
AMS CHELSEA PUBLISHING
American Mathematical Society • Providence, Rhode Island

DECOMPOSITIONS  
OF MANIFOLDS

 
ROBERT J. DAVERMAN



D e c o m p o s i t i o n s

o f  M a n i f o l d s





D e c o m p o s i t i o n s  
o f  M a n i f o l d s

Robert J. Daverman

AMS CHELSEA PUBLISHING
American Mathematical Society • Providence, Rhode Island

http://dx.doi.org/10.1090/chel/362.H



2000 Mathematics Subject Classification. Primary 57-01; Secondary 54B15.

L ib rary  o f  C o n g ress  C a ta lo g in g -in -P u b lic a tio n  D a ta
D averm an, R obert J.

D ecom positions of m anifolds /  R obert J. Daverm an.
p. cm. —  (AMS Chelsea Publishing)

Originally published: O rlando : Academ ic Press, 1986.
Includes bibliographical references and  index.
ISBN 978-0-8218-4372-7 (alk. paper)
1. M anifolds (M athem atics) 2. Decom position (M athem atics) I. T itle.

QA613.D38 2007
516'.07— dc22 2007020224

C o p y in g  a n d  rep r in tin g . Individual readers of th is publication, and nonprofit libraries 
acting  for them , are pe rm itted  to  m ake fair use of th e  m aterial, such as to  copy a chap ter for use 
in teaching or research. Perm ission is g ran ted  to  quote brief passages from  th is  publication  in 
reviews, provided th e  custom ary acknowledgment of th e  source is given.

R epublication , system atic copying, or m ultiple reproduction  of any m ateria l in th is publication  
is p e rm itted  only under license from  th e  A m erican M athem atical Society. R equests for such 
perm ission should be addressed to  th e  Acquisitions D epartm ent, A m erican M athem atical Society, 
201 C harles S treet, Providence, Rhode Island 02904-2294, USA. R equests can also be m ade by 
e-mail to  rep rin t-p e rm iss io n @ am s.o rg .

©  1986 held by th e  A m erican M athem atical Society. All rights reserved.
R eprin ted  by th e  A m erican M athem atical Society, 2007 

P rin ted  in th e  U nited S ta tes of Am erica.

©  T he p aper used in th is book is acid-free and falls w ith in  th e  guidelines 
established to  ensure perm anence and  durability.

V isit th e  AMS hom e page a t h ttp ://w w w .am s.o rg /

10 9 8 7 6 5 4 3 2 1 12 11 10 09 08 07

mailto:reprint-permission@ams.org
http://www.ams.org/


CONTENTS

Preface ix
Acknowledgments xi

Introduction 1

I Preliminaries

1. Elementary Properties of Upper Semicontinuous
Decompositions 7

2. Upper Semicontinuous Decompositions 13
3. Proper Maps 15
4. Monotone Decompositions 17

II The Shrinkability Criterion
5. Shrinkable Decompositions 23
6. Cellular Sets 35
7. Countable Decompositions and Shrinkability 41
8. Countable Decompositions of ET 50
9. Some Cellular Decompositions of E3 61

10. Products of Decompositions with a Line 81
1 1 . Squeezing a 2-Cell to an Arc 94
12. The Double Suspension of a Certain Homology Sphere 102
13. Applications of the Local Contractability of Manifold

Homeomorphism Groups 107

III Cell-Like Decompositions of Absolute Neighborhood Retracts
14. Absolute Retracts and Absolute Neighborhood Retracts 114

V



vi Contents

15. Cell-Like Sets 120
16. UVProperties and Decompositions 123
17. Cell-Like Decompositions and Dimension 129
18. The Cellularity Criterion and Decompositions 143

IV The Cell-Like Approximation Theorem

19. Characterizing Shrinkable Decompositions of Manifolds
—the Simple Test 149

20. Amalgamating Decompositions 151
21. The Concept of Embedding Dimension 158
22. Shrinking Special 0-Dimensional Decompositions 166
23. Shrinking Special (n -  3)-Dimensional Decompositions 171
24. The Disjoint Disks Property and the Cell-Like Approximation

Theorem 178
25. Cell-Like Decompositions of 2-Manifolds—the Moore Theorem 187

V Shrinkable Decompositions

26. Products of E2 and E 1 with Decompositions 190
27. Products of E 1 with Decompositions of E3 206
28. Spun Decompositions 212
29. Products of Generalized Manifolds 223
30. A Mismatch Property in Locally Spherical Decomposition

Spaces 227
31. Sliced Decomposition of E ”*x 232

VI Nonshrinkable Decompositions

32. Nonshrinkable Cellular Decompositions Obtained by Mixing 239
33. Nonshrinkable Null Sequence Cellular Decompositions

Obtained by Amalgamating 241
34. Nested Defining Sequences for Decompositions 245
35. Cell-Like but Totally Noncellular Decompositions 251
36. Measures of Complexity in Decomposition Spaces 256
37. Defining Sequences for Decompositions 260

VII Applications to Manifolds

38. Gropes and Closed «-Cell-Complements 265
39. Replacement Procedures for Improving Generalized Manifolds 274



Contents vii

40. Resolutions and Applications 284
41. Mapping Cylinder Neighborhoods 291
Appendix 300

References 303

Index 313





PREFACE

This book is about decompositions, or partitions, of manifolds, usually 
into cell-like sets. (These are the compact sets, similar to the contractable 
ones, that behave homotopically much like points.) Equivalently, it is about 
cell-like mappings defined on manifolds. Originating with work of R. L. 
Moore in the 1920s, this topic was renewed by results of R. H. Bing in the 
1950s. As an unmistakable sign of its importance, the subject has proved in
dispensable to the recent characterization of higher-dimensional manifolds 
in terms of elementary topological properties, based upon the work of R. D. 
Edwards and F. Quinn.

Decomposition theory is one component of geometric topology, a 
heading that encompasses many topics, such as PL or differential topology, 
manifold structure theory, embedding theory, knot theory, shape theory, 
even parts of dimension theory. While most of the others have been studied 
systematically, decomposition theory has not. Filling that gap is the over
riding goal. The need is startlingly acute because a detailed proof of its fun
damental result, the cell-like approximation theorem, has not been pub
lished heretofore.

Placing the subject in proper context within geometric topology is a 
secondary goal. Its interrelationships with the other portions of the 
discipline nourish its vitality. Demonstrating those interrelationships is a 
significant factor among the intentions. On one hand, material from other 
topics occasionally will be developed for use here when it enhances the cen
tral purpose; on the other hand, applications of decomposition theory to 
the others will be developed as frequently as possible. Nevertheless, this 
book does not attempt to organize all of geometric topology, just the 
decomposition-theoretic aspects, in coherent, linear fashion.



X Preface

Uppermost in my thinking, from the earliest stages of the book’s concep
tion, has been the belief it should be put together as a text, with as few 
prerequisites as possible, and so it has evolved. Not intended for experts, it 
aims to help students interested in geometric topology bridge the gap be
tween entry-level graduate courses and research at the frontier. Along the 
way it touches on many issues embraced by decomposition theory but 
makes no attempt to be encyclopedic. It depicts foundational material in 
fíne detail, and as more of the canvas is unveiled, it employs a coarser 
brush. In particular, after the proof of the climactic result, the cell-like ap
proximation theorem, it tends to present merely the cruder features of later 
topics, to expose items deserving further individual pursuit. All in all, it 
should equip mature readers with a broad, substantial background for suc
cessfully doing research in this area.
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AHEP, see Homotopy extension property, 
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ANR, see Retract, absolute neighborhood
Approximation Theorem 

cell-like, 3-4, 56, 102, 148, 178, 181-183 
187-188, 190, 206, 227, 232, 242, 
258, 264, 280, 286, 288, 300 
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flat, 50-52, 85, 95-99, 104-105 
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85-93, 95-101, 241-242, 268-269 
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Bicollared set, 234-235, 237, 289, see also 
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C

Cantor set, 12, 28, 34, 45-46, 62, 70, 78-79, 
223, 242, 291, see also Necklace, of 
Antoine

ramified, of Bing, 240-241, 252-253 
tame, 74, 85, 158
wild, 66, 74, 160, 213, 221-222, 251-252, 

255 
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factor, 94
flat, 85, 93, 101, 107, 150 
recognition of, 36, 41 
wild, 92

Cell-likeness, see Cellularity; Decomposi
tion, cell-like; Map, cell-like 

Cell-like set, 120-125, 214-216 
Cellular-at-the-boundary set, 222 
Cellularity, 2, 22, 35-38, 40-41, 53-54, 69, 

92, 143, 145, 157, 167, 216, 222, see  

also Cell-likeness; Decomposition, 
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relation to cell-likeness, 120, 122-123, 
163, 216

Cellularity criterion, 143-147, 214-216,
243-245, 256

Closed «-cell-complement, see Crumpled 
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^-Closeness, of maps, 27, 44 
Collared subset, 40 

embedding, 271-272 
Complete handle curve, 265-267 
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213
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fr-co-connectedness 
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local, 128-129 
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D

DAP, see Disjointness property, arcs 
DADP, see Disjointness property, arc-disk 
DD*, see Disjointness property, ¿-tuples 
DDP, see Disjointness property, disks 
Decomposition, 7
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classical, 61-82, 248, 260 
general, 260-263 
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big element, 44-45
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187, 260
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154-158, 166-178, 181-193, 195-213, 
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nonshrinkable, 212-213, 218, 219, 
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secretly, 244-245, 257-260 
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finite, 11, 19-20, 36, 61, 152-154
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over closed set, 76, 109-110, 172-178, 

187-188, 200-201
by function, 11-12, 14, 16-18, 25, 38, 

147, 235-237, 242-244 
inessentially spanning two sets, 149-150, 

178
inflated, 270-272
locally encompassed by manifolds, 

200-205, 249
locally spherical, 227-228, 230-232 
lower semicontinuous, 10 
minimal example, 66-68, 185, 222, 241 
monotone, 7, 17-21, 32-34, 47, 51, 61, 

138, 149-150, 251 
normal form, 290
products of, 14-15, 123, 183, 225-226 

with line, 22, 81-94, 103-104, 107,
183, 190-191, 195-197, 199-212, 
232-233, 237-238, 249, 255-256, 
259

with plane, 190, 196 
realization of, 11-12, 33, 111, 234, 

236-237
shrinkable, 3, 22-35, 41-42, 45-47,

62-63, 80-84, 89-91, 96, 107-112, 
122-123, 148-151, 154, 166-178, 181, 
190, 196-212, 217-223, 225-238, 241,
244-245, 249, 255, 272-274 

fixing closed set, 26, 233-234 
ideally, 31, 111, 176 
strongly, 26, 31, 36, 38, 42-45, 47-52, 

56-61, 75, 92-93, 108-109 
simple, 185 
sliced, 232-238
spun, 213, 216-223, 240-241, 259, 

270-271, 273
trivially extended, 14-15, 80, 95-96, 

135-137, 197-198, 233-234, 237, 
272-274

upper semicontinuous, 8-15, 44, 62, 247, 
261

U V \  126-129 
Decomposition space, 8 
Defining sequence 

classical, 61-82, 245 
example, 62-69, 218-219 
by solid tori, 83-84 

general, 260-263 
nested, 246-251, 260-261 

Dimension-raising problem, 113, 129, 
135-142, 146, 227, 247-248
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Disjointness property 
arcs, 186, 191-193
arc-disk, 193-197, 201, 224-225, 259-260 
Ar-cells, 186
disks, 3, 148, 178-183, 185-186, 188, 191, 

194-205, 217-221, 225-227, 232, 257, 
259, 288-289, 291 

disk triples, 205, 223, 225-226 
point-disk, 205 
A:-tuples, 257-260 

Disk-with-handles, 265-267, 269 
Distinguished (n -  k -  l)-sphere, 214-215 
Dogbone space, 22, 64-65, 84, 222-223, 240 
Double suspension, 102-106, 184-185, 265, 

287-288

E

Embedding dimension, 149, 160-171, 185, 
205, 207-208, 212, 242-244 

Engulfing, 145, 164, 177, 292-293, 300-302

F
Filtration, 171-174, 188 
Fine homotopy equivalence, 130-136, 270 
Flatness, 50, 84-85, 107, 285, see also 

Tameness
Function, upper semicontinuous, 10, 13 

G
GAt see Decomposition, defined, by closed 

set
GT, see Decomposition, trivially extended 
G(>€)t see Decomposition, big element 
G(C), see Decomposition, induced, over 

closed set
Generalized manifold, 93, 191-192,

198-200, 255-256, 276-280, 283-291, 
300

product of, 223-236
singular set of, 278, 280, 284, 287-290,

300
Grope, 264-270, 272-275, 278-283 

boundary, 266 
compactified, 266 
standard realization, 267

H
Hat see Nondegenerate element 
Handle pair, split, 206-210 
HEP, see Homotopy extension property 
HMP, see Homotopy mismatch property

Homotopy extension property, 116 
absolute, 116-117

Homology /7-sphere, 102, see also Double 
suspension

Homotopy mismatch property, 227-228, 
231-232

I

Inflation, closed set, 270-271, see also 
Crumpled n-cube, inflated 

Inverse set, 18, 37-38, 211 
Isotopy, 33-34, 108, 162, 177, 182, 208-209 
/-essential, see Map, interior-essential 
/-inessential, see Map, interior-inessential 
Infl(C,S), see Inflation, closed set 
Infl(C), see Crumpled /7-cube, inflation

L

Lifting, approximate, 126-128, 130-132, 
137-138, 145, 177, 186, 191, 220-221, 
224 

Limit
inferior, 9-10, 13 
superior, 9-10, 13 

Locally collared set, 40, 285 
Local contractability, 115, 117-119, 121 

of homeomorphism group, 107-111 
at point, 115

Local A:-co-connectedness, 146-147, 163,
165, 177-184, 186, 192-196, 198-199, 
223-227, 274, 279-285, 287, 289-293, 
300-302

Locally shrinkable set, 42-50, 111 
LCW, see ^-Connectedness, local 
k-LC, see ^-Connectedness, local 
k-LCC, see Local Ar-co-connectedness

M

Manifold, 1, 7, see also Generalized 
manifold 

boundary, 7 
with boundary, 7, 285 
characterization, 288 
factor, 65, 69, 81, 83-84, 89, 91-94, 

183-185, 292, 300 
interior, 7
mapping cylinder neighborhood, 264, 

291-300
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approximately right invertible, 142 
cell-like, 133-136, 142, 147, 172-178, 

182-183, 186-187, 189, 206, 256,
263, 276-278, 280-286, 288-290, 
298-300

interior-essential, 73-74 
interior-inessential, 73 
light, 18-19 
e-map, 134-138, 142 
monotone, 17, 21
one-to-one, over subset, 3, 172-178,

181-183, 200-201, 210-212, 216-218, 
242-244

piecewise linear, 159 
proper, 15-17, 41, 133, 142, 187 
virtually interior-essential, 73-80, 241 

Mapping torus, 105 
MCN, see Manifold, mapping cylinder 

neighborhood 
Metrizability, 12-13
Mixing homeomorphism, 78, 80, 239, 241 

N

Near-homeomorphism, 27-31, 38, 44-45, 
see also Aproximation theorem, 
cell-like

Necklace, of Antoine, 70-75 
e-Neighborhood, 7 
Nondegenerate element, 8 
Nondegeneracy set 

decomposition, 8 
map, 243

Null homotopy criterion, 248, 255, 
star, 262-263

Null sequence, 14, 45-46, 50, 55-56, 67-68, 
152, 154-158, 166-171, 189, 241-244 

N (A \e )t see e-Neighborhood 
TV,, see Nondegeneracy set, map 
N c , see Nondegeneracy set, decomposition

P
Peano continuum, 1, 12-13 
Perfect group, 267 
Piecewise linearity, 158-159 
Pillbox, 266-267, 269 
Pointlike set, 40-41 
Polyhedron, 160 

tamely embedded, 61, 159 
Poincare conjecture, 69, 145, 147 
Property n -U V t 123-129

Property U V \  123-129, 144-145, 147 
Property C/Kw, 123-129 
Pseudo-isotopy, 33-34, 111, 173-175, 

210-211, 236-237 
ultimately stationary, 211 

Pseudo-spine, 103, 105-106 
PL, see Piecewise linearity

R
Retract, 113-120 

absolute, 113-117, 120, 129 
absolute neighborhood, 113-121,

123-125, 129, 135, 138-139, 142-143, 
145, 158, 183, 186-187, 205-206,
223, 225-226, 232, 263-264, 285, 
291-302

Resolution, 158, 284-293 

S
Saturated set, 8
Shrinkability criterion, 2-4, 22-27, 49, 92, 

see also Decomposition, shrinkable 
Shrinking theorem, 176-177 
Simplicial complex, 117, 158, see also 

Triangulation, noncombinatorial 
underlying point set, 158 

Sp*(G), see Decomposition, spun 
S p \ X ) ,  see Spin 
Sphere

bicollared, 38-41, 53-54, 139-140,
149-150

characterization, 38, 41 
flat, 37-39, 54 
horned, 213, 269 

Spin, 214-216, 222 
Squeeze, cell to another cell, 94-101 
Standard position, 207-208 
Star

in collection, 26 
in cover, 27 
in complex, 159

Starlikeness, 52-61, 164-166, 168-171 
with respect to point, 52 

Starlike-equivalence, 56, see also Starlikeness 
Star-refinement, 27-28, 30-31, 108-109 

homotopy, 126-127, 137, 141 
Subdivision, 158
Subpolyhedron, 159, 187, 267-268, 280-281 

T

Tameness, 74 85, 149, 159, see also Flatness
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Transversality, 67-70 
Triangulation 

equivalence of, 159 
noncombinatorial, 22, 95, 102 
piecewise linear, 159 
prismatic, 208-212 
rectilinear, 158 
simplicial, 102, 157-158

U
Unicoherence, 21 
use, see Decomposition, upper 

semicontinuous

W
Whitehead continuum, 68-69, 81, 120, 250 
Wildness, 74, 265
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About this book

Decomposition theory studies decompositions, or partitions, of manifolds 
into simple pieces, usually cell-like sets. Since its inception in 1929, the 
subject has become an important tool in geometric topology. The main 
goal of the book is to help students interested in geometric topology to 
bridge the gap between entry-level graduate courses and research at the 
frontier as well as to demonstrate interrelations of decomposition theory 
with other parts of geometric topology. With numerous exercises and 
problems, many of them quite challenging, the book continues to be 
strongly recommended to everyone who is interested in this subject. The 
book also contains an extensive bibliography and a useful index of key 
words, so it can also serve as a reference to a specialist.




