
H. Iterated chains and Antoine's necklace 73
I. Horned spheres ... 76
J. Application of π_1 to higher-dimensional knots 83
K. Unsplittable links in 4-space .. 88
L. Generalized spinning ... 96

CHAPTER FOUR. THREE-DIMENSIONAL PL GEOMETRY

A. Three theorems of Papakyriakopoulos 100
B. The unknotting theorem .. 103
C. Knotting of tori in S^3 ... 106
D. Knots in solid tori and companionship 110
E. Applications of the sphere theorem 116

CHAPTER FIVE. SEIFERT SURFACES

A. Surfaces and genus ... 118
B. Higher-dimensional Seifert surfaces 127
C. Construction of the cyclic coverings of a knot complement using Seifert surfaces ... 128
D. Linking numbers .. 132
E. Boundary linking 137

CHAPTER SIX. FINITE CYCLIC COVERINGS AND TORSION INVARIANTS
A. Torsion numbers 145
B. Calculation using Seifert surfaces 146
C. Calculation using surgery in S^3 152
D. Surgery description of knots 158

CHAPTER SEVEN. INFINITE CYCLIC COVERINGS AND THE ALEXANDER INVARIANT
A. The Alexander invariant 160
B. Seifert surfaces again 163
C. Surgery again ... 168
D. Computing the Alexander invariant from the knot group 174
E. Additivity of the Alexander invariant 179
F. Higher-dimensional examples: plumbing 180
G. Nontrivial knots in higher dimensions with group Z 185
H. Higher-dimensional knots with specified polynomial 187
I. Alexander invariants of links 190
J. Brunnian links in higher dimensions 197

CHAPTER EIGHT. MATRIX INVARIANTS
A. Seifert forms and matrices 200
B. Presentation matrices 203
C. Alexander matrices and Alexander polynomials 206
D. The torsion invariants 212
E. Signature and slice knots 216
F. Concordance ... 227

CHAPTER NINE. 3-MANIFOLDS AND SURGERY ON LINKS
A. Introduction .. 233
B. Lens spaces .. 233
C. Heegaard diagrams 239
D. The Poincaré conjecture, homology spheres and Dehn’s construction 244
E. A theorem of Bing 251
F. Surgery on 3-manifolds 257
G. Surgery instructions in R^3 or S^3 258
H. Modification of surgery instructions 264
I. The fundamental theorem of Lickorish and Wallace 273
J. Knots with property P 280
CHAPTER TEN. FOLIATIONS, BRANCHED COVERS, FIBRATIONS AND SO ON

A. Foliations ... 284
B. Branched coverings .. 292
C. Cyclic branched covers of \(S^3 \) 297
D. Cyclic coverings of \(S^3 \) branched over the trefoil
 (a lengthy example) ... 304
E. The ubiquitous Poincaré homology sphere 308
F. Other branched coverings of \(S^3 \) 312
G. Arbitrary 3-manifolds as branched coverings of \(S^3 \) 319
H. Fibred knots and links ... 323
I. fiber the complement of a trefoil 327
J. Constructing fibrations .. 335
K. Open book decompositions 340

CHAPTER ELEVEN. A HIGHER-DIMENSIONAL SAMPLER

A. Forming knots by adding handles 342
B. Trivial sphere pairs contain nontrivial ball pairs 345
C. The Smith conjecture .. 347
D. Kervaire’s characterization of knot groups 350
E. Contractible 4-manifolds ... 355

APPENDIX A. COVERING SPACES AND SOME ALGEBRA IN A NUTSHELL 358

APPENDIX B. DEHN’S LEMMA AND THE LOOP THEOREM 374

APPENDIX C. TABLE OF KNOTS AND LINKS 388

REFERENCES 430

INDEX 438
REFERENCES

_______ (1924)\(^1\), On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. 10, 6-8.

_______ (1924)\(^2\), An example of a simply-connected surface bounding a region which is not simply-connected, Proc. Nat. Acad. Sci. 10, 8-10.

_______ (1924)\(^3\), Remarks on a point set constructed by Antoine, Proc. Nat. Acad. Sci. 10, 10-12.

W. R. Alford (1970), Complements of minimal spanning surfaces of knots are not unique, Ann. of Math 91, 419-424.

E. Artin (1925), Zur Isotopie zweidimensionaler Flächen im \mathbb{R}^4, Hamburg Abh. 4, 174-177.

R. H. Bing (1958), Necessary and sufficient conditions that a 3-manifold be S^3, Ann. of Math. 68, 17-37.
REFERENCES

R. H. Bing (1959), An alternative proof that 3-manifolds can be triangulated, Ann. of Math (2) 69, 37-65.

A. J. Casson and C. McA. Gordon (1975), Cobordism of classical knots Preprint of lectures given at Orsay.

M. Dehn (1914), Die beiden Klebeblattschlingen, Math Ann. 75, 402-413.

R. H. Fox (1957), Covering spaces with singularities, Algebraic geometry and topology, a symposium in honor of S. Lefschetz. (Ed. by Fox, Spencer, and Tucker), Princeton 1957, 243-257.

D. Goldsmith (1975), Symmetric fibered links; Knots, Groups and 3-manifolds, ed. by L. P. Neuwirth, Princeton, 3-23.

REFERENCES

C. M. Gordon (1975), Knots, homology spheres and contractible 4-manifolds. Topology 14, 151-172.

M. J. Greenberg (1967), Lectures on Algebraic Topology. New York; Benjamin.

H. Hilden (1974), Every closed orientable 3-manifold is a 3-fold branched covering space of S^3, Bull. A. M. S. 80, 1243-1244.

R. C. Kirby (1969), Stable homeomorphisms and the annulus conjecture, Ann. of Math. (2) 89, 575-582.

J. Levine (1966), Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84, 537-554.

J. W. Milnor (1950), On the total curvature of knots, Ann. of Math (2) 52, 248-257.

J. W. Milnor (1975), On the 3-dimensional Brieskorn manifolds M(p,q,r), Knots, groups and 3-manifolds (ed. by Neuwirth), Ann. of Math. Studies no. 84, 175-225.

E. Moise (1952), Affine structures in 3-manifolds V. The triangulation theorem and Hauptvermutung. Ann. of Math. (2) 56, 96-114.
REFERENCES

E. Moise (1954), Affine structures in 3-manifolds VIII. Invariance of the knot types; local tame embedding. Ann. of Math. (2) 59, 159-170.

REFERENCES

D. W. Sumners (1975), Smooth Z_p-actions on spheres which leave knots pointwise fixed, Trans. A. M. S. 205, 193-203.
REFERENCES

E. R. van Kampen (1928), Zur Isotopie zweidimensionaler Flächen in \mathbb{R}^4, Hamburg Abh. 6, 216.

J. H. C. Whitehead (1935), A certain open manifold whose group is unity, Quart. J. Math. 6, 268-279.

INDEX

Alexander's horned sphere 80
Alexander invariant 160
Alexander matrix / ideal / polynomial 206
algebraic knots 335
Andrews-Curtis link 94, 142
annulus theorem 11, 38
Antoine's horned sphere 80
Antoine's necklace 73
bicollars 34
binary icosahedral group 248
Bing's theorem 251
Borromean link 66, 138, 197, 269, 338
boundary link 126, 137, 196
bridge index 114
braided link 288
branched covering 292
Brunnian link 67, 144
cable knot 112, 283
centre of a group 54
characteristic homeomorphism 325
chord theorem 15
companion 111
congruence of matrices 202
connected sum / composite 39, 281, 326
continued fraction 273, 303
crookedness 115
cube-with-knotted-hole 31
cyclic branched cover 297, 304
deficiency of a group 64
Dehn surgery 258
Dehn's homology sphere 246
Dehn's lemma 101
determinant of a knot 213
dodecahedral space = Poincaré manifold
doubled knot 112, 156, 166, 283
Eilenberg-MacLane space 116
elementary ideals 205
equivalence of knots 2
essential 110
exterior of a knot 31
faithful homeomorphism 111
fibred knots and links 323
finite cyclic cover 131
flat 36
foliation 284
framing 31
fundamental theorem of surgery 273
genus 119
genus of 3-manifolds 240
granny knot 62
handle 342
handle surgery 261
handlebody 46
Heegaard diagram 239
homology sphere 244
homotopy sphere 244
infinite cyclic cover 130
intersection number 202
irregular covering 315
isotopy 3
join 6
Jordan curve theorem 9, 13
Kervaire's theorem 351
knot 2
knot group 51
Laurent polynomial 161, 190
lens spaces 233, 272
Lickorish twist theorem 273
light bulb theorem 257
link 2
linking number 132
locally flat 40, 84
longitude 29
loop theorem 101
lower central series 89
manifold 33
mapping class group 26
Mazur's 4-manifold 356
meridian 29
monodromy 325
non-cancellation theorem 104
nullity 232
open book decomposition 340
order ideal 205
orientation 42
oriented knot type 227
periodic transformation 347
peripheral subgroup 104
plumbing 180
Poincaré conjecture 244, 280
Poincaré manifold 245, 290, 308
presentation matrix 203
property P 280
quaternion group 305
Reeb foliation 287
regular projection 63
ribbon knot 225
Schönflies theorem 9, 34
Seifert form / matrix 201
Seifert surface 118
signature 216
simple branched cover 322
singularity 230
slice knot 218
Smith conjecture 347
solid torus 29
sphere theorem 102, 116
spinning 85
spinning (generalized) 96, 339
splittable 88
square knot 61
surgery 257
surgery description of knots 158, 168
surgery modifications 264
suspension 6
Sylvester's theorem 216
tame knot 48
torsion numbers 145
torsion invariants 212
torus knot 53, 177, 337
transitive representation 313
trefoil knot 51, 163, 176, 220, 246, 271, 304, 312, 317, 326, 327
two lover's knot 338
tubular neighbourhood 34
twist 23, 274
unknotting theorems 36, 103
Whitehead's link 68, 72, 137, 194, 270, 303, 338
Whitehead's manifold 82
Wittringer presentation 56