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PREFACE

This book deals with a special topic in the field of diffusion processes:
differential and integral calculus based upon the Brownian motion.
Roughly speaking, it is the same as the customary calculus of smooth
functions, except that in taking the differential of a smooth function f of
the 1-dimensional Brownian path ¢ — b(¢), it is necessary to keep two
terms in the power series expansion and to replace (db)? by dt:

df(b) = f(b) db + 1f"(b)(db)* = f'(b) db + 11" (b) dt,

or, what is the same,
t t t
[reva-rof -1 [ row
0 0 0

This kind of calculus exhibits a number of novel features; for example,
the appropriate exponential is e®~"/? instead of the customary e’. The
main advantage of this apparatus stems from the fact that any smooth
diffusion ¢ — x(¢) can be viewed as a nonanticipating functional of the
Brownian path in such a way that x is a solution of a stochastic differ-
ential equation

dx = e(x) db + f(x) dt

vii



viii PREFACE

with smooth coefficients e and f. This represents a very complicated
nonlinear transformation in path space, so it can hardly be called
explicit. But it is concrete and flexible enough to make it possible to read
off many important properties of .

Although the book is addressed primarily to mathematicians, it is
hoped that people employing probabilistic models in applied problems
will find something useful in it too. Chandrasekhar [1], Uhlenbeck-
Ornstein [1], and Uhlenbeck-Wang [1] can be consulted for appli-
cations to statistical mechanics. A level of mathematical knowledge
comparable to Volume 1 of Courant-Hilbert [1] is expected. Yosida [2]
would be even better. Also, some knowledge of integration, fields,
independence, conditional probabilities and expectations, the Borel-
Cantelli lemmas, and the like is necessary; the first half of Itd’s notes
[9] would be an ideal preparation. Dynkin [3] can be consulted for
additional general information; for information about the Brownian
motion, It6-McKean [1] is suggested. Chapter 1 and about one third
of Section 4.6 are adapted from Ito-McKean; otherwise there is no
overlap. It6 [9] and Skorohod [2] include about half of Chapters 2
and 3, and Section 4.3, but most of the proofs are new. Problems with
solutions are placed at the end of most sections. The reader should re-
gard them as an integral part of the text.

I want to thank K. Itd for conversations over a space of ten years.
Most of this book has been discussed with him, and it is dedicated
to him as a token of gratitude and affection. I must also thank
H. Conner, F. A. Griinbaum, G.-C. Rota, I. Singer, D. Strook,
S. Varadhan, and the audience of 18.54/MIT/1965, especially P. O’Neil,
for information, corrections, and/or helpful comments. The support
of the National Science Foundation (NSF/GP/ 4364) for part of 1965
is gratefully acknowledged. Finally, I wish to thank Virginia Early for
an excellent typing job.

H. P. McKEAN, JR.
South Landaff, New Hampshire
1968
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LIST OF NOTATIONS

USAGE: Positive means >0, while nonnegative means >0; it is the
same with negative and nonpositive. A field is understood to be closed
under countable unions and intersections of events. The phrase with
probability 1 is suppressed most of the time. C"(M) stands for the class
of n times continuously differentiable functions f from the (open)
manifold M to R'; no implication about the boundedness of the function
or of its partials is intended. f is said to be compact if it vanishes off a
compact part of M.

an extra Brownian motion

the Lie algebra of G (Section 4.7)

a field including the corresponding Brownian field B
(Section 1.3)

a Brownian motion (Section 1.2)

an event

a Brownian field (Section 1.3)

a constant

» x|

S my o

xi
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Dn
D(G)

LIST OF NOTATIONS

the dimension, a differential (Section 2.6)

a class of formal trigonometrical sums (Section 4.2)

the enveloping algebra of G (Section 4.7)

a 1-field (Section 4.1), a Lie or enveloping element (Section 4.7)

a partial, the boundary operator

a Brownian increment b(k2™") — b((k — 1)2™") (Section 2.5),
an interval

a Laplacian, e.g., 02/0x,2 + -+ + 0%/0x,”

a nonanticipating Brownian functional (Section 2.2), the
coefficients of 9% in G (Sections 3.1, 4.1)

an exit or explosion time (Sections 3.3, 4.3)

the expectation based on P(B) of the function f

a function, the coefficients of d in G (Sections 3.1, 4.1)

a local time (Section 3.9)

the coefficients of 6° in G (Section 4.1)

a group of fractional linear substitutions (Section 4.6), a Lie

group (Section 4.7)

an elliptic operator (Sections 3.1, 4.1)

the dual of G (Section 4.2)

a Hermite polynomial (Section 2.7)

infinitely often

a compact C* function, a patch map (Section 4.1)

the Jacobian 0x’/0x (Section 4.1)

logarithm

1g(1g)

the space of functions f with || f]|; = | |f] < o

the space of functions f with || f]|, = ([ | f|)"?* < o

a manifold (Section 4.1)

an integer

an orthogonal transformation (rotation)

the orthogonal group

an elementary solution of du/dt = G*u (Sections 3.1, 4.1)

the probability of the event B, usually Wiener measure
(Section 1.2)

an elliptic operator on a torus (Section 4.2)

a Bessel process (Section 1.7)

a Riemann surface (Section 4.6)

d-dimensional number space



LIST OF NOTATIONS Xiii

R"® R™ the applications of R™ into R"

SO(d)
sp

-~

% g T RN

/114
11
11
[]

g ——Mmn CD

the special orthogonal group [det o = + 1] (Section 4.7)

spur or trace

time

a stopping time (Section 1.3), an intrinsic time or clock

(Section 2.5)

a torus [0, 21]¢ (Section 4.2)

a solution of du/0t = Gu

a patch of a manifold (Section 4.1)

a point of a covering surface (Section 4.6)

a covering Brownian motion (Section 4.6)

local coordinates on a patch (Section 4.1)

a stochastic integral (Section 2.6), a diffusion expressed in
local coordinates (Section 4.3)

a point of a manifold M (Section 4.1)

a martingale (Section 1.4), a diffusion on a manifold
(Section 4.3), a complex Brownian motion (Section 4.6)

the rational integers 0, +1, efc.

the lattice of integral points of R?

maximum

minimum

the inner product of R?

multiplication, cross product of R*

outer product

transpose

the norm on RY, the bound of an application of R?

(= 0)7'LfG) = f(X)] (x # y), ['(x) (x = p) (Section 3.5)

[ 1f] except in Section 4.2

(f [f1®)"/* except in Section 4.2

the upper bound of |f]

the integral part of

intersection

union

set inclusion

point inclusion

increases to

decreases to

infinity, the compactifying point of a noncompact manifold.
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Backward equation
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for d = 2, 98

Bernstein’s theorem, 110
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F
Feller’s test, 65
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Hasminskii’s test, 102
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Integral, stochastic, see also Differential
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ERRATA

P. 13, end of line 61: for lg, 0™ read 1g, 6~ ™.

P. 24, line 27 read: (4) fg efdb (f missing).

P. 31, line 12, just under display 4: for t(A) (Roman t) read t(A)
(German t).

P. 41, line 9, under display 2: read fot f~2ds (without the parenthesis).
P. 67, line 9: read Pt < ¢f] (i.e., reverse inequality).

P. 113, General note: The application of Poincaré’s theorem in display
2 is wrong, as kindly pointed out by D. Sullivan, and this spoils
the subsequent proof. This was corrected and the result amplified
in T. J. Lyons and H. P. McKean, Winding of the plane Brownian
motion, Adv. Math. 51 (1984), 212-225, and H. P. McKean and
D. Sullivan, Brownian motion and harmonic functions on the class
surface of the thrice-punctured sphere, Adv. Math. 51 (1984), 203—
211. The fact is that Poincaré’s sum is not infinite but finite and that
the covering Brownian motion on the class surface over the punctured
plane wanders off to infinity, with the interpretation that the original
Brownian motion in the twice-punctured plane, in its winding about
0 and 1, gets inextricably tangled up, not only from the viewpoint of
homotopy (that’s easy), but from the viewpoint of homology as well.
P. 124, line 8: read —% >3 (- 'y,-)_l 0/ 07;.

i<n j#i
P. 124, Step 1: Replace z by «y (3 times) and n by d (4 times) in lines
2,3,and 4. Inline 3, read Mz =[y:y1 =72 =73 < --- < YdJ-

P. 134, line 87, Gangolli reference: for 419, read 219.
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