# DECOMPOSITIONS of MANIFOLDS 

Robert J. Daverman

# DECOMPOSITIONS of Manifolds 

# DECOMPOSITIONS of Manifolds 

Robert J. Daverman

AMS CHELSEA PUBLISHING<br>American Mathematical Society • Providence, Rhode Island



# 2000 Mathematics Subject Classification. Primary 57-01; Secondary 54B15. 

Library of Congress Cataloging-in-Publication Data<br>Daverman, Robert J.<br>Decompositions of manifolds / Robert J. Daverman. p. cm. - (AMS Chelsea Publishing)<br>Originally published: Orlando : Academic Press, 1986.<br>Includes bibliographical references and index.<br>ISBN 978-0-8218-4372-7 (alk. paper)<br>1. Manifolds (Mathematics) 2. Decomposition (Mathematics) I. Title.

QA613.D38 2007
$516^{\prime} .07$-dc 22
2007020224

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(c) 1986 held by the American Mathematical Society. All rights reserved.

Reprinted by the American Mathematical Society, 2007
Printed in the United States of America.
(@) The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

## CONTENTS

Preface ..... ix
Acknowledgments ..... xi
Introduction ..... 1
I Preliminaries

1. Elementary Properties of Upper Semicontinuous Decompositions ..... 7
2. Upper Semicontinuous Decompositions ..... 13
3. Proper Maps ..... 15
4. Monotone Decompositions ..... 17
II The Shrinkability Criterion
5. Shrinkable Decompositions ..... 23
6. Cellular Sets ..... 35
7. Countable Decompositions and Shrinkability ..... 41
8. Countable Decompositions of $E^{n}$ ..... 50
9. Some Cellular Decompositions of $E^{3}$ ..... 61
10. Products of Decompositions with a Line ..... 81
11. Squeezing a 2-Cell to an Arc ..... 94
12. The Double Suspension of a Certain Homology Sphere ..... 102
13. Applications of the Local Contractability of Manifold Homeomorphism Groups ..... 107
III Cell-Like Decompositions of Absolute Neighborhood Retracts
14. Absolute Retracts and Absolute Neighborhood Retracts ..... 114
15. Cell-Like Sets ..... 120
16. UV Properties and Decompositions ..... 123
17. Cell-Like Decompositions and Dimension ..... 129
18. The Cellularity Criterion and Decompositions ..... 143
IV The Cell-Like Approximation Theorem
19. Characterizing Shrinkable Decompositions of Manifolds -the Simple Test ..... 149
20. Amalgamating Decompositions ..... 151
21. The Concept of Embedding Dimension ..... 158
22. Shrinking Special 0-Dimensional Decompositions ..... 166
23. Shrinking Special ( $n-3$ )-Dimensional Decompositions ..... 171
24. The Disjoint Disks Property and the Cell-Like Approximation Theorem ..... 178
25. Cell-Like Decompositions of 2-Manifolds-the Moore Theorem ..... 187
V Shrinkable Decompositions
26. Products of $E^{2}$ and $E^{1}$ with Decompositions ..... 190
27. Products of $E^{1}$ with Decompositions of $E^{3}$ ..... 206
28. Spun Decompositions ..... 212
29. Products of Generalized Manifolds ..... 223
30. A Mismatch Property in Locally Spherical Decomposition Spaces ..... 227
31. Sliced Decomposition of $E^{n+1}$ ..... 232
VI Nonshrinkable Decompositions
32. Nonshrinkable Cellular Decompositions Obtained by Mixing ..... 239
33. Nonshrinkable Null Sequence Cellular Decompositions Obtained by Amalgamating ..... 241
34. Nested Defining Sequences for Decompositions ..... 245
35. Cell-Like but Totally Noncellular Decompositions ..... 251
36. Measures of Complexity in Decomposition Spaces ..... 256
37. Defining Sequences for Decompositions ..... 260
VII Applications to Manifolds
38. Gropes and Closed $n$-Cell-Complements ..... 265
39. Replacement Procedures for Improving Generalized Manifolds ..... 274
Contents ..... vii
40. Resolutions and Applications ..... 284
41. Mapping Cylinder Neighborhoods ..... 291
Appendix ..... 300
References ..... 303
Index ..... 313

## PREFACE

This book is about decompositions, or partitions, of manifolds, usually into cell-like sets. (These are the compact sets, similar to the contractable ones, that behave homotopically much like points.) Equivalently, it is about cell-like mappings defined on manifolds. Originating with work of R. L. Moore in the 1920s, this topic was renewed by results of R. H. Bing in the 1950s. As an unmistakable sign of its importance, the subject has proved indispensable to the recent characterization of higher-dimensional manifolds in terms of elementary topological properties, based upon the work of R.D. Edwards and F. Quinn.

Decomposition theory is one component of geometric topology, a heading that encompasses many topics, such as PL or differential topology, manifold structure theory, embedding theory, knot theory, shape theory, even parts of dimension theory. While most of the others have been studied systematically, decomposition theory has not. Filling that gap is the overriding goal. The need is startlingly acute because a detailed proof of its fundamental result, the cell-like approximation theorem, has not been published heretofore.

Placing the subject in proper context within geometric topology is a secondary goal. Its interrelationships with the other portions of the discipline nourish its vitality. Demonstrating those interrelationships is a significant factor among the intentions. On one hand, material from other topics occasionally will be developed for use here when it enhances the central purpose; on the other hand, applications of decomposition theory to the others will be developed as frequently as possible. Nevertheless, this book does not attempt to organize all of geometric topology, just the decomposition-theoretic aspects, in coherent, linear fashion.

Uppermost in my thinking, from the earliest stages of the book's conception, has been the belief it should be put together as a text, with as few prerequisites as possible, and so it has evolved. Not intended for experts, it aims to help students interested in geometric topology bridge the gap between entry-level graduate courses and research at the frontier. Along the way it touches on many issues embraced by decomposition theory but makes no attempt to be encyclopedic. It depicts foundational material in fine detail, and as more of the canvas is unveiled, it employs a coarser brush. In particular, after the proof of the climactic result, the cell-like approximation theorem, it tends to present merely the cruder features of later topics, to expose items deserving further individual pursuit. All in all, it should equip mature readers with a broad, substantial background for successfully doing research in this area.

## ACKNOWLEDGMENTS

There are many people to whom I am indebted for help with this manuscript. Phil Bowers, David Wright and, especially, Jim Henderson read large pieces of it, noticing misprints, correcting errors, and offering a multitude of valuable suggestions. So also did Charles Bass, Dennis Garity, and Sukhjit Singh.

Students in classes taught during the academic years 1978-1979 and 1981-1982 made substantial contributions, partly by reacting to material presented, but often by voicing their own insights; included among them are Jean Campbell, Jerome Eastham, Terry Lay, Steve Pax, Kriss Preston, Phil Bowers, Jung-In Choi, Rick Dickson, and Nem-Yie Hwang. Preston, Lay, Pax, and Bowers, who all wrote dissertations in geometric topology, deserve specific recognition. In addition, Mladen Bestvina and Zoran Nevajdić are two others who more recently contributed pertinent comments.

Cindi Blair typed much of the manuscript. Craig Guilbault and David Snyder scrutinized page proofs and spotted countless mistakes.

Friends and colleagues provided a great deal of encouragement. Particularly significant was the prodding by two reigning department heads at the University of Tennessee, Lida Barrett and Spud Bradley.

The National Science Foundation bestowed research support throughout the time this project was underway.

To all of the above, and to those whom I have neglected, many thanks. Finally and most importantly, a note of appreciation to my wife, Lana, who aids in untold ways.

## REFERENCES

## Alexander, J. W.

[1] An example of a simply connected surface bounding a region which is not simply connected. Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 8-10.
Ancel, F. D., and Cannon, J. W.
[1] The locally flat approximation of cell-like embedding relations. Ann. of Math. (2) 109 (1979), 61-86.

Andrews, J. J., and Curtis, M. L.
[1] $n$-space modulo an arc. Ann. of Math. (2) 75 (1962), 1-7.
Andrews, J. J., and Rubin, L. R.
[1] Some spaces whose product with $E^{1}$ is $E^{4}$. Bull. Amer. Math. Soc. 71 (1965), 675-677. Antoine, M. L.
[1] Sur l'homéomorphie de deux figures et de leurs voisinages. J. Math. Pures Appl. 86 (1921), 221-325. Armentrout, S .
[1] Monotone decompositions of $E^{3}$. In "Topology Seminar, Wisconsin 1965" (R. J. Bean and R. H. Bing, eds.), Ann. of Math. Studies No. 60, pp. 1-25. Princeton Univ. Press, Princeton, New Jersey, 1966.
[2] Homotopy properties of decomposition spaces. Trans. Amer. Math. Soc. 143 (1969), 499-507.
[3] UV Properties of compact sets. Trans. Amer. Math. Soc. 143 (1969), 487-498.
[4] A decomposition of $E^{3}$ into straight arcs and singletons. Dissertationes Math. (Rozprawy Mat.) 73 (1970).
[5] A three-dimensional spheroidal space which is not a sphere. Fund. Math. 68 (1970), 183-186.
[6] Cellular decompositions of 3-manifolds that yield 3-manifolds. Mem. Amer. Math. Soc., No. 107 (1971).
[7] Saturated 2-sphere boundaries in Bing's straight-line segment example. In "Continua, Decompositions, Manifolds" (R. H. Bing, W. T. Eaton, and M. P. Starbird, eds.), pp. 96-110. Univ. of Texas Press, Austin, Texas, 1983.
Armentrout, S., and Price, T. M.
[1] Decompositions into compact sets with UV properties. Trans. Amer. Math. Soc. 141 (1969), 433-442.

Bass, C. D.
[1] Squeezing $m$-cells to ( $m-1$ )-cells in $E^{n}$. Fund. Math. 110 (1980), 35-50.
[2] Some products of topological spaces which are manifolds, Proc. Amer. Math. Soc. 81 (1981), 641-646.

Bean, R. J.
[1] Decompositions of $E^{3}$ with a null sequence of starlike equivalent nondegenerate elements are $E^{3}$. Illinois J. Math. 11 (1967), 21-23. Begle, E. G.
[1] The Vietoris mapping theorem for bicompact spaces. Ann. of Math. (2) 51 (1950), 534-543.
Bing, R. H.
[1] A homeomorphism between the 3-sphere and the sum of two solid horned spheres. Ann. of Math. (2) 56 (1952), 354-362.
[2] Upper semicontinuous decompositions of $E^{3}$. Ann. of Math. (2) 65 (1957), 363-374.
[3] A decomposition of $E^{3}$ into points and tame arcs such that the decomposition space is topologically different from $E^{3}$. Ann. of Math. (2) 65 (1957), 484-500.
[4] An alternative proof that 3-manifolds can be triangulated. Ann. of Math. (2) 69 (1959), 37-65.
[5] The Cartesian product of a certain nonmanifold and a line is $E^{4}$. Ann. of Math. (2) 70 (1959), 399-412.
[6] Tame Cantor sets in $E^{3}$. Pacific J. Math. 11 (1961), 435-446.
[7] A set is a 3 -cell if its Cartesian product with an arc is a 4-cell. Proc. Amer. Math. Soc. 12 (1961), 13-19.
[8] Point-like decompositions of $E^{3}$. Fund. Math. 50 (1962), 431-453.
[9] Decompositions of $E^{3}$. In "Topology of 3-Manifolds and Related Topics" (M. K. Fort, Jr., ed.), pp. 5-21. Prentice-Hall, Englewood Cliffs, New Jersey. 1962.
[10] Each disk in $E^{3}$ contains a tame arc. Amer. J. Math. 84 (1962), 583-590.
[11] Radial engulfing. In "Conference on the Topology of Manifolds, 1967" (J. G. Hocking, ed.), pp. 1-18. Prindle, Weber \& Schmidt, Boston, 1968.
Bing, R. H., and Borsuk, K.
[1] A 3-dimensional absolute retract which does not contain any disk. Fund. Math. 54 (1964), 159-175.
Bing, R. H., and Kister, J. M.
[1] Taming complexes in hyperplanes. Duke Math. J. 31 (1964), 491-511.
Blankinship, W. A.
[1] Generalization of a construction of Antoine. Ann. of Math. (2) 53 (1951), 276-297.
Borsuk, K.
[1] "Theory of Retracts." Pol. Sci. Publ., Warsaw. 1967.
[2] Sur l'elimination de phénomènes paradoxaux en topologie général. Proc. Int. Congr. Math., Amsterdam, 1954, pp. 197-208. North-Holland Publ., Amsterdam, 1957.
Bothe, H. G.
[1] Ein eindimensionales Kompaktum in $E^{3}$, das sich nicht lagetreu in die Mengershe Universalkurve einbetten lässt. Fund. Math. 54 (1964), 251-258.
Brown, Morton
[1] A proof of the generalized Schoenflies theorem. Bull. Amer. Math. Soc. 66 (1960), 74-76.
[2] Locally flat embeddings of topological manifolds. Ann. of Math. (2) 75 (1962), 331-341.
[3] Wild cells and spheres in high dimensions. Michigan Math. J. 14 (1967), 219-224.
Bryant, J. L.
[1] Euclidean space modulo a cell. Fund. Math. 63 (1968), 43-51.
[2] On embeddings of compacta in Euclidean space. Proc. Amer. Math. Soc. 23 (1969), 46-51.
[3] Euclidean $n$-space modulo an ( $n-1$ )-cell. Trans. Amer. Math. Soc. 179 (1973), 181-192. Bryant, J. L., and Hollingsworth, J. G.
[1] Manifold factors that are manifold quotients. Topology 13 (1974), 19-24. Bryant, J. L., and Lacher, R. C.
[1] Resolving 0-dimensional singularities in generalized manifolds. Math. Proc. Cambridge Philos. Soc. 83 (1978), 403-413.
Bryant, J. L., and Seebeck, C. L., III
[1] Locally nice embeddings of polyhedra. Quart. J. Math. Oxford Ser. (2) 19(1968), 257-274.
[2] Locally nice embeddings in codimension three. Quart. J. Math. Oxford Ser. (2) 21 (1970), 265-272.
Cannon, J. W.
[1] Taming cell-like embedding relations. In "Geometric Topology" (L. C. Glaser and T. B. Rushing, eds.), Lecture Notes in Math. No. 438, pp. 66-118. Springer-Verlag, Berlin and New York, 1975.
[2] Taming codimension-one generalized submanifolds of $S^{n}$. Topology 16 (1977), 323-334.
[3] The recognition problem: What is a topological manifold? Bull. Amer. Math. Soc. 84 (1978), 832-866.
[4] $E^{3} / X \times E^{1} \approx E^{4}(X$ a cell-like set $)$ : an alternate proof. Trans. Amer. Math. Soc. 240 (1978), 277-285.
[5] $\Sigma^{2} H^{3}=S^{5} / G$. Rocky Mountain J. Math. 8 (1978), 527-532.
[6] Shrinking cell-like decompositions of manifolds. Codimension three. Ann. of Math. (2) 110 (1979), 83-112.
Cannon, J. W., Bryant, J. L., and Lacher, R. C.
[1] The structure of generalized manifolds having nonmanifold set of trivial dimension. In "Geometric Topology" (J. C. Cantrell, ed.), pp. 261-300. Academic Press, New York, 1979. Cannon, J. W., and Daverman, R. J.
[1] A totally wild flow. Indiana Univ. Math. J. 30 (1981), 371-387.
[2] Cell-like decompositions arising from mismatched sewings: applications to 4-manifolds.
Fund. Math. 111 (1981), 211-233.
Cannon, L. O.
[1] Sums of solid horned spheres. Trans. Amer. Math. Soc. 122 (1966), 203-228.
Černavskiĭ, A. V.
[1] Local contractibility of the homeomorphism group of a manifold. Soviet Math. Dokl. 9 (1968), 1171-1174.
[2] Local contractibility of the group of homeomorphisms of a manifold. Math. Sb. 8 (1969), 287-333.
[3] Coincidence of local flatness and local simple-connectedness for embeddings of $(n-1)$ dimensional manifolds in $n$-dimensional manifolds when $n>4$. Mat. Sb. (N.S.) 91 (133) (1973), 279-296 (Math. USSR-Sb. 20 (1973), 297-304).
Chapman, T. A.
[1] Compact Hilbert cube manifolds and the invariance of Whitehead torsion. Bull. Amer. Math. Soc. 79 (1973), 52-56.
[2] Lectures on Hilbert cube manifolds. CBMS Regional Conf. Ser. in Math. No. 28, Amer. Math. Soc., Providence, Rhode Island, 1976.
[3] Controlled boundary and h-cobordism theorems. Trans. Amer. Math. Soc. 280 (1983), 73-95.
Christenson, C. O., and Osborne, R. P.
[1] Pointlike subsets of a manifold. Pacific J. Math. 24 (1968), 431-435.
Connelly, R.
[1] A new proof of Brown's collaring theorem. Proc. Amer. Math. Soc. 27 (1971), 180-182.

Curtis, M. L.
[1] Cartesian products with intervals. Proc. Amer. Math. Soc. 12 (1961), 819-820.
Daverman, R. J.
[1] On the scarcity of tame disks in certain wild cells. Fund. Math. 79 (1973), 63-77.
[2] Locally nice codimension one manifolds are locally flat. Bull. Amer. Math. Soc. 79 (1973), 410-413.
[3] On cells in Euclidean space that cannot be squeezed. Rocky Mountain J. Math. 5 (1975), 87-94.
[4] Every crumpled $n$-cube is a closed $n$-cell-complement. Michigan Math. J. 24 (1977), 225-241.
[5] A nonshrinkable decomposition of $S^{n}$ determined by a null sequence of cellular sets. Proc. Amer. Math. Soc. 75 (1979), 171-176.
[6] Products of cell-like decompositions. Topology Appl. 11 (1980), 121-139.
[7] Detecting the disjoint disks property. Pacific J. Math. 93 (1981), 277-298.
[8] A mismatch property in spherical decompositions spaces. In "Continua, Decompositions, Manifolds" (R. H. Bing, W. T. Eaton, and M. P. Starbird, eds.), pp. 119-127. Univ. of Texas Press, Austin, Texas, 1983.
Daverman, R. J., and Eaton, W, T.
[1] An equivalence for the embeddings of cells in a 3-manifold. Trans. Amer. Math. Soc. 145 (1969), 369-381.
Daverman, R. J., and Garity, D. J.
[1] Intrinsically ( $n-2$ )-dimensional cellular decompositions of $E^{n}$. Pacific J. Math. 102 (1982), 275-283.
[2] Intrinsically $(n-1)$-dimensional cellular decompositions of $S^{n}$. Illinois J. Math. 27 (1983), 670-690.

Daverman, R. J., and Preston, D. K.
[1] Shrinking certain sliced decompositions of $E^{n+1}$. Proc. Amer. Math. Soc. 79 (1980), 477-483.
[2] Cell-like 1-demensional decompositions of $S^{3}$ are 4-manifold factors. Houston J. Math. 6 (1980), 491-502.
Daverman, R. J., and Row, W. H.
[1] Cell-like 0-dimensional decompositions of $S^{3}$ are 4 -manifold factors. Trans. Amer. Math. Soc. 254 (1979), 217-236.
Daverman, R. J., and Walsh, J. J.
[1] A ghastly generalized $n$-manifold. Illinois J. Math. 25 (1981), 555-576.
[2] A nonshrinkable decomposition of $S^{n}$ involving a null sequence of cellular arcs. Trans. Amer. Math. Soc. 272 (1982), 771-784.
deLyra, C. B.
[1] On spaces of the same homotopy type as polyhedra. Bol. Soc. Mat. São Paulo 12 (1957), 43-62.
Denman, R.
[1] Countable starlike decompositions of $S^{3}$. In "Continua, Decompositions, Manifolds" (R. H. Bing, W, T. Eaton, and M. P. Starbird, eds.), pp. 128-131. Univ. of Texas Press, Austin, Texas, 1983.
Denman, R., and Starbird, M.
[1] Shrinking countable decomposition of $S^{3}$. Trans. Amer. Math. Soc. 276 (1983), 743-756. Dugundif, J.
[1] "Topology." Allyn \& Bacon, Boston, 1966.
Dyer, E., and Hamstrom, M. E.
[1] Completely regular mappings. Fund. Math. 45 (1958), 103-118.

Eaton, W. T.
[1] The sum of solid spheres. Michigan Math. J. 19 (1972), 193-207.
[2] A generalization of the dog bone space to $E^{n}$. Proc. Amer. Math. Soc. 39 (1973), 379-387.
[3] Applications of a mismatch theorem to decomposition spaces. Fund Math. 89 (1975),

## 199-224.

Eaton, W. Tı, Pixley, C. P., and Venema, G.
[1] A topological embedding which cannot be approximated by a piecewise linear embedding.
Notices Amer. Math. Soc. 24 (1977), A-302.
Edwards, R. D.
[1] Demension theory. I. In "Geometric Topology" (L. C. Glaser and T. B. Rushing, eds.), Lecture Notes in Math. No. 438, pp. 195-211. Springer-Verlag, Berlin and New York, 1975.
[2] Approximating codimension $\geq 3 \sigma$-compacta with locally homotopically unknotted embeddings (unpublished manuscript).
[3] Suspensions of homology spheres (unpublished manuscript).
[4] Approximating certain cell-like maps by homeomorphisms (unpublished manuscript).
[5] The topology of manifolds and cell-like maps. In "Proc. Internat. Congr. Mathematicians, Helsinki, 1978" (O. Lehto, ed.), pp. 111-127. Acad. Sci. Fenn., Helsinki, 1980. Edwards, R. D., and Glaser, L. C.
[1] A method for shrinking decompositions of certain manifolds. Trans. Amer. Math. Soc. 165 (1972), 45-56.
Edwards, R. D., and Kirby, R. C.
[1] Deformations of spaces of embeddings. Ann. of Math. (2) 93 (1971), 63-88.
Edwards, R. D., and Miler, R. T.
[1] Cell-like closed-0-dimensional decompositions of $R^{3}$ are $R^{4}$ factors. Trans. Amer. Math. Soc. 215 (1976), 191-203.
Engelking, R.
[1] "Dimension Theory." North-Holland Publ., Amsterdam, 1978.
Everett, D. L.
[1] Embedding theorems for decomposition spaces. Houston J. Math. 3 (1977), 351-368.
[2] Shrinking countable decompositions of $E^{3}$ into points and tame cells. In "Geometric Topology" (J. C. Cantrell, ed.), pp. 53-72. Academic Press, New York, 1979.
Ferry, S.
[1] Homotoping $\varepsilon$-maps to homeomorphisms. Amer. J. Math. 101 (1979), 567-582.
Freedman, M. H.
[1] The topology of four-dimensional manifolds. J. Differential Geom. 17 (1982), 357-453. Freudenthal, H.
[1] Über dimensionserhohende stetige Abbildungen. Sitaungsber. Preuss. Akad. Wiss. 5 (1932), 34-38.

Garity, D. J.
[1] A characterization of manifold decompositions satisfying the disjoint triples property. Proc. Amer. Math. Soc. 83 (1981), 833-838.
[2] A classification scheme for cellular decompositions of manifolds. Topology Appl. 14 (1982), 43-58.
[3] General position properties related to the disjoint disks property. In "Continua, Decompositions, Manifolds" (R. H. Bing, W. T. Eaton, and M. P. Starbird, eds.), pp. 132-140. Univ. of Texas Press, Austin, Texas, 1983.
Giffen, C. H.
[1] Disciplining dunce hats in 4-manifolds (unpublished manuscript).
Glaser, L. C.
[1] Contractible complexes in $S^{n}$. Proc. Amer. Math. Soc. 16 (1965), 1357-1364.

Gluck, H .
[1] Embeddings in the trivial range. Ann. of Math. (2) 81 (1965). 195-210.
Hanai, S.
[1] On closed mappings. Proc. Japan Acad. 30 (1954), 285-288.
Harley, P. W.
[1] The product of an $n$-cell modulo an arc in its boundary and a 1 -cell is an $(n+1)$-cell. Duke Math. J. 35 (1968), 463-474.
Haver, W. E.
[1] Mappings between ANR's that are fine homotopy equivalences. Pacific J. Math. 58 (1975), 457-461.

Hirsch, M. W.
[1] On non-linear cell bundles. Ann. of Math. (2) 84 (1966), 373-385.
Номма, T.
[1] On tame embedding of 0-dimensional compact sets in $E^{3}$. Yokohama Math. J. 7 (1959), 191-195.
Hurewicz, w.
[1] Über oberhalb-stetige Zerlegungen von Punktmengen in Kontinua. Fund. Math. 15 (1930), 57-60.
[2] Über dimensionserhöherende stetige Abbildungen, J. Reine u. Angew. Math. 169 (1933), 71-78.

Hurewicz, W., and Wallman, h.
[1] "Dimension Theory." Princeton Univ. Press, Princeton, New Jersey, 1941.
Kervaire, M. A.
[1] Smooth homology spheres and their fundamental groups. Trans. Amer. Math. Soc. 144 (1969), 67-72.

Kirby, R.C.
[1] Stable homeomorphisms and the annulus conjecture. Ann. of Math. (2) 89 (1969), 575-582.
Kirby, R. C., and Siebenmann, L.C.
[1] "Foundational Essays on Topological Manifolds, Smoothings, and Triangulations," Ann. of Math. Studies No. 88. Princeton Univ. Press, Princeton, New Jersey, 1977.
Klee, V. L.
[1] Some topological properties of convex sets. Trans. Amer. Math. Soc. 78 (1955), 30-45. Kozlowski, G.
[1] Images of ANRs (unpublished manuscript).
Kozlowski, G. and Walsh, J. J.
[1] Cell-like mappings on 3-manifolds. Topology 22 (1983), 147-151.
Kwun, K. W.
[1] Product of Euclidean spaces modulo an arc. Ann. of Math. (2) 79 (1964), 104-108.
Kwun, K. W., and Raymond, F.
[1] Factors of cubes. Amer. J. Math. 84 (1962), 433-440.
Lacher, R. C.
[1] Cellularity criteria for maps. Michigan Math. J. 17 (1970), 385-396.
[2] Cell-like mappings and their generalizations. Bull. Amer. Math. Soc. 83 (1977), 495-552. Lashof, R. S.
[1] Problems in differential and algebraic topology (Seattle Conf. 1963). Ann. of Math. (2) 81 (1965), 565-591.
Lay, T. L.
[1] Shrinking decompositions of $E^{n}$ with countably many 1-dimensional starlike equivalent nondegenerate elements. Proc. Amer. Math. Soc. 79 (1980), 308-310.

Lickorish, W. B. R., and Siebenmann, L. C.
[1] Regular neighborhoods and the stable range. Trans. Amer. Math. Soc. 139(1969), 207-230. Lininger, L. L.
[1] Actions on $S^{n}$. Topology 9 (1970), 301-308.
McAuley, L. F.
[1] Decompositions of continua into aposyndetic continua. Ph.D. Thesis, University of North Carolina, 1954.
[2] Upper semicontinuous decompositions of $E^{3}$ into $E^{3}$ and generalizations to metric spaces.
In "Topology of 3-Manifolds and Related Topics" (M. K. Fort, Jr., ed.), pp. 21-26. PrenticeHall, Englewood Cliffs, New Jersey, 1962.
McMillan, D. R., Jr.
[1] A criterion for cellularity in a manifold. Ann. of Math (2) 79 (1964), 327-337.
McMillan, D. R., Jr., and Row, H.
[1] Tangled embeddings of one-dimensional continua. Proc. Amer. Math. Soc. 22 (1969), 378-385.
Marin, A., and Visetti, Y. M.
[1] A general proof of Bing's shrinkability criterion. Proc. Amer. Math. Soc. 53 (1975), 501-507.
Matsumoto, Y.
[1] A 4-manifold which admits no spine. Bull. Amer. Math. Soc. 81 (1975), 467-470.
Mazur, B.
[1] A note on some contractible 4-manifolds. Ann. of Math. (2) 73 (1961), 221-228.
Meyer, D. V.
[1] More decompositions of $E^{n}$ which are factors of $E^{n+1}$. Fund. Math. 67 (1970), 49-65. Miller, R. T.
[1] Mapping cylinder neighborhoods of some ANR's. Ann. of Math. (2) 103 (1976), 417-427. Moise, E. E.
[1] Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung. Ann. of Math. (2) 56 (1952), 96-114.
Moore, R.L.
[1] Concerning upper semicontinuous collections of compacta. Trans. Amer. Math. Soc. 27 (1925), 416-428.
[2] 'Foundations of Point Set Theory,' Amer. Math. Soc. Colloq. Publ., Vol. 13. Amer. Math. Soc., Providence, Rhode Island, 1970.
Neuzil, J. P.
[1] Spheroidal decompositions of $E^{4}$. Trans. Amer. Math. Soc. 155 (1971), 35-64.
Newman, M. H. A.
[1] The engulfing theorem for topological manifolds. Ann. of Math. (2) 84 (1966), 555-571. Papakyriakopolous, C. D.
[1] On Dehn's Lemma and the asphericity of knots. Ann. of Math. (2) 66 (1957), 1-26. Pixley, C. P., and Eaton W. T.
[1] $S^{1}$ cross a $U V^{\infty}$ decomposition of $S^{3}$ yields $S^{1} \times S^{3}$. In "Geometric Topology" (L. C. Glaser, and T. B. Rushing, eds.), Lecture Notes in Math. No. 438, pp. 166-194. SpringerVerlag, Berlin and New York, 1975.
Poenaru, V.
[1] Les décompositions de l'hypercube en produit topologique. Bull. Soc. Math. France 88 (1960), 113-129.

Preston, D. K.
[1] A study of product decompositions of topological manifolds. Ph.D. dissertation, University of Tennessee, Knoxville, 1979.

Price, T. M.
[1] A necessary condition that a cellular upper semicontinuous decomposition of $E^{n}$ yield $E^{n}$. Trans. Amer. Math. Soc. 122 (1966), 427-435.
[2] Decompositions of $S^{3}$ and pseudo-isotopies. Trans. Amer. Math. Soc. 140 (1969), 295-299.
Price, T. M., and Seebeck, C. L., III
[1] Somewhere locally flat codimension one manifolds with 1-ULC complements are locally flat. Trans. Amer. Math. Soc. 193 (1974), 111-122.
Quinn, F.
[1] Ends of maps. I. Ann. of Math. (2) 110 (1979), 275-331.
[2] Ends of maps. III. Dimensions 4 and 5. J. Differential Geom. 17 (1982), 503-521.
[3] Resolutions of homology manifolds, and the topological characterization of manifolds. Invent. Math. 72 (1983), 267-284.
[4] An obstruction to the resolution of homology manifolds (to appear).
Roberts, J. H.
[1] On a problem of C. Kuratowski concerning upper semi-continuous collections. Fund. Math. 14 (1929), 96-102.
Rourke, C. P., and Sanderson, B. J.
[1] "Introduction to Piecewise-linear Topology," Ergebn. Math. No. 69. Springer-Verlag, Berlin and New York, 1972.
Rushing, T. B.
[1] "Topological Embeddings." Academic Press, New York, 1973.
Seebeck, C. L., III
[1] Tame arcs on wild cells. Proc. Amer. Math. Soc. 29 (1971), 197-201.
Sher, R. B.
[1] Tame polyhedra in wild cells and spheres. Proc. Amer. Math. Soc. 30 (1971), 169-174. Siebenmann, L. C.
[1] Approximating cellular maps by homeomorphisms. Topology 11 (1972), 271-294.
Sieklucki, K.
[1] A generalization of a theorem of K. Borsuk concerning the dimension of ANR-sets. Bull. Acad. Polon. Sci.Ser. Sci.Math. Astronom. Phys. 10 (1962), 433-436. Seealsoibid. 12(1964), 695. Singh, S.
[1] 3-dimensional AR's which do not contain 2-dimensional ANR's. Fund. Math. 93 (1976), 23-36.
[2] Constructing exotic retracts, factors of manifolds, and generalized manifolds via decompositions. Fund. Math. 113 (1981), 81-89.
[3] Generalized manifolds (ANR's and AR's) and null decompositions of manifolds. Fund. Math. 115 (1983), 57-73.
Spanier, E. H.
[1] "Algebraic Topology." McGraw-Hill, New York, 1966.
Štan'ko, M. A.
[1] The embedding of compacta in Euclidean space. Mat. Sb. 83 (125) (1970), 234-255 (Math. USSR-Sb. 12 (1970), 234-254).
[2] Solution of Menger's problem in the class of compacta. Dokl. Akad. Nauk SSSR 201 (1971), 1299-1302 (Soviet Math. Dokl. 12 (1971), 1846-1849).
[3] Approximation of compacta in $E^{n}$ in codimension greater than two. Mat. Sb. 90 (132) (1973), 625-636 (Math. USSR-Sb. 19 (1973), 615-626).

Starbird, M.
[1] Cell-like 0-dimensional decompositions of $E^{3}$. Trans. Amer. Math. Soc. 249 (1979), 203-216.
[2] Null sequence cellular decompositions of $S^{3}$. Fund. Math. 112 (1981), 81-87. Starbird, M., and Woodruff, E. P.
[1] Decompositions of $E^{3}$ with countably many nondegenerate elements. In 'Geometric Topology" (J. C. Cantrell, ed.), pp. 239-252. Academic Press, New York, 1979. Stone, A. H.
[1] Metrizability of decomposition spaces. Proc. Amer. Math. Soc. 7 (1956), 690-700. Taylor, J. L.
[1] A counterexample in shape theory. Bull. Amer. Math. Soc. 81 (1975), 629-632. Toruńczyk, H.
[1] On CE-images of the Hilbert cube and characterization of $Q$-manifolds. Fund. Math. 106 (1980), 31-40.
[2] Characterizing Hilbert space topology. Fund. Math. 111 (1981), 247-262. Walsh, J. J.
[1] Dimension, cohomological dimension, and cell-like mappings. In "Shape Theory and Geometric Topology" (S. Mardešić, and J. Segal, eds.), Lecture Notes in Math. No. 870, pp. 105-118. Springer-Verlag, Berlin and New York, 1981.
[2] The finite dimensionality of integral homology 3-manifolds. Proc. Amer. Math. Soc. 88 (1983), 154-156.

West, J. E.
[1] Mapping Hilbert cube manifolds to ANR's: a solution to a conjecture of Borsuk. Ann. of Math. (2) 106 (1977), 1-18.
Whitehead, J. H. C.
[1] A certain open manifold whose group is unity. Quart. J. Math. Oxford Ser. (2) 6 (1935), 268-279.
[2] Simplicial spaces, nuclei, and m-groups. Proc. London Math. Soc. 45 (1939), 243-327.
[3] A certain exact sequence. Ann. of Math. (2) 52 (1950), 51-110.
Wilder, R. L.
[1] "Topology of Manifolds," Amer. Math. Soc. Colloq. Publ., Vol. 32, Amer. Math. Soc., Providence, Rhode Island, 1963.
Woodruff, E. P.
[1] Decomposition spaces having arbitrarily small neighborhoods with 2-sphere boundaries. Trans. Amer. Math. Soc. 232 (1977), 195-204.
[2] Decomposition spaces having arbitrarily small neighborhoods with 2-sphere boundaries. II. Fund. Math. 119 (1983), 185-204.

Wright, D. G.
[1] AR's which contain only trivial ANR's. Houston J. Math. 4 (1978), 121-127.
[2] A decomposition of $E^{n}(n \geq 3)$ into points and a null sequence of cellular sets. General Topology Appl. 10 (1979), 297-304.
[3] Countable decompositions of $E^{n}$. Pacific J. Math. 103 (1982), 603-609.
ZeEman, E. C.
[1] On the dunce hat. Topology 2 (1964), 341-358.

## Index

## A

Admissible subset, 78-80, 239, 241
AHEP, see Homotopy extension property, absolute
$\epsilon$-Amalgamation, 148, 151-158, 188-189, 242-243
ANR, see Retract, absolute neighborhood Approximation Theorem
cell-like, 3-4, 56, 102, 148, 178, 181-183
187-188, 190, 206, 227, 232, 242,
$258,264,280,286,288,300$
locally flat, 265,285
homeomorphic, 3, 5, 183, 189
AR, see Retract, absolute
Arc
cellular, 41
essentially flat, 62
flat, 50-52, 85, 95-99, 104-105
in decompositions, $22,50-52,65$,
85-93, 95-101, 241-242, 268-269
wild, 91-92
Aspherical space, 139-140
Axiom LF, 95-96, 98

## B

Bicollared set, 234-235, 237, 289, see also
Sphere, bicollared

## C

Cantor set, 12, 28, 34, 45-46, 62, 70, 78-79, 223, 242, 291, see also Necklace, of Antoine
ramified, of Bing, 240-241, 252-253
tame, 74, 85, 158
wild, $66,74,160,213,221-222,251-252$, 255
Cell
factor, 94
flat, 85, 93, 101, 107, 150
recognition of, 36,41
wild, 92
Cell-likeness, see Cellularity; Decomposition, cell-like; Map, cell-like
Cell-like set, 120-125, 214-216
Cellular-at-the-boundary set, 222
Cellularity, 2, 22, 35-38, 40-41, 53-54, 69, $92,143,145,157,167,216,222$, see also Cell-likeness; Decomposition, cellular
relation to cell-likeness, $120,122-123$, 163, 216
Cellularity criterion, 143-147, 214-216, 243-245, 256
Closed $n$-cell-complement, see Crumpled $n$-cube
W-Closeness, of maps, 27, 44
Collared subset, 40
embedding, 271-272
Complete handle curve, 265-267
Compactification, one point, $16,26,105$, 213
$k$-Connectedness, 125,129 , see also Local $k$-co-connectedness
of complement, 146
local, 128-129
of pair, 127

Constrictable set, 293, 300-302
Contractability, 41, 94, 120-121, 133, 139-140, 184, 187, 287-288, 290
Convex set, 53, 142
Crumpled $n$-cube, 268-270, 2\%2-273, 286, 291
boundary, 268
inflation, 270, 291
interior, 268
pinched, 275, 280-284

## D

DAP, see Disjointness property, arcs DADP, see Disjointness property, arc-disk $\mathrm{DD}_{k}$, see Disjointness property, $k$-tuples
DDP, see Disjointness property, disks
Decomposition, 7
admissible, 216-223, 226, 268, 270-271, 274
associated with defining sequence
classical, 61-82, 248, 260
general, 260-263
nested, 246-250
big element, 44-45
countable, 11, 22, 43-61, 152, 171, 185, 187, 260
cell-like, $1,113,126,128-132,146-147$, 154-158, 166-178, 181-193, 195-213, 219, 225-239
noncellular, 68-69, 249-256
cellular, 50, 146-147, 157-158, 177, 185-187, 216, 256-257, 259-260
nonshrinkable, 212-213, 218, 219, 239-245
shrinkable, 62-63, 221-222, 249
totally nondegenerate, 249, 251
constrained by $n$-cells, 61
continuous, 10
defined
by closed set, 14, 36, 41-42, 103,
184-185, 206-212
arc, 84-95
cell, 93-95, 103, 107
by $n$-cells, 41
$k$-dimensional, 152
closed, 152
intrinsically, 244-245, 256, 257
secretly, 244-245, 257-260
doubled, 270-273
finite, 11, 19-20, 36, 61, 152-154
induced
over closed set, 76, 109-110, 172-178, 187-188, 200-201
by function, $11-12,14,16-18,25,38$, 147, 235-237, 242-244
inessentially spanning two sets, 149-150, 178
inflated, 270-272
locally encompassed by manifolds, 200-205, 249
locally spherical, 227-228, 230-232
lower semicontinuous, 10
minimal example, 66-68, 185, 222, 241
monotone, 7, 17-21, 32-34, 47, 51, 61, 138, 149-150, 251
normal form, 290
products of, 14-15, 123, 183, 225-226
with line, 22, 81-94, 103-104, 107 , 183, 190-191, 195-197, 199-212, 232-233, 237-238, 249, 255-256, 259
with plane, 190,196
realization of, 11-12, 33, 111, 234, 236-237
shrinkable, 3, 22-35, 41-42, 45-47, 62-63, 80-84, 89-91, 96, 107-112, 122-123, 148-151, 154, 166-178, 181, 190, 196-212, 217-223, 225-238, 241, 244-245, 249, 255, 272-274
fixing closed set, 26, 233-234
ideally, 31, 111, 176
strongly, 26, 31, 36, 38, 42-45, 47-52, 56-61, 75, 92-93, 108-109
simple, 185
sliced, 232-238
spun, 213, 216-223, 240-241, 259, 270-271, 273
trivially extended, 14-15, 80, 95-96, 135-137, 197-198, 233-234, 237, 272-274
upper semicontinuous, 8-15, 44, 62, 247, 261
$U V^{n}, 126-129$
Decomposition space, 8
Defining sequence
classical, 61-82, 245
example, 62-69, 218-219
by solid tori, 83-84
general, 260-263
nested, 246-251, 260-261
Dimension-raising problem, 113, 129, 135-142, 146, 227, 247-248

Disjointness property
arcs, 186, 191-193
arc-disk, 193-197, 201, 224-225, 259-260
$k$-cells, 186
disks, 3, 148, 178-183, 185-186, 188, 191, 194-205, 217-221, 225-227, 232, 257, 259, 288-289, 291
disk triples, 205, 223, 225-226
point-disk, 205
$k$-tuples, 257-260
Disk-with-handles, 265-267, 269
Distinguished ( $n-k-1$ )-sphere, 214-215
Dogbone space, 22, 64-65, 84, 222-223, 240
Double suspension, 102-106, 184-185, 265, 287-288

## E

Embedding dimension, 149, 160-171, 185, 205, 207-208, 212, 242-244
Engulfing, 145, 164, 177, 292-293, 300-302

## F

Filtration, 171-174, 188
Fine homotopy equivalence, 130-136, 270
Flatness, 50, 84-85, 107, 285, see also Tameness
Function, upper semicontinuous, 10, 13

## G

$G_{A}$, see Decomposition, defined, by closed set
$G^{\boldsymbol{T}}$, see Decomposition, trivially extended
$G(\geqslant \epsilon)$, see Decomposition, big element
$G(C)$, see Decomposition, induced, over closed set
Generalized manifold, 93, 191-192, 198-200, 255-256, 276-280, 283-291, 300
product of, 223-236
singular set of, 278, 280, 284, 287-290, 300
Grope, 264-270, 272-275, 278-283
boundary, 266
compactified, 266
standard realization, 267

## H

$H_{G}$, see Nondegenerate element
Handle pair, split, 206-210
HEP, see Homotopy extension property
HMP, see Homotopy mismatch property

Homotopy extension property, 116 absolute, 116-117
Homology $n$-sphere, 102, see also Double suspension
Homotopy mismatch property, 227-228, 231-232

## I

Inflation, closed set, 270-271, see also Crumpled $n$-cube, inflated
Inverse set, 18, 37-38, 211
Isotopy, 33-34, 108, 162, 177, 182, 208-209
$I$-essential, see Map, interior-essential $I$-inessential, see Map, interior-inessential Infl( $C, S$ ), see Inflation, closed set Infl( $C$ ), see Crumpled $n$-cube, inflation

## L

Lifting, approximate, $126-128,130-132$, 137-138, 145, 177, 186, 191, 220-221, 224
Limit
inferior, 9-10, 13
superior, 9-10, 13
Locally collared set, 40, 285
Local contractability, 115, 117-119, 121
of homeomorphism group, 107-111
at point, 115
Local $k$-co-connectedness, 146-147, 163, 165, 177-184, 186, 192-196, 198-199, 223-227, 274, 279-285, 287, 289-293, 300-302
Locally shrinkable set, 42-50, 111
LC ${ }^{n}$, see $k$-Connectedness, local
$k$-LC, see $k$-Connectedness, local
$k$-LCC, see Local $k$-co-connectedness

## M

Manifold, 1, 7, see also Generalized manifold
boundary, 7
with boundary, 7, 285
characterization, 288
factor, 65, 69, 81, 83-84, 89, 91-94, 183-185, 292, 300
interior, 7
mapping cylinder neighborhood, 264, 291-300

Map
approximately right invertible, 142
cell-like, 133-136, 142, 147, 172-178, 182-183, 186-187, 189, 206, 256, 263, 276-278, 280-286, 288-290, 298-300
interior-essential, 73-74
interior-inessential, 73
light, 18-19
$\epsilon$-map, 134-138, 142
monotone, 17,21
one-to-one, over subset, 3, 172-178, 181-183, 200-201, 210-212, 216-218, 242-244
piecewise linear, 159
proper, 15-17, 41, 133, 142, 187
virtually interior-essential, 73-80, 241
Mapping torus, 105
MCN, see Manifold, mapping cylinder neighborhood
Metrizability, 12-13
Mixing homeomorphism, 78, 80, 239, 241

## $\mathbf{N}$

Near-homeomorphism, 27-31, 38, 44-45, see also Aproximation theorem, cell-like
Necklace, of Antoine, 70-75
$\epsilon$-Neighborhood, 7
Nondegenerate element, 8
Nondegeneracy set
decomposition, 8
map, 243
Null homotopy criterion, 248, 255, star, 262-263
Null sequence, 14, 45-46, 50, 55-56, 67-68, 152, 154-158, 166-171, 189, 241-244
$N(A ; \epsilon)$, see $\epsilon$-Neighborhood
$N_{f}$, see Nondegeneracy set, map
$N_{G}$, see Nondegeneracy set, decomposition

## $\mathbf{P}$

Peano continuum, 1, 12-13
Perfect group, 267
Piecewise linearity, 158-159
Pillbox, 266-267, 269
Pointlike set, 40-41
Polyhedron, 160
tamely embedded, 61, 159
Poincaré conjecture, 69, 145, 147
Property $n-U V, 123-129$

Property $U V^{n}, 123-129,144-145,147$
Property $U V^{\omega}, 123-129$
Pseudo-isotopy, 33-34, 111, 173-175, 210-211, 236-237
ultimately stationary, 211
Pseudo-spine, 103, 105-106
PL, see Piecewise linearity

## R

Retract, 113-120
absolute, 113-117, 120, 129
absolute neighborhood, 113-121, 123-125, 129, 135, 138-139, 142-143, 145, 158, 183, 186-187, 205-206, 223, 225-226, 232, 263-264, 285, 291-302
Resolution, 158, 284-293

## $\mathbf{S}$

Saturated set, 8
Shrinkability criterion, 2-4, 22-27, 49, 92, see also Decomposition, shrinkable
Shrinking theorem, 176-177
Simplicial complex, 117,158 , see also Triangulation, noncombinatorial underlying point set, 158
$\mathrm{Sp}^{k}(G)$, see Decomposition, spun
$\mathrm{Sp}^{*}(X)$, see Spin
Sphere
bicollared, 38-41, 53-54, 139-140, 149-150
characterization, 38, 41
flat, 37-39, 54
horned, 213, 269
Spin, 214-216, 222
Squeeze, cell to another cell, 94-101
Standard position, 207-208
Star
in collection, 26
in cover, 27
in complex, 159
Starlikeness, 52-61, 164-166, 168-171
with respect to point, 52
Starlike-equivalence, 56, see also Starlikeness
Star-refinement, 27-28, 30-31, 108-109
homotopy, 126-127, 137, 141
Subdivision, 158
Subpolyhedron, 159, 187, 267-268, 280-281

## T

Tameness, 74 85, 149, 159, see also Flatness

Transversality, 67-70
Triangulation
equivalence of, 159
noncombinatorial, 22, 95, 102
piecewise linear, 159
prismatic, 208-212
rectilinear, 158
simplicial, 102, 157-158
$\mathbf{U}$
Unicoherence, 21
usc, see Decomposition, upper semicontinuous

## W

Whitehead continuum, 68-69, 81, 120, 250
Wildness, 74, 265



#### Abstract

About this book Decomposition theory studies decompositions, or partitions, of manifolds into simple pieces, usually cell-like sets. Since its inception in 1929, the subject has become an important tool in geometric topology. The main goal of the book is to help students interested in geometric topology to bridge the gap between entry-level graduate courses and research at the frontier as well as to demonstrate interrelations of decomposition theory with other parts of geometric topology. With numerous exercises and problems, many of them quite challenging, the book continues to be strongly recommended to everyone who is interested in this subject. The book also contains an extensive bibliography and a useful index of key words, so it can also serve as a reference to a specialist.


