Decompositions of Manifolds

Robert J. Daverman

AMS CHELSEA PUBLISHING
American Mathematical Society • Providence, Rhode Island
DECOMPOSITIONS
OF MANIFOLDS
Decompositions of Manifolds

Robert J. Daverman
CONTENTS

Preface ix

Acknowledgments xi

Introduction 1

I Preliminaries

1. Elementary Properties of Upper Semicontinuous Decompositions 7
2. Upper Semicontinuous Decompositions 13
3. Proper Maps 15
4. Monotone Decompositions 17

II The Shrinkability Criterion

5. Shrinkable Decompositions 23
6. Cellular Sets 35
7. Countable Decompositions and Shrinkability 41
8. Countable Decompositions of E^n 50
9. Some Cellular Decompositions of E^3 61
10. Products of Decompositions with a Line 81
11. Squeezing a 2-Cell to an Arc 94
12. The Double Suspension of a Certain Homology Sphere 102
13. Applications of the Local Contractability of Manifold Homeomorphism Groups 107

III Cell-Like Decompositions of Absolute Neighborhood Retracts

14. Absolute Retracts and Absolute Neighborhood Retracts 114
15. Cell-Like Sets 120
16. UV Properties and Decompositions 123
17. Cell-Like Decompositions and Dimension 129
18. The Cellularity Criterion and Decompositions 143

IV The Cell-Like Approximation Theorem
19. Characterizing Shrinkable Decompositions of Manifolds —the Simple Test 149
20. Amalgamating Decompositions 151
21. The Concept of Embedding Dimension 158
22. Shrinking Special 0-Dimensional Decompositions 166
23. Shrinking Special (n – 3)-Dimensional Decompositions 171
24. The Disjoint Disks Property and the Cell-Like Approximation Theorem 178
25. Cell-Like Decompositions of 2-Manifolds—the Moore Theorem 187

V Shrinkable Decompositions
26. Products of E^2 and E^1 with Decompositions 190
27. Products of E^1 with Decompositions of E^3 206
28. Spun Decompositions 212
29. Products of Generalized Manifolds 223
30. A Mismatch Property in Locally Spherical Decomposition Spaces 227
31. Sliced Decomposition of E^{n+1} 232

VI Nonshrinkable Decompositions
32. Nonshrinkable Cellular Decompositions Obtained by Mixing 239
33. Nonshrinkable Null Sequence Cellular Decompositions Obtained by Amalgamating 241
34. Nested Defining Sequences for Decompositions 245
35. Cell-Like but Totally Noncellular Decompositions 251
36. Measures of Complexity in Decomposition Spaces 256
37. Defining Sequences for Decompositions 260

VII Applications to Manifolds
38. Gropes and Closed n-Cell-Complements 265
39. Replacement Procedures for Improving Generalized Manifolds 274
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40. Resolutions and Applications</td>
<td>284</td>
</tr>
<tr>
<td>41. Mapping Cylinder Neighborhoods</td>
<td>291</td>
</tr>
<tr>
<td>Appendix</td>
<td>300</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>313</td>
</tr>
</tbody>
</table>
This book is about decompositions, or partitions, of manifolds, usually into cell-like sets. (These are the compact sets, similar to the contractable ones, that behave homotopically much like points.) Equivalently, it is about cell-like mappings defined on manifolds. Originating with work of R. L. Moore in the 1920s, this topic was renewed by results of R. H. Bing in the 1950s. As an unmistakable sign of its importance, the subject has proved indispensable to the recent characterization of higher-dimensional manifolds in terms of elementary topological properties, based upon the work of R. D. Edwards and F. Quinn.

Decomposition theory is one component of geometric topology, a heading that encompasses many topics, such as PL or differential topology, manifold structure theory, embedding theory, knot theory, shape theory, even parts of dimension theory. While most of the others have been studied systematically, decomposition theory has not. Filling that gap is the overriding goal. The need is startlingly acute because a detailed proof of its fundamental result, the cell-like approximation theorem, has not been published heretofore.

Placing the subject in proper context within geometric topology is a secondary goal. Its interrelationships with the other portions of the discipline nourish its vitality. Demonstrating those interrelationships is a significant factor among the intentions. On one hand, material from other topics occasionally will be developed for use here when it enhances the central purpose; on the other hand, applications of decomposition theory to the others will be developed as frequently as possible. Nevertheless, this book does not attempt to organize all of geometric topology, just the decomposition-theoretic aspects, in coherent, linear fashion.
Uppermost in my thinking, from the earliest stages of the book's conception, has been the belief it should be put together as a text, with as few prerequisites as possible, and so it has evolved. Not intended for experts, it aims to help students interested in geometric topology bridge the gap between entry-level graduate courses and research at the frontier. Along the way it touches on many issues embraced by decomposition theory but makes no attempt to be encyclopedic. It depicts foundational material in fine detail, and as more of the canvas is unveiled, it employs a coarser brush. In particular, after the proof of the climactic result, the cell-like approximation theorem, it tends to present merely the cruder features of later topics, to expose items deserving further individual pursuit. All in all, it should equip mature readers with a broad, substantial background for successfully doing research in this area.
ACKNOWLEDGMENTS

There are many people to whom I am indebted for help with this manuscript. Phil Bowers, David Wright and, especially, Jim Henderson read large pieces of it, noticing misprints, correcting errors, and offering a multitude of valuable suggestions. So also did Charles Bass, Dennis Garity, and Sukhjit Singh.

Students in classes taught during the academic years 1978-1979 and 1981-1982 made substantial contributions, partly by reacting to material presented, but often by voicing their own insights; included among them are Jean Campbell, Jerome Eastham, Terry Lay, Steve Pax, Kriss Preston, Phil Bowers, Jung-In Choi, Rick Dickson, and Nem-Yie Hwang. Preston, Lay, Pax, and Bowers, who all wrote dissertations in geometric topology, deserve specific recognition. In addition, Mladen Bestvina and Zoran Nevajdić are two others who more recently contributed pertinent comments.

Cindi Blair typed much of the manuscript. Craig Guilbault and David Snyder scrutinized page proofs and spotted countless mistakes.

Friends and colleagues provided a great deal of encouragement. Particularly significant was the prodding by two reigning department heads at the University of Tennessee, Lida Barrett and Spud Bradley.

The National Science Foundation bestowed research support throughout the time this project was underway.

To all of the above, and to those whom I have neglected, many thanks. Finally and most importantly, a note of appreciation to my wife, Lana, who aids in untold ways.
REFERENCES

ALEXANDER, J. W.

ANCEL, F. D., AND CANNON, J. W.

ANDREWS, J. J., AND CURTIS, M. L.

ANDREWS, J. J., AND RUBIN, L. R.

ANTOINE, M. L.

AMENTROUT, S.

AMERTROUT, S., AND PRICE, T. M.
References

Bass, C. D.

Bean, R. J.

Begle, E. G.

Bing, R. H.
[3] A decomposition of E^3 into points and tame arcs such that the decomposition space is topologically different from E^3. Ann. of Math. (2) 65 (1957), 484-500.

Bing, R. H., and Borsuk, K.
[1] A 3-dimensional absolute retract which does not contain any disk. Fund. Math. 54 (1964), 159-175.

Bing, R. H., and Kister, J. M.

Blankenship, W. A.

Borsuk, K.

Bothe, H. G.

Brown, Morton

Bryant, J. L.
References

BRYANT, J. L., and HOLLINGSWORTH, J. G.

BRYANT, J. L., and LACHER, R. C.

BRYANT, J. L., and SEEBECK, C. L., III

CANNON, J. W.

CANNON, J. W., BRYANT, J. L., and LACHER, R. C.

CANNON, J. W., and DAVERMAN, R. J.

CANNON, L. O.

ČERNAVSKIĬ, A. V.

CHAPMAN, T. A.

CHISTENSEN, C. O., and OSBORNE, R. P.

CONNELLY, R.

REFERENCES

Curtis, M. L.

Daverman, R. J.

Daverman, R. J., and Eaton, W. T.

Daverman, R. J., and Garity, D. J.

Daverman, R. J., and Preston, D. K.

Daverman, R. J., and Row, W. H.

Dugundji, J.

Dyer, E., and Hamstrom, M. E.
Eaton, W. T.

Eaton, W. T., Pixley, C. P., and Venema, G.

Edwards, R. D.

Edwards, R. D., and Glaser, L. C.

Edwards, R. D., and Kirby, R. C.

Engelking, R.

Everett, D. L.

Ferry, S.

Freedman, M. H.

Freudenthal, H.

Garity, D. J.

Giffen, C. H.

Glaser, L. C.

References

Gluck, H.

Hanai, S.

Harley, P. W.

Haver, W. E.

Hirsch, M. W.

Homma, T.

Hurewicz, W.

Hurewicz, W., and Wallman, H.

Kervaire, M. A.

Kirby, R. C.

Kirby, R. C., and Siebenmann, L. C.

Klee, V. L.

Kozlowski, G.
[1] Images of ANRs (unpublished manuscript).

Kozlowski, G. and Walsh, J. J.

Kwon, K. W.

Kwon, K. W., and Raymond, F.

Lacher, R. C.

Lashof, R. S.

Lay, T. L.
References

LICKORISH, W. B. R., AND SIEBENMANN, L. C.
LINSENGER, L. L.
MCCAULEY, L. F.
MCILLAN, D. R., JR.
MCILLAN, D. R., JR., AND ROW, H.
MARIN, A., AND VISETTI, Y. M.
MATSUMOTO, Y.
MAZUR, B.
MEYER, D. V.
MILLER, R. T.
MOISE, E. E.
MOORE, R. L.
NEUZIL, J. P.
NEWMAN, M. H. A.
PAPAKYRIAKOPOULOUS, C. D.
PIXLEY, C. P., AND EATON W. T.
POENARU, V.
PRESTON, D. K.
References

Price, T. M.

Price, T. M., and Seebeck, C. L., III

Quinn, F.

Roberts, J. H.

Rourke, C. P., and Sanderson, B. J.

Rushing, T. B.

Seebeck, C. L., III

Sher, R. B.

Seebenmann, L. C.

Sieklucki, K.

Singh, S.

Spanier, E. H.

Stan’ko, M. A.

Starbird, M.

References

STARBIRD, M., AND WOODRUFF, E. P.

STONE, A. H.

TAYLOR, J. L.

TORUŃCZYK, H.

WALSH, J. J.

WEST, J. E.

WHITEHEAD, J. H. C.

WILDER, R. L.

WOODRUFF, E. P.

WRIGHT, D. G.

ZEEMAN, E. C.

Index

A
Admissible subset, 78–80, 239, 241
AHEP, see Homotopy extension property, absolute
ϵ-Amalgamation, 148, 151–158, 188–189, 242–243
ANR, see Retract, absolute neighborhood
Approximation Theorem
 cell-like, 3–4, 56, 102, 148, 178, 181–183
 187–188, 190, 206, 227, 232, 242, 258, 264, 280, 286, 288, 300
 locally flat, 265, 285
 homeomorphic, 3, 5, 183, 189
AR, see Retract, absolute
Arc
 cellular, 41
 essentially flat, 62
 flat, 50–52, 85, 95–99, 104–105
 wild, 91–92
Aspherical space, 139–140
Axiom LF, 95–96, 98

B
Bicollared set, 234–235, 237, 289, see also Sphere, bicollared

C
Cantor set, 12, 28, 34, 45–46, 62, 70, 78–79, 223, 242, 291, see also Necklace, of Antoine
ramified, of Bing, 240–241, 252–253
tame, 74, 85, 158
wild, 66, 74, 160, 213, 221–222, 251–252, 255
Cell
 factor, 94
 flat, 85, 93, 101, 107, 150
 recognition of, 36, 41
 wild, 92
Cell-likeness, see Cellularity; Decomposition, cell-like; Map, cell-like
Cell-like set, 120–125, 214–216
Cellular-at-the-boundary set, 222
Cellularity, 2, 22, 35–38, 40–41, 53–54, 69, 92, 143, 145, 157, 167, 216, 222, see also Cell-likeness; Decomposition, cellular
 relation to cell-likeness, 120, 122–123, 163, 216
Cellularity criterion, 143–147, 214–216, 243–245, 256
Closed n-cell-complement, see Crumpled n-cube
W-Closeness, of maps, 27, 44
Collared subset, 40
embedding, 271–272
Complete handle curve, 265–267
Compactification, one point, 16, 26, 105, 213
k-Connectedness, 125, 129, see also Local k-co-connectedness
of complement, 146
local, 128–129
of pair, 127
Constrictable set, 293, 300–302
Contractability, 41, 94, 120–121, 133, 139–140, 184, 187, 287–288, 290
Convex set, 53, 142
Crumpled n-cube, 268–270, 272–273, 286, 291
boundary, 268
inflation, 270, 291
interior, 268
pinched, 275, 280–284

D
DAP, see Disjointness property, arcs
DADP, see Disjointness property, arc-disk
DD*, see Disjointness property, k-tuples
DDP, see Disjointness property, disks
Decomposition, 7
admissible, 216–223, 226, 268, 270–271, 274
associated with defining sequence
classical, 61–82, 248, 260
general, 260–263
nested, 246–250
big element, 44–45
countable, 11, 22, 43–61, 152, 171, 185, 187, 260
noncellular, 68–69, 249–256
nonshrinkable, 212–213, 218, 219, 239–245
shrinkable, 62–63, 221–222, 249
totally nondegenerate, 249, 251
constrained by n-cells, 61
continuous, 10
defined
by closed set, 14, 36, 41–42, 103, 184–185, 206–212
arc, 84–95
cell, 93–95, 103, 107
by n-cells, 41
k-dimensional, 152
closed, 152
intrinsically, 244–245, 256, 257
secretly, 244–245, 257–260
doubled, 270–273
finite, 11, 19–20, 36, 61, 152–154
induced
by function, 11–12, 14, 16–18, 25, 38, 147, 235–237, 242–244
inessentially spanning two sets, 149–150, 178
inflated, 270–272
locally encompassed by manifolds, 200–205, 249
locally spherical, 227–228, 230–232
lower semicontinuous, 10
minimal example, 66–68, 185, 222, 241
monotone, 7, 17–21, 32–34, 47, 51, 61, 138, 149–150, 251
normal form, 290
products of, 14–15, 123, 183, 225–226
with plane, 190, 196
realization of, 11–12, 33, 111, 234, 236–237
fixing closed set, 26, 233–234
ideally, 31, 111, 176
simple, 185
sliced, 232–238
upper semicontinuous, 8–15, 44, 62, 247, 261
U^a, 126–129
Decomposition space, 8
Defining sequence
classical, 61–82, 245
element, 62–69, 218–219
by solid tori, 83–84
general, 260–263
nested, 246–251, 260–261
Index

Disjointness property
arcs, 186, 191–193
arc-disk, 193–197, 201, 224–225, 259–260
k-cells, 186
disk triples, 205, 223, 225–226
point-disk, 205
k-tuples, 257–260
Disk-with-handles, 265–267, 269
Distinguished \((n - k - 1)\)-sphere, 214–215
Dogbone space, 22, 64–65, 84, 222–223, 240
Double suspension, 102–106, 184–185, 265, 287–288

E
Embedding dimension, 149, 160–171, 185, 205, 207–208, 212, 242–244
Engulfing, 145, 164, 177, 292–293, 300–302

F
Filtration, 171–174, 188
Fine homotopy equivalence, 130–136, 270
Flatness, 50, 84–85, 107, 285, see also Tameness
Function, upper semicontinuous, 10, 13

G
\(G_\alpha\), see Decomposition, defined, by closed set
\(G^f\), see Decomposition, trivially extended
\(G(\geq e)\), see Decomposition, big element
\(G(C)\), see Decomposition, induced, over closed set
product of, 223–236
singular set of, 278, 280, 284, 287–290, 300
Grope, 264–270, 272–275, 278–283
boundary, 266
compactified, 266
standard realization, 267

H
\(H_\alpha\), see Nondegenerate element
Handle pair, split, 206–210
HEP, see Homotopy extension property
HMP, see Homotopy mismatch property

Homotopy extension property, 116
absolute, 116–117
Homology \(n\)-sphere, 102, see also Double suspension
Homotopy mismatch property, 227–228, 231–232

I
Inflation, closed set, 270–271, see also Crumpled \(n\)-cube, inflated
Inverse set, 18, 37–38, 211
Isotopy, 33–34, 108, 162, 177, 182, 208–209
\(I\)-essential, see Map, interior-essential
\(I\)-inessential, see Map, interior-inessential
Infl\((C,S)\), see Inflation, closed set
Infl\((C)\), see Crumpled \(n\)-cube, inflation

L
Limit
inferior, 9–10, 13
superior, 9–10, 13
Locally collared set, 40, 285
Local contractability, 115, 117–119, 121
of homeomorphism group, 107–111
at point, 115
Locally shrinkable set, 42–50, 111
\(LC^*\), see \(k\)-Connectedness, local
\(k\)-LC, see \(k\)-Connectedness, local
\(k\)-LCC, see Local \(k\)-co-connectedness

M
Manifold, 1, 7, see also Generalized manifold
boundary, 7
with boundary, 7, 285
characterization, 288
factor, 65, 69, 81, 83–84, 89, 91–94, 183–185, 292, 300
interior, 7
mapping cylinder neighborhood, 264, 291–300
Map
 approximately right invertible, 142
 cell-like, 133–136, 142, 147, 172–178,
 182–183, 186–187, 189, 206, 256,
 263, 276–278, 280–286, 288–290,
 298–300
 interior-essential, 73–74
 interior-inessential, 73
 light, 18–19
e-map, 134–138, 142
 monotone, 17, 21
 one-to-one, over subset, 3, 172–178,
 181–183, 200–201, 210–212, 216–218,
 242–244
 piecewise linear, 159
 proper, 15–17, 41, 133, 142, 187
 virtually interior-essential, 73–80, 241
 Mapping torus, 105
 MCN, see Manifold, mapping cylinder
 neighborhood
 Metrizability, 12–13
 Mixing homeomorphism, 78, 80, 239, 241

N
 Near-homeomorphism, 27–31, 38, 44–45,
 see also Approximation theorem,
cell-like
 Necklace of Antoine, 70–75
e-Neighborhood, 7
 Nondegenerate element, 8
 Nondegeneracy set
 decomposition, 8
 map, 243
 Null homotopy criterion, 248, 255,
 star, 262–263
 Null sequence, 14, 45–46, 50, 55–56, 67–68,
 152, 154–158, 166–171, 189, 241–244
 \(N(A;e), \) see \(e\)-Neighborhood
 \(N_s, \) see Nondegeneracy set, map
 \(N_s, \) see Nondegeneracy set, decomposition

P
 Peano continuum, 1, 12–13
 Perfect group, 267
 Piecewise linearity, 158–159
 Pillbox, 266–267, 269
 Pointlike set, 40–41
 Polyhedron, 160
 tamely embedded, 61, 159
 Poincaré conjecture, 69, 145, 147
 Property \(n\)-\(UV\), 123–129
 Property \(UV^\circ\), 123–129
 Pseudo-isotopy, 33–34, 111, 173–175,
 210–211, 236–237
 ultimately stationary, 211
 Pseudo-spine, 103, 105–106
 PL, see Piecewise linearity

R
 Retract, 113–120
 absolute, 113–117, 120, 129
 absolute neighborhood, 113–121,
 123–125, 129, 135, 138–139, 142–143,
 145, 158, 183, 186–187, 205–206,
 223, 225–226, 232, 263–264, 285,
 291–302
 Resolution, 158, 284–293

S
 Saturated set, 8
 Shrinkability criterion, 2–4, 22–27, 49, 92,
 see also Decomposition, shrinkable
 Shrinking theorem, 176–177
 Simplicial complex, 117, 158, see also
 Triangulation, noncombinatorial
 underlying point set, 158
 \(Sp(G), \) see Decomposition, spun
 \(Sp(X), \) see Spin
 Sphere
 bicultured, 38–41, 53–54, 139–140,
 149–150
 characterization, 38, 41
 flat, 37–39, 54
 horned, 213, 269
 Spin, 214–216, 222
 Squeeze, cell to another cell, 94–101
 Standard position, 207–208
 Star
 in collection, 26
 in cover, 27
 in complex, 159
 Starlikeness, 52–61, 164–166, 168–171
 with respect to point, 52
 Starlike-equivalence, 56, see also Starlikeness
 homotopy, 126–127, 137, 141
 Subdivision, 158
 Subpolyhedron, 159, 187, 267–268, 280–281

T
 Tameness, 74 85, 149, 159, see also Flatness
Index

Transversality, 67–70
Triangulation
 equivalence of, 159
 noncombinatorial, 22, 95, 102
 piecewise linear, 159
 prismatic, 208–212
 rectilinear, 158
 simplicial, 102, 157–158

U
 Unicoherence, 21
 usc, see Decomposition, upper semicontinuous

W
 Whitehead continuum, 68–69, 81, 120, 250
 Wildness, 74, 265
About this book

Decomposition theory studies decompositions, or partitions, of manifolds into simple pieces, usually cell-like sets. Since its inception in 1929, the subject has become an important tool in geometric topology. The main goal of the book is to help students interested in geometric topology to bridge the gap between entry-level graduate courses and research at the frontier as well as to demonstrate interrelations of decomposition theory with other parts of geometric topology. With numerous exercises and problems, many of them quite challenging, the book continues to be strongly recommended to everyone who is interested in this subject. The book also contains an extensive bibliography and a useful index of key words, so it can also serve as a reference to a specialist.