FOUNDATIONS
OF MECHANICS
SECOND EDITION
IN MEMORIAM

RUFUS BOWEN
1947–1978

KAREL DE LEEUW
1930–1978
Contents

Preface to the AMS Chelsea Edition ... xiii
Preface to the Second Edition .. xv
Preface to the First Edition ... xvii

Introduction ... xix
Preview .. xxiii

PART I PRELIMINARIES ... 1

Chapter 1. Differential Theory .. 3
 1.1 Topology ... 3
 Exercises ... 17
 1.2 Finite-Dimensional Banach Spaces 17
 Exercises ... 19
 1.3 Local Differential Calculus ... 20
 Exercises ... 30
 1.4 Manifolds and Mappings .. 31
 Exercises ... 36
 1.5 Vector Bundles .. 37
 Exercises ... 41
 1.6 The Tangent Bundle .. 42
4.2 The Momentum Mapping ... 276
Exercises .. 295
4.3 Reduction of Phase Spaces with Symmetry 298
Exercises .. 309
4.4 Hamiltonian Systems on Lie Groups and the Rigid Body 311
Exercises .. 338
4.5 The Topology of Simple Mechanical Systems 338
Exercises .. 359
4.6 The Topology of the Rigid Body 360
Exercises .. 368

Chapter 5. Hamilton-Jacobi Theory and Mathematical Physics 370
5.1 Time-Dependent Systems 370
Exercises .. 378
5.2 Canonical Transformations and Hamilton-Jacobi Theory 379
Exercises .. 400
5.3 Lagrangian Submanifolds 402
Exercises .. 420
5.4 Quantization .. 425
5.5 Introduction to Infinite-Dimensional Hamiltonian Systems 453
Exercises .. 486
5.6 Introduction to Nonlinear Oscillations 489

PART III AN OUTLINE OF QUALITATIVE DYNAMICS 507

Chapter 6. Topological Dynamics 509
6.1 Limit and Minimal Sets 509
Exercises .. 513
6.2 Recurrence ... 513
Exercises .. 515
6.3 Stability ... 515
Exercises .. 519

Chapter 7. Differentiable Dynamics 520
7.1 Critical Elements ... 520
Exercises .. 525
7.2 Stable Manifolds ... 525
Exercises .. 531
7.3 Generic Properties .. 531
Exercises .. 534
7.4 Structural Stability .. 534
Exercises .. 536
CONTENTS

7.5 Absolute Stability and Axiom A 536
 Exercises ... 542
7.6 Bifurcations of Generic Arcs 543
 Exercises ... 548
7.7 A Zoo of Stable Bifurcations 548
7.8 Experimental Dynamics 570

Chapter 8. Hamiltonian Dynamics 572

8.1 Critical Elements ... 572
8.2 Orbit Cylinders .. 576
 Exercises ... 579
8.3 Stability of Orbits .. 579
 Exercises ... 587
8.4 Generic Properties .. 587
8.5 Structural Stability .. 592
8.6 A Zoo of Stable Bifurcations 595
8.7 The General Pathology 606
8.8 Experimental Mechanics 610

PART IV CELESTIAL MECHANICS 617

Chapter 9. The Two-Body Problem 619

9.1 Models for Two Bodies 619
 Exercises ... 624
9.2 Elliptic Orbits and Kepler Elements 624
9.3 The Delaunay Variables 631
9.4 Lagrange Brackets of Kepler Elements 635
9.5 Whittaker's Method 638
9.6 Poincaré Variables 647
 Exercises ... 652
9.7 Summary of Models .. 652
 Exercise .. 656
9.8 Topology of the Two-Body Problem 656

Chapter 10. The Three-Body Problem 663

10.1 Models for Three Bodies 663
 Exercises ... 673
10.2 Critical Points in the Restricted Three-Body Problem 675
 Exercises ... 687
10.3 Closed Orbits in the Restricted Three-Body Problem 688
 Exercises ... 699
10.4 Topology of the Planar n-Body Problem 699
Appendix

The General Theory of Dynamical Systems and Classical Mechanics by A. N. Kolmogorov 741

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bibliography</td>
<td>759</td>
</tr>
<tr>
<td>Index</td>
<td>791</td>
</tr>
<tr>
<td>Glossary of Symbols</td>
<td>807</td>
</tr>
<tr>
<td>Errata</td>
<td>809</td>
</tr>
</tbody>
</table>
Preface to the AMS Chelsea Edition

This book is the American Mathematical Society printing of Foundations of Mechanics, which was first published in 1967 by W. A. Benjamin and whose second edition was published by Benjamin Cummings in 1978, with significant improvements in subsequent printings. The book was also distributed by Perseus Press for the last decade or so. It is the Updated 1985 (Fifth) Printing that is reproduced here.

We have compiled a list of errata and updates, which appears at the end of the book. This can also be found on the book’s websites, which will be maintained as additional updates are needed: http://www.cds.caltech.edu/~marsden/books/Foundations_of_Mechanics.html and http://www.ams.org/bookpages/chele-364.

Because of issues involving permissions for the printed form, we have not reproduced the “Museum” for the book, the gallery of photographs of some of the historical giants of mechanics. However, this museum can be found on the book’s websites.

We are grateful to many readers who helped us gather errata and updates for the AMS printing of the book. We are especially indebted to Tudor Ratiu for his diligent work in this regard.

Ralph Abraham
Jerrold E. Marsden
Spring, 2008
Preface to the Second Edition

Since the first edition of this book appeared in 1967, there has been a great deal of activity in the field of symplectic geometry and Hamiltonian systems. In addition to the recent textbooks of Arnold, Arnold–Avez, Godbillon, Guillemin–Sternberg, Siegel–Moser, and Souriau, there have been many research articles published. Two good collections are “Symposia Mathematica,” vol. XIV, and “Géométrie Symplectique et Physique Mathématique,” CNRS, Colloque Internationaux, no. 237. There are also important survey articles, such as Weinstein [1977b]. The text and bibliography contain many of the important new references we are aware of. We have continued to find the classic works, especially Whittaker [1959], invaluable.

The basic audience for the book remains the same: mathematicians, physicists, and engineers interested in geometrical methods in mechanics, assuming a background in calculus, linear algebra, some classical analysis, and point set topology. We include most of the basic results in manifold theory, as well as some key facts from point set topology and Lie group theory. Other things used without proof are clearly noted.

We have updated the material on symmetry groups and qualitative theory, added new sections on the rigid body, topology and mechanics, and quantization, and other topics, and have made numerous corrections and additions. In fact, some of the results in this edition are new.

We have made two major changes in notation: we now use f^* for pull-back (the first edition used f_*), in accordance with standard usage, and have adopted the “Bourbaki” convention for wedge product. The latter eliminates many annoying factors of 2.
A. N. Kolmogorov's address at the 1954 International Congress of Mathematicians marked an important historical point in the development of the theory, and is reproduced as an appendix. The work of Kolmogorov, Arnold, and Moser and its application to Laplace's question of stability of the solar system remains one of the goals of the exposition. For complete details of all the theorems needed in this direction, outside references will have to be consulted, such as Siegel–Moser [1971] and Moser [1973a].

We are pleased to acknowledge valuable assistance from

Paul Chernoff Wlodek Tułczyjew
Morris Hirsch Alan Weinstein

and our invaluable assistant authors

Richard Cushman and Tudor Ratiu

who all contributed some of their original material for incorporation into the text.

Also, we are grateful to

Ethan Akin Kentaro Mikami
Judy Arms Harold Najarst
Michael Buchner Ed Nelson
Robert Cahn Sheldon Newhouse
Emil Choroszoff George Oster
André Deprit Jean-Paul Penot
Bob Devaney Joel Robbin
Hans Duistermaat Clark Robinson
John Guckenheimer David Rod
Martin Gutwillel William Satzer
Richard Hansen Dieter Schmidt
Morris Hirsch Mike Shub
Michael Hoffman Steve Smale
Andrei Iacob Rich Spencer
Robert Jantzen Mike Spivak
Therese Langer Dan Sunday
Ken Meyer Floris Takens
Randall Wohl

for contributions, remarks, and corrections which we have included in this edition.

Further, we express our gratitude to Chris Shaw, who made exceptional efforts to transform our sketches into the graphics which illustrate the text, to Peter Coha for his assistance in organizing the Museum and Bibliography, and to Ruthie Cephas, Jody Hilburn, Marnie McElhinney, Ruth (Bionic Fingers) Suzuki, and Ikuko Workman for their superb typing job.

Theoretical mechanics is an ever-expanding subject. We will appreciate comments from readers regarding new results and shortcomings in this edition.

Ralph Abraham
Jerrold E. Marsden
Preface to the First Edition

In the Spring of 1966, I gave a series of lectures in the Princeton University Department of Physics, aimed at recent mathematical results in mechanics, especially the work of Kolmogorov, Arnold, and Moser and its application to Laplace’s question of the stability of the solar system. Mr. Marsden’s notes of the lectures, with some revision and expansion by both of us, became this book.

Although the lectures were attended equally by mathematicians and physicists, our goal was to make the subject available to the nonspecialists. Therefore, the mathematical background assumed was dictated by the physics graduate students in the audience. Hoping this would be typical of the people interested in this subject, I have made the same assumptions in the book.

Thus, we take for granted basic undergraduate calculus and linear algebra, and a limited amount of classical analysis, point set topology, and elementary mechanics. Then we begin with modern advanced calculus, and go on to a complete and self-contained treatment of graduate level classical mechanics. The later chapters, dealing with the recent results, require an ever-increasing adeptness in general topology, and we have collected the topological topics required in Appendix A.

To further aid the nonmathematician, the proofs are unusually detailed, and the text is replete with cross-references to earlier definitions and propositions, all of which are numbered for this purpose. The extent of these is testimony of Mr. Marsden’s patience.

As our goal is to make a concise exposition, we prove propositions only if the proofs are easy, or are not to be found readily in the literature. This
results in an irregular collection of proofs—in the first four chapters nearly everything is proved, being easy, and in the last three chapters there are several longer proofs included and many omitted. Some of those included are necessary because the propositions are original, and can be omitted in a first reading or an elementary course.

For the mathematical reader, the proofs we have omitted can easily be found in books or journals, and we give complete references for each (References in square brackets refer to the Bibliography.) For this reason, the book, although not self-contained, gives a complete exposition.

In this connection we are grateful to Al Kelley for the opportunity of publishing two research articles of his, as Appendixes B and C, which have not appeared elsewhere. In each of these he proves an original theorem that is important to our development of the subject. As Kolmogorov’s address at the 1954 International Congress of Mathematicians (in Russian), which inspired the most important of the recent results, has not been available in English, we include a translation of it in Appendix D. The exercises at the end of each section are nearly all used in a later section, and may be read as part of the text.

I am indebted to Arthur Wightman for his enthusiasm in making arrangements for my lectures and the publication of the book, to René Thom for discussions on structural stability and a preliminary manuscript of part of his book on that subject, to Jerrold Marsden for his energetic collaboration in the writing of this book, and to many colleagues for valuable suggestions. Some of these are acknowledged in the Notes at the end of each chapter, which also give general historical and bibliographical information.

We are both happy to express our gratitude to June Clausen for editing and typing the bulk of the manuscript, and to Patricia Clark, Bonnie Kearns, Elizabeth Epstein, Elizabeth Margosches, and Jerilyn Christiansen for their valuable assistance.

Ralph Abraham

Princeton, New Jersey
June 1966
Introduction

Mechanics begins with a long tradition of qualitative investigation culminating with Kepler and Galileo. Following this is the period of quantitative theory (1687–1889) characterized by concomitant developments in mechanics, mathematics, and the philosophy of science that are epitomized by the works of Newton, Euler, Lagrange, Laplace, Hamilton, and Jacobi. Both of these periods are thoroughly described in Dugas [1955].

Throughout these periods, the distinguished special case of celestial mechanics had a dominant role (see Moulton [1902] for additional historical details). Formalized in the quantitative period as the n-body problem, it recurs in the writings of all of the great figures of the time. The question of stability was one of main concerns, and was analyzed with series expansion techniques by Laplace (1773), Lagrange (1776), Poisson (1809), Dirichlet (1858), and Haretu (1878), all of whom claimed to have proved that the solar system was stable.

As Dirichlet died before writing down this proof, King Oscar of Sweden offered a prize for its discovery, which was given to Poincaré in 1889. The results of Poincaré, suggesting that the series expansions of Laplace et al. diverged, and the discovery by Bruns [1887] that no quantitative methods other than series expansions could resolve the n-body problem brought the quantitative period to an end. (See Moser [1973a] for additional historical information.) For celestial mechanics this situation represented a great dilemma, comparable to the crises associated with relativity and quantum theory in other aspects of mechanics. The resolution we owe to the
genius of Poincaré, who resurrected the qualitative point of view, accompanied by completely new mathematical methods. The inventions of Poincaré, culminating in modern differential geometry and topology, constitute a recent and lesser known example of concomitant development of mathematics and mechanics, comparable to calculus, differential equations, and variational theory.

The neoqualitative period in mechanics, that is, from Poincaré to the present, consists primarily in the amplification of the qualitative, geometric methods of Poincaré, the application of these methods to the qualitative questions of the previous period—for example, stability in the n-body problem—and the consideration of new qualitative questions that could not previously be asked.

Poincaré's methods are characterized first of all by the global geometric point of view. He visualized a dynamical system as a field of vectors on phase space, in which a solution is a smooth curve tangent at each of its points to the vector based at that point. The qualitative theory is based on geometrical properties of the phase portrait: the family of solution curves, which fill up the entire phase space. For questions such as stability, it is necessary to study the entire phase portrait, including the behavior of solutions for all values of the time parameter. Thus it was essential to consider the entire phase space at once as a geometric object. Doing so, Poincaré found the prevailing mathematical model for mechanics inadequate, for its underlying space was Euclidean, or a domain of several real variables, whereas for a mechanical problem with angular variables or constraints, the phase space might be a more general, nonlinear space, such as a generalized cylinder. Thus the global view in the qualitative theory led Poincaré to the notion of a differentiable manifold as the phase space in mechanics. In mechanical systems, this manifold always has a special geometric structure pertaining to the occurrence of phase variables in canonically conjugate pairs, called a symplectic structure. Thus the new mathematical model for mechanics consists of a symplectic manifold, together with a Hamiltonian vector field, or global system of first-order differential equations preserving the symplectic structure.

This model offers no natural system of coordinates. Indeed a manifold admits a coordinate system only locally, so it is most efficient to use the intrinsic calculus of Cartan rather than the conventional calculus of Newton in the analysis of this model. The complete description of this model for mechanics comes quite a bit after Poincaré, as the intrinsic calculus was not fully developed until the 1940s. One advantage of this model is that by suppressing unnecessary coordinates the full generality of the theory becomes evident.

The second characteristic of the qualitative theory is the replacement of analytical methods by differential-topological ones in the study of the phase portrait. For many questions, for example the stability of the solar system, one is interested finally in qualitative information about the phase portrait. In earlier times, the only techniques available were analytical. By obtaining a
complete or approximate quantitative solution, qualitative or geometric properties could be deduced. It was Po
icares idea to proceed directly to qualitative information by qualitative, that is, geometric methods. Thus Poincare,
Birkhoff, Kolmogorov, Arnold, and Moser show the existence of periodic solutions in the three-body problem by applying differential-topological theorems to the phase portraits in addition to analytical methods. No analytical description of these orbits has been given. In some cases the orbits have been plotted approximately by computers, but of course the computer cannot prove that these solutions are periodic.

A third aspect of the qualitative point of view is a new question that emerges in it—the problem of structural stability, the most comprehensive of many different notions of stability. This problem, first posed in 1937 by Andronov–Pontrjagin, asks: If a dynamical system X has a known phase portrait P, and is then perturbed to a slightly different system X' (for example, changing the coefficients in its differential equation slightly), then is the new phase portrait P' close to P in some topological sense? This problem is of obvious importance, since in practice the qualitative information obtained for P is to be applied not to X, but to some nearby system X', because the coefficients of the equation may be determined experimentally or by an approximate model and therefore approximately.

The traditional mutuality of mechanics and philosophy has declined in recent years, perhaps because of the justifiable interest in the problems posed by relativity and quantum theory. But current problems in mechanics give new insight into the structure of physical theories.

At the turn of this century a simple description of physical theory evolved, especially among continental physicists—Duhem, Poincare, Mach, Einstein, Hadamard, Hilbert—which may still be quite close to the views of many mathematical physicists. This description—most clearly enunciated by Duhem [1954]—consisted of an experimental domain, a mathematical model, and a conventional interpretation. The model, being a mathematical system, embodies the logic, or axiomatization, of the theory. The interpretation is an agreement connecting the parameters and therefore the conclusions of the model and the observables in the domain.

Traditionally, the philosopher-scientists judge the usefulness of a theory by the criterion of adequacy, that is, the verifiability of the predictions, or the quality of the agreement between the interpreted conclusions of the model and the data of the experimental domain. To this Duhem adds, in a brief example [1954, pp. 138 ff.], the criterion of stability.

This criterion, suggested to him by the earliest results of qualitative mechanics (Hadamard), refers to the stability or continuity of the predictions, or their adequacy, when the model is slightly perturbed. The general applicability of this type of criterion has been suggested by Rene Thom [1975].

This stability concerns variation of the model only, the interpretation and domain being fixed. Therefore, it concerns mainly the model, and is primarily
a mathematical or logical question. It has been studied to some extent in a
general logical setting by the physiologists BOULIGAND [1935] and
DESTOUCHES [1935], but probably it is safe to say that a clear enunciation
of this criterion in the correct generality has not yet been made. Certainly all
of the various notions of stability in qualitative mechanics and ordinary
differential equations are special cases of this notion, including LAPLACE’s
problem of the stability of the solar system and structural stability, as well as
THOM’s stability of biological systems.

Also, although this criterion has not been discussed very explicitly by
physicists, it has functioned as a tacit assumption, which may be called the
dogma of stability. For example, in a model with differential equations, in
which stability may mean structural stability, the model depends on param-
ters, namely the coefficients of the equation, each value of which corresponds
to a different model. As these parameters can be determined only approxi-
mately, the theory is useful only if the equations are structurally stable, which
cannot be proved at present in many important cases. Probably the physicist
must rely on faith at this point, analogous to the faith of a mathematician in
the consistency of set theory.

An alternative to the dogma of stability has been offered by THOM [1975].
He suggests that stability, precisely formulated in a specific theory, be added
to the model as an additional hypothesis. This formalization, despite the risk
of an inconsistent axiomatic system, reduces the criterion of stability to an
aspect of the criterion of adequacy, and in addition may admit additional
theorems or predictions in the model. As yet no implications of this axiom are
known for celestial mechanics, but THOM has described some conclusions in
his model for biological systems.

A careful statement of this notion of stability in the general context of
physical theory and epistemology could be quite useful in technical applications
of mechanics as well as in the formulation of new qualitative theories in
physics, biology, and the social sciences.

Most of this book is devoted to a precise statement of mathematical
models for mechanical systems and to precise definitions of various types of
stability in this narrow context. These are illustrated by a number of exam-
plies, but by one example in depth, namely, the restricted three-body problem
in Chapter 10.
To motivate the introduction of symplectic geometry in mechanics, we briefly consider Hamilton's equations. The starting point is Newton's second law, which states that a particle of mass $m > 0$ moving in a potential $V(q)$, $q = (q^1, q^2, q^3) \in \mathbb{R}^3$, moves along a curve $q(t)$ in \mathbb{R}^3 in such a way that $m \dot{q} = -\text{grad} V(q)$. If we introduce the momentum $p_i = m \dot{q}_i$ and the energy $H(q, p) = (1/2m) \| p \|^2 + V(q)$, then Newton's law is equivalent to Hamilton's equations:

$$
\begin{align*}
\dot{q}_i &= \partial H / \partial p_i, \\
\dot{p}_i &= -\partial H / \partial q_i, & i = 1, 2, 3
\end{align*}
$$

One proceeds to study this system of first-order equations for a general $H(q, p)$. To do this, we introduce the matrix $J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$, where I is the 3×3 identity, and note that the equations become $\dot{\xi} = J \cdot \text{grad} H(\xi)$, where $\xi = (q, p)$. (In complex notation, setting $z = q + ip$, they may be written as $\dot{z} = -2i \partial H / \partial \bar{z}$.)

Set $X_H = J \cdot \text{grad} H$. Then $\xi(t)$ satisfies Hamilton's equations iff $\xi(t)$ is an integral curve of X_H, that is, $\dot{\xi}(t) = X_H(\xi(t))$. The relationship between X_H and H can be rewritten as follows: introduce the skew-symmetric bilinear form ω
on $\mathbb{R}^3 \times \mathbb{R}^3$ defined by

$$\omega(v_1, v_2) = v_1 \cdot J \cdot v_2$$

$v_1, v_2 \in \mathbb{R}^3 \times \mathbb{R}^3$

$v_1 = (x_1, y_1)$

$v_2 = (x_2, y_2)$

[In complex notation on $\mathbb{C}^3 = \mathbb{R}^3 \times \mathbb{R}^3$, $\omega(v_1, v_2) = -\text{Im} \langle v_1, v_2 \rangle$, where $v_1 = x_1 + iy_1$, $v_2 = x_2 + iy_2$, and $\langle \cdot, \cdot \rangle$ is the Hermitian inner product.]

Then we have, for all $\xi \in \mathbb{R}^3 \times \mathbb{R}^3$ and $v \in \mathbb{R}^3 \times \mathbb{R}^3$,

$$\omega(X_H(\xi), v) = dH(\xi) \cdot v$$

where $dH(q,p) = (\partial H/\partial q^i, \partial H/\partial p^i)$, a row vector in $\mathbb{R}^3 \times \mathbb{R}^3$, as is easily checked. One calls ω the symplectic form on $\mathbb{R}^3 \times \mathbb{R}^3$, and X_H the Hamiltonian vector field with energy H.

Suppose we make a change of coordinates $\eta = f(\xi)$, where $f: \mathbb{R}^3 \times \mathbb{R}^3 \rightarrow \mathbb{R}^3 \times \mathbb{R}^3$ is smooth. If $\xi(t)$ satisfies Hamilton’s equations, the equations satisfied by $\eta(t) = f(\xi(t))$ are $\dot{\eta} = AJA^* \text{grad}_\xi H(\xi) = AJA^* \text{grad}_\eta H(\xi(\eta))$, where $(A)^{\eta^i} = (\partial \eta^i/\partial \xi^j)$ is the Jacobian of f, and A^* is the transpose of A. The equations for η will be Hamiltonian with energy $K(\eta) = H(\xi(\eta))$ if and only if $AJA^* = J$. A transformation satisfying this condition is called canonical or symplectic, (or a symplectomorphism). In terms of the symplectic form ω, this condition, denoted $f^*\omega = \omega$, says the transformation f leaves ω unchanged.

The space $\mathbb{R}^3 \times \mathbb{R}^3$ of the ξ's is called the phase space. For a system of N particles we would use $\mathbb{R}^{3N} \times \mathbb{R}^{3N}$.

For many fundamental physical systems, the phase space is a manifold rather than Euclidean space. For instance, manifolds often arise when constraints are present. For example, the phase space for the motion of the rigid body is the tangent bundle of the group $SO(3)$ of 3×3 orthogonal matrices with determinant $+1$. (See Sect. 4.4 for details.) Not only are manifolds important in these examples, but their terminology and notation lead to a clearer understanding of the basic structure of mechanics.
Bibliography

Chapter 7

BIBLIOGRAPHY

Bass, W. R. 1969. A characterization of central configuration solutions of the n-body problem,
Bernard, P. See Ratiu and Bernard.
BIBLIOGRAPHY 763

Bott, R.

Bowen, R.

1977. On Axiom A diffeomorphisms, CBMS no. 35, AMS.

Bruno, A. D.

Brunovsky, P.

Brusilinskaya, N. N.

topology (in Romanian) Editura Stiintifica, Bucuresti.

Burgoyne, N., and Cushman, R.

Chernoff, P., and Marsden, J.

Chevalier, D. P.

Churchill, R. C., Pecelli, G., and Rod, D. L.

Churchill, R. C., and Rod, D. L.

Crandall, M. G.

Crumeyrolle, A.

Cushman, R.

Ebin, D. G.
Eells, J.
Fenichel, N.
1973. Exponential rate conditions for dynamical systems (in Peixoto [1973]).
Fischer, A., and Marsden, J.

Franks, J.

Fulp, R. O., and Marlin, J. A.

Integrals of foliations on manifolds with a generalized symplectic structure (preprint).

Integrals and reduction of order (preprint).

Galissot, F.

Garcia, P. L.

Gawedzki, K.

1976a. A strange, strange attractor (in Marsden–McCronabe [1976]).

American Math. Society, Providence, R.I.
Gutzwiller, M. C.
Hale, J. K.
Hartman, P.
Hayashi, C.
Hénon, M.
Hermann, R.
Iacobi, A. 1971. Invariant manifolds in the motion of a rigid body about a fixed point. Rev. Roum. de

Iooss, G.

1973. Bifurcation et stabilité. Lecture notes, Université Paris XI.

Jacobi, C. G. J.

Kaplan, W.

Kelley, A.
Kolmogorov, A. N.
Koopman, B.
Kostant, B.
Kovalevskaya, S.

Leimanis, E. 1965. The general problem of the motion of coupled rigid bodies about a fixed point. Springer-Verlag, New York.

Lelong-Ferrand, J.

Leslie, J.

Lichnerowicz, A.

Libermann, P.

Lorenz, E.

Mackey, G. W.

MacLane, S.

Mañé, R.

Markus, L.

1963. Cosmological models in differential geometry, Univ. of Minnesota Notes.

Markus, L. and Meyer, K. R.

1969. Generic Hamiltonian systems are not ergodic, in Proc. 5th Internat. Conf. on Nonlinear Oscillation, Kiev, pp. 311–332.

Marsden, J.

Marsden, J., and Hughes, T.

BIBLIOGRAPHY

Meyer, K. R.

Meyer, K. R., and Palmore, J.

Milnor, J.

Minorsky, N.

Miura, R. M.

1968. Korteweg-de Vries equation and generalizations I. A remarkable explicit nonlinear

1977. The Birkhoff–Lewis fixed point theorem (Appendix 3.3 in Klingenberg [1977]).

Newhouse, S. E., and Peixoto, M. 1977. There is a simple arc joining any two Morse-Smale flows (preprint).
Palis, J.
Palmore, J.
Peixoto, M.
Penot, J.-P.
Poincaré, H.

Robinson, R. C., and Williams, R. F.
Roeke, W. 1960. Über den Laplace-operator auf Riemannscher Manigfaltigkeiten mit dis-
Roëls, J. 1971. An extension to resonant cases of Liapunov’s theorem concerning the periodic
1973. Sur l'accouplement des sous-espaces invariants indécomposables des systèmes lin-
1974. Sur la décomposition locale d’un champ de vecteurs d’une surface symplectique en
23:343–344.
Rund, H. 1966. The Hamiltonian-Jacobi theory in the calculus of variations; its role in mathematics
and physics. Krieger, Huntington, N.J.
Satzer, W. J., Jr. 1977. Canonical reduction of mechanical systems invariant under abelian group
Schwartz, A. 1963. A generalization of a Poincaré–Bendixson theorem to closed two-dimensional
Segal, I. E. 1959. Foundations of the theory of dynamical systems of infinitely many degrees of
1964. Quantum fields and analysis in the solution manifolds of differential equations, in Analysis in function space, Martin and Segal (eds.). MIT, Boston, Mass.
1963b. Dynamical systems and the topological conjugacy problem for diffeomorphisms, in

Sniatycki, J.

Sniatycki, J., and Tuleczyew, W. M.

Sotomayor, J.

Souriau, J. M.

Spivak, M.

1974. A comprehensive treatise on differential geometry (five vols.). Publish or Perish, Boston, Mass.

Taylor, M. E.
Benjamin-Cummings, Reading, Mass.
55:467–468.
Tricart, K. C. 1974. Dynamical prequantization, spectrum generating algebras and the classical
Kepler and harmonic oscillator problems, in 1975 Fourth Intern. Coll. on Group Theor.
Tromba, A. J.
1976. Almost-Riemannian structures on Banach manifolds, the Morse lemma and the
Truesdell, C.
1974. A simple example of an initial-value problem with any desired number of solutions.
Truman, A. 1976. Feynman path integrals and quantum mechanics as $\hbar \to 0$. J. Math. Phys.
17:1852–1862.
Tulczyjew, W. M.
283:15–18.
283:675–678.
Urabe, M.
Francisco.
3(3):235–239.
46:615–675.
Varadarajan, V. S.
Von Neumann, J.
Wall, G. E. 1963. On the conjugacy classes in the unitary, symplectic and orthogonal groups. *J.
Glenview, Ill.
Weinstein, A.
1972. The invariance of Poincaré’s generating function for canonical transformations. *Inv.
1977a. Symplectic F-manifolds, periodic orbits of Hamiltonian systems and the volume of
Wheeler, J. A. 1964. Geometrodynamics and the issue of the final state, in *Relativity, groups, and
Whitney, H.
Whittaker, E. T.
1959. *A treatise on the analytical dynamics of particles and rigid bodies*, 4th ed. Cambridge
Univ. Press, Cambridge.
Wigner, E.
40(2):149–204.
1959. *Group theory and its application to the quantum mechanics of atomic spectra*. Academic,
New York.
1964. *Unitary representations of the inhomogeneous Lorentz group including reflections, group
theoretical concepts and methods in elementary particle physics*, pp. 37–80. Gordon and
Breach, New York.
Williams, R.
Williamson, J.
1936. On the algebraic problem concerning the normal forms of linear dynamical systems.
BIBLIOGRAPHY

Wintner, A.
1930. Über eine Revision der Sortentheorie des restringierten Dreikörper problems. Sitzbord.
1936. On the periodic analytic continuations of the circular orbits in the restricted problem

Zeeman, E. C. 1975. Morse inequalities for diffeomorphisms with shoes and flows with solenoids
(in Manning [1975], pp. 44–47).

Zehnder, E.
80:174–149.
1975. Generalized implicit functions theorems with applications to some small divisor
Index

A

A-tower of Smale, 539
Ablowitz, M. J., 462, 759
Abraham R., 312, 525, 526, 531, 533, 536, 537, 542, 544, 569, 571, 579, 759, 776
absolutely continuous measure, 426
absolutely Ω-stable vector field, 541
absolutely structurally stable vector field, 541
absorption, 604
action, 213, 381
action-angle coordinates, 396, 397
action-angle variables, 392, 631
action integral, 475
action of a Lie group on a manifold, 261
Ad^*-equivariant, 279
Adams, J. F., 259, 759
adjoint action, 267
adjoint mapping, 257
Adler, M. 488, 759
“ADM formalism”, 479
admissible local chart, 32
admissible local bundle chart, 38
affine connection, 145
Airault, H. 759
Albu, A., 96, 759, 763
Alekseev V., 759
Alexander, J. C., 504, 553, 567, 759
algebra norm, 27
algebra of exterior differential forms, 110
algorithm, 76
Almgren F. J., 157, 759
\(\alpha\), \(\beta\)-normal form, 582
\(\alpha\) twist mapping, 582
\(\alpha^*\) unstable, 516
alternation mapping, 101
amended potential, 245, 347
analytic, 24
Andronov, A. A., 489, 505, 534, 544, 553, 759
angular chart, 201
angular momentum, 287, 302, 320, 632, 634
angular parameters, 626
angular variables, 122
angular velocity, 335
annihilation, 599
anomalies, 624, 626
Anosov, D., 535, 760
antiderivation, 111, 115
antisymplectic map, 308
apocenter, 626
Apostol, T., 760
Appell, P., 312, 760
Appleton, E. V., 570
arc, 12
arcwise connected, 12
Arens, R., 450, 760
Arendtzen, R. F., 616, 689, 693, 699, 760
argument of the perihelion, 625, 626, 629, 632, 634
Arms, J., 311, 485, 760
Arnold diffusion, 584
Arnold’s invariant tori theorem, 275, 395

791
INDEX

Arnowitz, R., 479, 761
Arraut, J., 761
Artin, E., 761
asymptotic stability of Poisson, 516
asymptotically stable, 73
asymptotically unstable, 74
attractor, 517
atlas, 32
attachment of handles on a manifold, 185
Auslander, J., 442
autoparallel, 146
Avez, A., 140, 171, 237, 238, 368, 398, 582, 583, 604, 761
Axiom A, 537

B

Babbitt, D. G., 450, 760
Bacry, H., 761
Baire category theorem, 16
Baire space, 16
Ball, J. M., 517, 519, 761
Banyaga, A., 761
Bargmann, V., 453, 761
Barrar, R. B., 663, 690, 693, 695, 697, 699, 761
de Barros, C. M., 761
base integral curve, 214
base space, 37
basic sets, 537
basin of an attractor, 517
basis for topology, 4
Bass, R. W., 761
beam equation, 487, 489
Becker, L., 754
Bell, J. S., 762
Ben-Abraham, S. I., 762
Benjamin, T. B., 543, 762
Benton, S. H., 762
Berezin, F. A., 762
Berger, M., 762
Bernard, P., 474, 542, 781
Bernoulli, D., 584
Bharucha-Reid, 488
Bhatia, N. P., 762
Bianchi’s identity, 155
Bibikov, J. N., 762
bicharacteristic curves, 384
Bichteler, K., 762
bifurcation point of a controlled vector field, 543
bifurcation point of a family of vector fields, 503
bifurcation set, 339, 393
bijection, 7
Birkhoff-Lewis theorem, 581, 762
Birkhoff normal form, 500, 589, 762
Birkhoff recambrering, 565, 570, 762
Birkhoff recurrence theorem, 514, 762
Birkhoff-Sternberg-Moser normal form, 582, 762
Birkhoff’s criterion, 690, 762
Bishop, R., 42, 762
Blattner, R. J., 443, 444, 762
Bleuler, K., 762
blue sky catastrophe, 567, 570—disappearance into the, 567
Bochner, S., 762
body coordinates, 312
Bogolyubov, N., 753
Bohm, D., 762
Boltzmann, L., 237
Boltzmann’s constant, 241
Bolza, O., 246, 762
Bolzano-Weierstrass Theorem, 8
Bona, J., 762
Bonec, R., 763
Bony, J. M., 98, 763
Born, M., 763
Bott, R., 416, 763
Bottkol, M., 763
Bouligand, G., 763
boundary, 5, 136
boundary of a manifold, 137
boundary orientation, 138
Bourbaki, N., 102, 763
Bowen, R., 140, 537, 542, 763
Brauer, R., 763
Braun, M., 763
Bredon, G. E., 96, 763
Breiz, H., 97, 763
Bruno, A. D., 586, 763
Brouwer, D., 292, 763
Brown, E. W., 604, 763
Brown bifurcation, 604
Brunet, P., 763
Brunovsky, P., 547, 549, 555, 557, 559, 763
Bruns, H., 763
Bruslinskaya, N. N., 763
Bub, J., 762
Buchner, M., 499, 587, 763
bump function, 81
Burghelea, D., 96, 100, 715, 759, 763
Burgoine, N., 491, 764
burst, 595, 604
bus orbits, 693

C

C’ controlled vector field, 543
C’ generic property, 532
C’ graph topology, 544
C’ topology, 532
C’ Whitney topology, 544
Cabral, H. E., 764
Calabi, E., 764
canonical coordinates, 176
canonical forms, 178
canonical involution, 50
canonical projection, 13
canonical relation, 199, 410
canonical transformation, 177, 384, 574
Carathéodory, C. 742, 764
Caratù, G., 764
Carr, J., 517, 761
Cartan, E., 298, 371, 376, 377, 764, 767
Cartan's calculus, 109
Cartwright, M. L. 764
Casal, P. 764
Cauchy sequence, 6
causitic, 447
center of mass, 701
central configuration, 706
Chaiakin, C. E., 489, 759
chain rule, 22
change of variables in an integral, 132, 134
chaotic set, 537
Chapman-Kolmogorov law, 61
characteristic bundle of a two-form, 371
characteristic distribution of a 2-form, 298
characteristic exponents, 72, 207, 520
characteristic line bundle, 372
characteristic multipliers, 520, 523
characteristic vector field, 371
characteristics, 92
Chazy, J., 754
Chenciner, A., 561, 772
Chern, S. S., 120, 764
Chernoff, P., 261, 425, 431, 434, 454, 460, 462, 488, 764
Cherry, T. M., 764
Chevalley, C., 270, 433, 764
Chevalier, D. P. 764
Chichilnisky, G., 297, 442, 764
Chillingworth, D. 764
Chirikov, B. V. 764
Chladni, E. F. P., 543, 570
Chorin, A. J., 764
Chorosoff, E., 697
Choquet-Bruhat, Y., 157, 480, 764
Chow, S.-N., 503, 764
Christoffel symbols, 145
Chu, B. Y., 462, 764, 783
Churchill, R. C., 613, 764, 783
class C', 35
classical Euler-Lagrange equations, 215
Classical Gauss' theorem, 156
classical Hamiltonian system with spin, 297
classical momentum function associated to the vector field, 428
Classical momentum lemma on the cotangent bundle, 291
Classical momentum lemma on the tangent bundle, 292
Classical Stokes' theorem, 156
Clauser, J. F., 765, 768
clean intersection of submanifolds, 416
Clebsch, A., 92
Clemence, G. M., 292, 763
closed, 118
closed orbit, 512, 688
closed orbits
 of the first kind, 689
 of the second kind, 689
 of Poincaré, 692
 of Moser, 695
closed set, 4
closure, 5
coadjoint action, 268
coadjoint cocycle, 277, 278
co-isotropic, 409
coboundary, 279
cocycle identity, 277
Codazzi equation, 156
Coddington, E. 765
codimension, 126
cohomology of a Lie group, 279
collinear solutions of Euler, 675
commutation relations, 271
commutes with contractions, 88
compact, 8
compact point, 514
compact support, 122
comparison lemma, 234
complemented, 29
complete point of a flow, 514
complete solution, 68
complete space, 6
complete system of integrals, 68
complete vector field, 69
completely integrable system, 301, 305, 393
complex projective space, 15
complex structure, 172
component, 10
component of a tensor, 53
composite mapping theorem, 22, 23, 45
configuration space, 341
conjugate momentum, 216
Conley, C., 765
connected, 10
connection, 78
conservation laws, 188, 193, 277, 463
conservation of energy, 188, 193
conservation of angular momentum, 621
conservation of linear momentum, 620
consistent algorithm, 76
consistent equations of motion, 213
constant of the motion, 201, 237
 in involution, 392, 393
constant rank, 51
constants of structure, 271
constraint equations, 481, 484
contact manifold, 372
“continuity equation”, 478
continuous, 7
continuously differentiable, 21
contractible, 15
contraction, 53
contraction mapping principle, 26
contravariant, 52
control space, 543
converge, 4
convergence of flows, 96
convex neighborhoods, 150
Cook, A., 765
Cook, J. M., 174, 486, 492, 765
coordinates relative to the center of mass, 620
Coppel, W., 517, 765
Corbin, H., 765
Coriolis forces, 332
cotangent action, 283
cotangent bundle, 57
cotangent Euler vector field, 322, 324
Courant, R., 219, 384, 765
covariant, 52
covariant derivative, 145, 146
covector field, 57
Crandall, M. G., 98, 765
creation, 597, 598, 599
critical elements, 520
critical elements of a vector field, 512
critical point, 67, 72, 75, 340, 675
critical point of a Hamiltonian vector field, 572
critical values, 340
Crittenden, R., 762
Cruselina, A., 765
Currie, D. G., 450, 765
curvature, 154
curvature tensor, 154
curve, 22
curve at m, 43
Cushman, R., 297, 315, 360, 491, 502, 764, 765
cycle, 582

d'Alembertian, 456
Daniel, J. W., 616, 765
Dankel, T. G., 765
Darbourx, G., 175, 371, 765
Death, 553
Delaunay, C., 631, 765
Delaunay coordinates, 397
Delaunay domain in cotangent formulation, 634
Delaunay domain in tangent formulation, 632
Delaunay map, 647
Delaunay map in tangent formulation, 632
Delaunay model for the restricted three-body problem in tangent bundle formulation, 669
in cotangent formulation, 671
Delaunay model in cotangent formulation, 638
Delaunay model in tangent formulation, 636
Delaunay variables, 631
Delaunay variables in cotangent formulation, 634
deMelo, W., 780
Denjoy, A., 746
dense, 5
Deprit, A., 595, 606, 616, 687, 766
Deprit-Bartholomé, 687, 766
derivation, 80
derivative, 21
Deser, S.
De-Soer, C. A., 766
destabilization, 559
Destouches, J., 766
determinant, 106, 129
determinism, 61
Devaney, R. L., 567, 763, 766
de Vries, C., 773
dewitt, B. S., 766
DeWitt metric, 482
Dieudonne, J., 766
diffeomorphism, 25, 36
differentiable, 21
differentiable manifold, 32
differential, 79
differential one-form, 57
differential operator, 78, 87
Diliberto, S., 766
Dirac, P. A. M., 223, 424, 426, 479, 766
Dirac theory of constraints, 423
Dirac brackets, 217
direct elliptical domain in tangent formulation, 629, 630
disappearance into the blue, 567
discrete topology, 5
dissipative system, 234
dissipative vector field, 234
distinguished coordinates, 95
divergence, 130
Djukic, D. D., 766
Dombrowski, P., 766
Droz-Vincent, P., 766
dual basis, 52
dual space, 52
dual suicide, 555
Duff, G., 382, 766
Duffing, 570
Dugas, R., 766
Duhem, P., 766
Duistermaat, J. J., 251, 384, 419, 420, 492, 496, 499, 500, 502, 503, 528, 529, 530, 537, 541, 765, 766
Dumortier, F., 766
dynamic creation, 555, 570
dynamical systems, 60
Dyson, F. J., 766

e
Easton, R., 739, 740, 766
Ebin, D. G., 41, 65, 199, 233, 245, 247, 274, 472, 474, 767, 776
eccentric anomaly, 626
eccentricity, 629
Edelen, D. G. B., 767
Eells, J., 41, 247, 767
INDEX

effective, 261
effective potential, 347, 362
Egorov, Yu. V., 384, 767
Ehresmann, C., 767
eikonal equation, 384
Eilenberg, S., 767
Einstein, A., 767
Einstein system, 484
Einstein’s Vacuum Field Equation of General Relativity, 479
elasticity, 457
elementary closed orbit, 573
elementary critical point, 75, 573
elementary critical element, 525
elementary twist mapping, 582
Elhadad, J., 443, 767
Eliasson, J., 41, 247, 767
“elimination of the node”, 298, 302
elliptic element, 579, 624
elliptical ring in cotangent formulation, 645
elliptical ring in tangent formulation, 639
Ellis, R., 767
emission, 601, 603, 604, 606
energy, 213
energy density, 477
energy momentum mapping, 339
equation of state, 244
Equations of a perfect fluid, 472
equations of motion in Poisson bracket notation, 193
equilateral triangle solutions of Lagrange, 678
equilibrium point, 72
equilibrium point of a vector field, 512
equivalence class, 13
equivalence classes of central configurations, 712
equivalence relation, 13
equivalent atlases, 32
equivalent central configurations, 709
equivalent metrics, 6
equivalent norms, 18
equivalent phase portraits, 534
equivalent volume elements, 105
equivalent volumes, 125
equivariant map, 264, 269
ergodic, 140, 206, 237
essential action, 270
Estabrook, F. B., 767
Euclidean group on R^3, 445
Euler, L., 767
Euler equations, 336, 472
Euler equations in cotangent formulation, 322
Euler conservation law, 319
Euler critical points, 730
Euler-Poincaré case (Rigid body), 362
Euler vector field, 322, 333
evolution equations, 481, 484
evolution operator, 61
exact, 118
exact contact manifold, 372
exact sequence, 203
existence and uniqueness of Poincaré maps, 521
existence and uniqueness theorems, 62
existence of flow boxes, 67
experimental dynamics, 570
exponential dichotomy, 528
exponential map, 148
exponential mapping, 256
exponential trichotomy, 529
exterior algebra, 101, 104
exterior derivative, 111
exterior k-forms, 101
exterior product, 102
extremal closed orbit, 597
evolution operator, 92

F

F^*-generic, 545
Faddeev, L., 397, 472, 767, 788
faithful, 261
Faraday, M., 543, 570
Faure, R., 767
Fenichel, N., 528, 767
Feynman, R. P., 767
fiber, 39
fiber derivative, 208, 209
fiber preserving, 40
fibered map, 217
fiberation theorem, 51
first countable, 4
first Hamiltonian model for the restricted three-body problem, 664
first model for the two-body problem (I), 619
Fischer, A., 96, 157, 212, 311, 474, 477, 479, 480, 485, 486, 760, 764, 767, 768, 776
Flanders, H., 120, 122, 768
Flaschka, H., 471, 472, 768
flat manifold, 155
Fleming, W., 768
flip, 557
flow, 60, 61, 70
flow box, 65, 66
flow in body coordinates, 324
flow property, 92
Fock representation, 452
focus of a controlled vector field, 543
Foldy, 450
foliation, 95
Fomenko, A. T., 338, 777
Fomin, S., 246, 755, 769
Fong, U., 298, 310, 768
force of constraint, 231
fork, 551
fourth model for the two-body problem (IV), 623
Fraenkel, L. E., 30
Frampton, J., 763
Franks, J., 541, 768
free, 261
Freedman, S. J., 768
free particle of mass m_0, 446
free relativistic particle, 236
frequencies of the flow, 395
Friedel, C., 768
Frobenius’ theorem, 93
Froeschlé, C., 768
Fulcher, F. B., 768
full quantization, 434
Fulp, R. O., 768
fundamental frequencies, 490
fundamental group, 15
fundamental theorem of Riemannian geometry, 149

G

G^*-generic, 545
Gaffney, M. P., 140, 431, 768
Galilean group, 446
Gallissot, F., 768
García, P. L., 768
Gardon, C. S., 768
Garding, L., 452, 768
Gardner, C. S., 463, 465, 468, 488, 768
gauge group of Lagrangian mechanics, 216
Gauss, K. F., 251
Gauss-Codazzi equations, 482
Gauss’ equation, 156
Gauss’ formula, 155, 156
Gauss theorem, 140, 144
Gaussian coordinates, 149
Gawędzki, K., 768
Gelfand, I. M., 246, 492, 755, 769
generalized force, 244
generated differentiable structure, 32
generating function for a canonical transformation, 389
generating function for the symplectic map, 379
generic cycle, 547
generic evolution, 569
generic p-bifurcations, 597
generic property, 532
Genia, A. L., 769
gesdisic, 146
gesdisic equations, 146
gesdisic flow, 225
gesdisic spray, 225
gesdisically complete, 151
Germain, P., 769
Giacaglia, G. E. O., 769
Gibbs, J. W., 237
Gillis, P., 769
Glasner, S., 769
global isochrons, 530
global Lagrangian, 475
Godbillon, C., 769
Goffman, C., 769
Goldberg, S., 42, 762
Goldschmidt, H. Z., 769

Goldstein, H., 161, 246, 311, 312, 359, 400, 489, 769
Golditsky, M., 769
Gordon, L., 760
Gordon, W. B., 199, 233, 769
Gotay, M. J., 769
Gottschalk, W. H., 515, 769
Grabar, M. L., 755
gradient, 128
Graff, S. M., 769
Graham, N., 766
Gram-Schmidt process, 163
Gray, J., 769
Greene, J. M., 463, 465, 768
Griffith, B. A., 786
Gronewold, H. J., 425, 434, 769
Gronoll, D., 183, 769
Gronwall’s inequality, 63
Grosjean, P. V., 769
Gross, L., 769
Guckenheimer, J., 51, 384, 420, 541, 542, 549, 769
Guillemin, V., 75, 102, 384, 402, 418, 420, 421, 425, 444, 486, 769
Gurtin, M., 422, 770
Gustavson, F. G., 770
Guzzwiller, M. C., 770

H

$\% \% \%$ elementary critical point of a Hamiltonian vector field, 580
$\% \% \%$ structurally stable, 592
Haag, J., 452
Haahiti, H., 770
Haar measure, 260
Hadamard, J., 507
Hadamard’s theorem, 245
Hagihara, Y., 770
Hajek, O., 512, 770
Hale, J. K., 489, 496, 497, 499, 503, 506, 770
half forms, 426
Halmos, P. R., 140, 770
Hamilton, W. R., 410
Hamilton-Jacobi Theorem, 339, 381
Hamiltonian, 341
Hamiltonian flow box Theorem, 391
Hamiltonian operator, 431, 459
Hamiltonian system, 187
Hamiltonian vector field, 187
Galilean invariant, 446
Hangen, Th., 715, 763
Hanson, A., 424, 480, 770
hard self-excitation, 555, 559
harmonic, 153
harmonic oscillators, 191, 207, 224
Harris, T. C., 770
Hartman, P., 75, 98, 512, 513, 520, 526, 770
Hasegawa, Y., 770
Hausdorff, F., 770
INDEX

Hausdorff metric, 12, 17
Hausdorff space, 5
Hayashi, C., 506, 570, 770
Hedlund, G. A., 515, 754, 769
Heiles, C., 306, 611, 613, 770
Heisenberg commutation relations, 450
Helgason, S., 770
Henon, M., 306, 422, 611, 613, 770
Henred, J., 500, 595, 604, 606, 616, 687, 766, 770
Herman, R., 246, 271, 293, 312, 488, 770, 771
Hertz, H., 251
Hessian, 183
Hicks, N., 771
higher order K dV equations, 464
Hilbert, D., 219, 384, 741, 765
Hill, G., 771
Hilton, P., 771
Hinds, G., 769, 771
Hirsch, M. W., 33, 73, 185, 257, 357, 528, 537, 542, 771
Hitchin, N., 488, 771
Hocking, J., 771
Hodge, V. W. D., 771
Hodge-De Rham Theory, 153
Hodge decomposition, 154
Hodge star operator, 153
Hoffman, K., 771
Holmes, P. J., 505, 506, 771
holonomic constraints, 246
homeomorphic, 7
homeomorphism, 7
homoclinic tangle, 547
homogeneous canonical transformation, 181
homogeneous pseudo-Riemannian manifold, 293
homogeneous space, 266
homogeneous symplectic G-space, 303
Hopf, E., 553, 743, 752, 753, 754, 771
Hopf bifurcation, 504, 505, 561, 571, 595
Hopf catastrophe, 553
Hopf excitation, 553
Hopf-Rinow theorem, 151
horizontal part, 227
Horander, L., 384, 420, 443, 766, 771
Horn, M. A., 765
Howard, L., 553, 773
Hsiang, W., 276, 771
Hughes, T., 131, 460, 462, 764, 776
hull of point, 514
hyperbolic critical point, 75, 525
hyperbolic set of vector field, 529
hyperregular Hamiltonian, 221
hyperregular Lagrangian, 218
Hurt, N. E., 442, 771

Immersed submanifold, 409, 527
Immersion, 51
implicit function theorem, 29
inclination, 530
incompressible, 130
incompressibility condition, 472
index, 75, 183
index relative to a submanifold, 183
induced orientation, 138
inertia ellipsoids, 319
inertia tensor, 334
infinitesimal generator of the action corresponding to ξ, 267
infinitesimal variation of the curve, 248
infinitesimally symplectic, 169, 190
infinitesimally symplectic eigenvalue theorem, 170, 573
inhomogeneous Lorentz group, 449
initial mean anomaly, 626, 632, 634
inner automorphism, 256
inner derivation, 200
inner product, 115
inset, 516
integrable distribution, 93
integrable submanifold, 417
integral, 70
integral curve, 61, 374
integral of a function, 135
integral of an n-form, 133
integral of a vector field, 510
integrating factor, 122
interior, 5, 136, 137
intrinsic Hilbert space of a manifold, 426
invariable plane, 320
invariant equations of motion, 444
invariant k-form, 201
invariant manifold of a vector field, 205
invariant manifold theorem of Smale, 350
invariant manifolds, 342
invariant sets, 97
invariant subset, 511
inverse mapping theorem, 25
involutive distribution, 298
Iosif, G., 557, 559, 561, 772
irreducible representation, 452
Irwin, M. C., 772
isometry, 151
isospectral evolution, 465
isotropic, 409
isotropic subspace, 403
isotropy group, 265

J
Jacobi, C. G. J., 194, 388, 410, 772
Jacobi coordinates, 723
Jacobi fields, 245
Jacobi-Liouville theorem, 301, 304
Jacobi metric, 228
Jacobi's form of the principle of least action, 251
INDEX

k-forms, 110
Kähler Manifolds, 186
Kaiser, G., 772
Kakutani, S., 742, 756
Kaplan, J., 772
Kaplan, W., 509, 772
Kato, T., 233, 461, 772
Kato, S. B., 360, 368, 772
Katz, A., 772
Kaup, M. J., 462, 759
Kazhdan, D., 310, 772
Keller, J. B., 384, 772
Kelley, A., 499, 526, 527, 528, 765, 773
Kelley, J., 773
Kepler, J., 624
Kepler domain in tangent formulation, 629, 630
Kepler elements, 624
Kepler elements in cotangent formulation, 631
Kepler elements in tangent formulation, 629
Kepler map, 629
Kepler map in cotangent formulation, 631
Kepler's First Law, 625, 627
Kepler's Second Law, 625
Kepler's Third Law, 625
Khimi, G. F., 773
Kiehn, R. M., 773
Killing field, 151
Killing vector field, 157, 200
kinetic energy, 341
Kirillov, A. A., 442
Kirillov-Kostant-Souriau theorem, 302
kiss, phantom, 601
Klein bottle, 14
Klingenberg, W., 246, 251, 773
Kneser, H., 509, 513, 746, 773
Kobayashi, S., 102, 120, 271, 440, 773, 779
Kochen, S., 773
Kolmogorov, A. N., 207, 308, 773
Kono, K., 471, 788
Koopman, B., 140, 773
Koopmanism, 239, 427
Kopell, N., 553, 773
Korteweg-de Vries equation, 462, 773
Kostant, B., 276, 310, 425, 441, 442, 443, 488, 772, 773
Koval'evskaya, S., 368, 773
Krasil'shchik, I. S., 787
Krein, M. G., 171, 492, 604, 773
Kronecker delta, 53
Krupka, D., 773
Kruskal, M. D., 462, 463, 465, 768
Krylov, N., 753
Kuchar, K., 485, 774
Kuiper, N. H., 774
Kunze, R., 771
Kunze, H., 212, 423, 771, 774
Kupershmidt, B. A., 787
Kupka-Smale Theorem, 533, 774

L

Lacomba, E. A., 740, 774
Lagrange, J. L., 187, 196, 198, 584, 624, 635, 720
Lagrange bracket, 196
Lagrange critical points, 727
Lagrange multiplier theorem, 307
Lagrange-Poisson case (Rigid body), 368
Lagrange two-form, 210
Lagrangians' equations, 215, 476
Lagrangian density, 475
Lagrangian density equation, 476
Lagrangian field theory, 474
Lagrangian submanifold, 379, 409
Lagrangian subspace, 403
Lagrangian vector field, 213
\(\Lambda \)-conjugate, 535
stable, 535
Lanczos, C., 774
Lanford, O. E., 774
Lang, S., 42, 65, 79, 140, 149, 699, 774
Laplace-Beltrami operator, 152, 430
Laplace-de Rham operator, 153
lapse functions, 491
LaSalle, J. P., 519, 774
Laub, A. J., 491, 774
Lawruk, B., 774
laws of motion, 61
Lawson, H. B., 92, 95, 774
Lax, P. D., 384, 463, 465, 466, 467, 468, 774
leaf of the foliation, 95
leaves of the foliation, 95
Lefschetz, S., 774
left action, 261
left invariant vector field, 254
left translation, 254, 312
Legendre transformation, 219
Leibnitz rule, 24, 80
Leighton, R. B., 767
Leimanis, E., 775
Lehonge, J.-Ferrand, 233, 775
length of, 150
Leontovich, A. M., 544, 687, 760, 775
Leray, J., 443
Lesh, L., 274, 775
Leutwyler, H., 450, 775
Levi-Civita, T., 42, 662, 775
Levi-Civita connection, 226
metric topology, 6
Meyer, K. R., 183, 201, 237, 238, 298, 306, 310, 396, 491, 584, 586, 589, 591, 595, 597, 604, 607, 687, 768, 769, 774, 776, 777
Michael, E., 777
Miller, J. G., 777
Milnor, J. G., 33, 150, 151, 185, 245, 329, 338, 777
Minkowski metric, 272
minimal hypersurface, 157
minimal set
Minorsky, N., 489, 544, 777
Mishchenko, A. S., 293, 338, 467, 777
Misner, C. W., 237, 382, 479, 761, 777
Miura, R. M., 462, 463, 465, 768, 777, 778
modified kdv equation, 465
Möbius band, 41
moment of inertia tensor, 360, 362
momentum function, 242
momentum lemma, 288
Momentum mapping, 276
momentum phase space, 208
Montgomery, D., 261, 762, 778
Moore, R. E., 616, 765
Morse, C., 777
Morosov, A. D., 778
Morrey, C. B., 140, 154, 778
Morse Lemma, 175
Morse-Smale system, 534
Moscovici, H., 715, 763
Moser twist stability, 582
Moser twist theorem, 695
Moulton, F., 715, 778
Moussa, R. P., 772
Mukunda, N., 786
multilinear, 18
murder, 557, 559, 570, 600, 601, 606
Myers, S. B., 271, 779

N
n-dimensional family of vector fields, 543
n-manifold, 33
n-parameter perturbation of a vector field, 543
Nagumo, M., 97, 778
Naimark, Y. I., 561, 778
Naimark bifurcation, 561
Naimark Excitation, 561, 570
Nash, J., 145, 778
natural measures on a manifold, 426
natural with respect to diffeomorphisms, 114
natural with respect to \(L^p \), 115
natural with respect to mappings, 113
natural with respect to push-forward, 79, 85, 89
natural with respect to restrictions, 80, 86, 87, 111
Nayroles, B., 769
Neboroshev, N., 298, 778
negatively invariant subset, 511
Nelson, E., 75, 78, 141, 142, 186, 520, 779
Nemytjik, V. V., 779
Nester, J. E., 769
nested umbrellas, 608
Neumann series, 27
Newell, A. C., 462, 472, 759, 768
Newhouse, S. E., 547, 548, 549, 557, 565, 592, 779
Newton, I., 624
Nirenberg, L., 384, 779
Nitecki, Z., 779
no cycle property, 538
no interaction theorem, 450
Noether's theorem, 285, 479
Nomizu, Z., 102, 120, 440, 773, 779
nondegenerate, 162, 165
nondegenerate critical submanifold, 183
nondegenerate form, 161
nondegenerate Lagrangians, 212
nonlinear wave equation, 456
nowhere dense, 5

O
Oden, J. T., 779
Ollongren, A., 613, 779
\(\omega \) (or \(\alpha \)) limit set, 510
\(\omega \)-compaci-nonwandering set, 533
\(\Omega \)-explosion, 547
\(\omega^0 \) limit set, 510
\(\omega \)-orthogonal complement of a subspace, 403
\(\Omega \) stable, 535
conjugate, 535
\(\Omega \)-Stability Theorem, 538
Omor, H., 274, 779
one-forms, 110
one-parameter group of diffeomorphisms, 70
one-parameter subgroup, 255
Onofri, E., 443, 779
Onsager relations, 413
open neighborhood of a point, 4
open rectangle, 4
open set, 4
open submanifold, 35
orbit, 261
orbit cylinder, 576
orbit of a vector field, 509
orbital stability of Birkhoff, 516
ordinary differential equations, 62
ordinary point of a controlled vector field, 543
orientable manifolds, 122, 123
orientation, 105
INDEX

orientation elements, 630
orientation preserving, 128
orientation reversing, 128
oriented charts, 138
orthogonal group, 272
oscillatory case, 579
Oster, G. F., 412, 413, 766, 779
outset, 516
overlap maps, 32
Oxtoby-Ulam theorem, 584, 779
Ouziou, R., 779

P

Palais, R., 41, 117, 175, 246, 247, 270, 271, 297, 471, 779, 780
Palis, J., 536, 547, 548, 549, 557, 565, 771, 779, 780, 783
Palmore, J., 595, 720, 740, 777, 780
paracompact, 9
parallel translation, 147
Pars, L., 575, 780
partial derivative, 24
partition of unity, 10, 122, 123
passage to quotients, 264
path space, 246
Pauli, W., 200, 780
Pauli spin matrices, 273
Pauri, M., 443, 779
Pecelli, G., 613, 764, 783
Pederson, P. O., 570
Peixoto, M., 520, 533, 535, 546, 779, 780
Penot, J.-P., 95, 217, 780
Penrose, R., 780
Perelson, A. S., 413, 779
Perez-Rendon, A., 768
"period-energy" relation, 198, 422
period of a point, 512
period of closed orbit, 512
periodic orbit, 688
periodic point of a vector field, 512
orbit, 512
Perron, O., 530, 780
phantom burst, 596
phantom kiss, 601, 602, 606
phase portrait of a vector field, 509
phase space, 341
phase space of a controlled vector field, 543
Pin, O. C., 228, 780
Piola-Kirchhoff tensor, 457
Pliss, V. A., 489, 527, 780
Plummer, H. C., 683, 780
Podolsky, B., 767
Poenaru, V., 780
Poincaré, H., 306, 507, 544, 551, 553, 555, 581, 583, 584, 689, 693, 699, 742, 746, 780, 781
Poincaré-Bendixson-Schwarz Theorem, 513
Poincaré-Cartan, 202, 203
Poincaré diffeomorphism, 647
Poincaré domain in tangent formulation, 649
Poincaré domain in cotangent formulation, 652
Poincaré group, 449
Poincaré-Hopf index theorem, 75
Poincaré invariant Hamiltonian system, 449
Poincaré ("last geometric theorem"), 581
Poincaré lemma, 118, 119, 121, 411
Poincaré map, 521
Poincaré mapping in cotangent formulation, 651
Poincaré mapping in tangent formulation, 648, 650
Poincaré model, 650
Poincaré model for the restricted three-body problem in tangent bundle formulation, 670
in cotangent bundle formulation, 672
Poincaré model in cotangent formulation, 652
Poincaré recurrence theorem, 208, 513
Poinson, 320
"point transformations", 181
Poisson bracket, 191, 192
polar angle, 626
polar angle at epoch, 629
polarization, 425
Pollack, A., 75, 102, 769
Pollard, H., 781
Pontriagin, L., 534, 760
position function, 284
positively complete potential, 233
positively invariant subset, 510
positively oriented basis, 138
positively oriented chart, 126, 133
potential energy, 341
potential energy density, 476
Povzner, A., 140, 144, 781
power chart, 575
predictions, 623
pre-quantization, 425
pressure, 244
principal axes, 337
principal circle bundle, 440
principal characteristic multipliers, 573
principal moments of inertia, 337
principal symbol, 383
principle of d'Alembert, 231
principle of equipartition of energy, 240
principle of least action, 252
principle of least action of Maupertuis, 249
problem of small divisors, 580
product formulas of Lie, 275
product manifold, 34
product topology, 4
projection, 37, 39
proper action, 264
proper map, 71
proper mapping, 264
property (G2), 532
property (G3), 533
property (G4), 533
property (G5), 533
property (G6), 534
property (H1), 587
property (H2), 588
property (H3), 590
property (H4), 591
property (H5), 591
property (NC), 538
property (ST), 539
pseudo-Riemannian complete manifold, 231
pseudo-Riemannian homogeneous manifold, 231
pseudo-Riemannian metric, 144
pseudometric, 6
pseudometric topology, 6
pseudosphere bundle, 226
Pugh, C. C., 528, 533, 534, 535, 537, 538, 542, 591, 771, 780, 781
Pugh catastrophe, 598
pull-back, 58, 108
pull-back bundle, 42
pure center, 207, 579
pure Galilean transformation, 446
push-forward, 58, 108

Q
quantizable symplectic manifold, 440
quantizing Hilbert space, 442
quantizing manifold, 440
Quantization, 425
quantumorphisms, 442
quasi-periodic flow, 395
quotient topology, 13

R
Radon-Nikodym derivative, 426
Raleigh dissipation function, 245
Rand, D. A., 506, 771
rank of a two-form, 162
Ratiu, T., 96, 474, 542, 763, 781
Ravatine, J., 781
Rawnsley, J. H., 781
Rayleigh, Lord, 543, 570
real normal form, 491
real polarization, 442
real projective space, 15, 52
real symplectic group, 273
rechambering, 607
recurrent point, 514
Reddy, J. N., 779
Redheffer, R. M., 98, 781
reduced disk bundle, 349
reduced Hamiltonian, 304
Reduced invariant manifold theorem of Smale, 353
reduced mass, 621, 663
reduced phase space, 298, 407, 416
reduced sphere bundle, 349
reduced wave equation, 384
reduction, 298
reduction by first integrals, 621
Reeb, G., 520, 781
Reed, M., 140, 431, 461, 781
Reeken, M., 503, 781
Reetz, A., 762
Regge, T., 424, 480, 770, 773
refinement, 9
regular energy surface, 204
regular first integral of a vector field, 533
regular foliation, 93
regular Hamiltonian, 221
regular Lagrangians, 212
regular orbit cylinder, 576
regular orbit cylinder theorem, 576, 598
regular second integral of a Hamiltonian vector field, 591
regular 2-form, 298
regular value, 49
regular value of a map, 204
reincarnation, 597, 604
relative equilibrium, 306, 308
relative periodic point, 306
relative stability, 308
relative topology, 4
relatively invariant k-form, 202
relative Poincaré lemma, 120, 122
renesting, 607
Renz, P., 781
representation, 261
representation of a group, 451
residual set, 802
resonance, 604
resonance between normal modes, 491
reverse orientation, 125
reversible Hamiltonian system, 308
de Rham, G., 120, 782
Ricci tensor, 155
Riddell, R. C., 782
Riemannian bundle metric, 355
Riemannian Geometry, 144
Riemannian metric, 127
Riesz, F., 239, 782
Riesz representation theorem, 135
right action, 261
right translation, 254, 312
Roberts, P. 763
Robbin, J., 65, 102, 181, 186, 298, 307, 354,
355, 525, 526, 531, 533, 537, 540, 541, 542,
579, 759, 782
Robinson, R. C., 309, 396, 533, 534, 538, 541,
573, 578, 579, 584, 587, 589, 591, 592, 594,
604, 701, 768, 780, 781, 782
Rod, D. L., 613, 764, 765, 783
Rodrigues, J., 252, 783
Roeleke, W., 233, 431, 783
Roel, J., 392, 415, 418, 500, 783
Rosen, M., 783
Rosen, L., 30, 767
Rössler, O. E., 542, 783
Roelle, E., 570
Roussaire, R. H., 772
INDEX

Routh critical value, 686
Routh, E. J., 312, 783
Routhian, 311
Royden, H., 783
Rubin, H., 783
Ruegg, H., 761
Ruelle, D., 237, 544, 561, 567, 783
Rund, H., 775, 783

S

Saaari, D., 699, 783
Sacker, R., 783
Sacolick, S., 764
saddle, 76
saddle connection, 505, 534
Saddle node, 503, 551
Saddle switching, 563, 570
Saletan, E. J. 776
Sands, M., 767
Saniki, H., 471, 788
Sard's theorem, 50
Sasaki, S., 783
Sattinger, D. H., 772
Satzer, W. J., 301, 783
Schechter, S., 499, 763
Schiefele, G., 783
Schmidt, D. S., 503, 504, 604, 606, 687, 777, 783
Shmidt, O. Yu., 754
Schrödinger equation, 383, 461
Schrödinger representation, 434, 451
Schwartz, A., 512, 783
Schwartz, J. T., 783
Scott, A. C., 462, 783
second countable, 4
second fundamental form, 156
Second Hamiltonian model for the restricted three-body problem, 666
Second Lagrangian model for the restricted three-body problem, 667
second model for the two-body problem (II), 621
second-order equation, 213
section, 41
sectional curvature, 155
Segal, I. E., 426, 441, 442, 451, 492, 493, 783, 784
Segur, H., 462, 759
Seifert, H., 502, 784
Sell, G. R., 395, 510, 784
semi-flow, 61
semi-major axis, 629, 632, 634
Sewell, M. J., 784
Shahshahani, S., 784
Shimony, A., 765
shift vector fields, 480, 482
Shub, M., 528, 537, 538, 542, 717, 771, 780, 781, 784
shuffles, 102
σ complete, 69
Σ structurally stable, 592
Siegel, C. L., 492, 499, 500, 582, 697, 699, 784
Signature bifurcation, 565
Simms, D. J., 443, 444, 784
Simó, C., 740, 784
Simon, B., 140, 431, 461, 781
Simon, C. P., 784
Simoni, A., 766
simple mechanical system with symmetry, 341
simply connected, 15
Sinai, Y., 238, 784
sine-Gordon equation, 462
Singer, I., 120, 189, 784
singular point, 72
Sitnikov, K. A., 754
skew symmetric 2-form, 162
Slebodzinski, J. J., 79, 784
Smale quiver of an Axiom A vector field, 538
Smale-Zeeman vector fields, 536
small oscillation approximation, 495
Smith, R., 762
Sniatycki, J., 410, 422, 423, 425, 774, 785
soft self-excitation, 553
solitons, 465
Sotomayor, J., 544, 546, 547, 548, 549, 551, 563, 785
Souriau, J. M., 276, 298, 307, 425, 440, 441, 442, 443, 448, 761, 785
space average, 240
space coordinates, 312
spacelike, 155
spacelike embeddings, 480
special orthogonal group, 272
special symplectic manifold, 200
special unitary group, 273
Specker, E. P., 773
Spectral decomposition theorem, 537
spectral gap, 528
spectral splitting of $T_{\Lambda}M$ with respect to X, 528
sphere, 226
sphere with handles, 33
Spherical pendulum, 359
Spin angular momentum, 297
spin bundle, 297
spin group, 273
Spivak, M., 102, 120, 249, 785
split, 29
stability expectation, 586
stability of a fixed point, 308
stable, 73, 516
stable attractor, 517
stable burst, 596, 597, 606
stable focus, 76
Stable manifold master theorem, 529
stable manifold of a closed orbit, 526
Stable manifold theorem for hyperbolic sets
(Smale), 531
stable (unstable) ribbons, 590
standard Hopf fibration, 722
standard metric, 7
standard model for action-angle coordinates, 396
standard n-dimensional handle, 185
standard topology, 4
static annihilation, 551
Static creation, 551, 570
Steenrod, N. E., 271, 440, 778, 785
Stechie, P., 765
Stein, P., 571, 786
Stepanov, V. V., 753, 779
Sternberg, S., 32, 219, 296, 310, 338, 371, 384, 402, 418, 420, 421, 425, 444, 486, 582, 584, 769, 772, 775, 785
Stiepel, E., 783
Stokes’ theorem, 138
Stoker, J. J., 570, 786
Stone, M., 786
Stone-von Neumann theorem, 444, 452
stratifications, 96
Streater, R. F., 452, 786
stress tensor, 457
strong transversality property, 539
strongly continuous one-parameter unitary group, 238
structurally stable vector field, 534
Strutt, M. J. O., 570
subharmonic resonance, 557, 605
submanifold, 35
submanifold property, 35
submersion, 49, 50
subordinate, 10
subtle division, 557, 570, 599, 600, 606
subtle doubling, 600
Sudarshan, E. C. G., 424, 450, 765, 786
Sullivan, D., 780, 784
summation convention, 52
Sundman, K., 699, 786
support, 10, 122
suspended integral curves, 375
suspended stable (unstable) manifold, 539
suspended Whittaker map in cotangent formulation, 645
suspended Whittaker map in tangent formulation, 639
suspension of the time-dependent vector field, 374
Swanson, R. C., 786
Sweet, D., 503, 783
symmetric 2-form, 162
symmetric vertical derivative, 217
symmetry group, 341
symplectic action, 276
symplectic mapping, 177
symplectic submanifold, 409
symplectic algebra, 161
symplectic charts, 176
symplectic eigenvalue theorem, 169, 573
symplectic form, 167, 176
symplectic geometry, 174
symplectic group, 167
symplectic manifold, 176
symplectic map, 167, 379
symplectic structure, 176
symplectic subspace, 403
symplectic transvection, 174
symplectic vector space, 167
Synge, J. L., 786
system of imprimitivity, 452
Szczyrba, W., 486, 773, 786
Sz敖, G. P., 762
Szlenk, W., 786

T

T" structurally stable, 593
Takens, F., 499, 505, 537, 544, 545, 548, 551, 553, 555, 561, 567, 569, 584, 591, 604, 773, 783, 786
Takens bifurcation, 570, 766
Takens excitation, 561
tangent, 20
tangent action, 285
tangent bundle, 42, 44
tangent bundle projection, 44
tangent Euler vector field, 323, 325
tangent of a map, 45
tangent of f, 21
tangent space, 44
Tartarinov, A. M., 786
Tatarinov, Ia. V., 568, 786
Taylor’s theorem, 23
Taub, A. H., 786
Taylor, M. E., 787
Teitelboim, C., 424, 480, 770, 773
tensor algebra, 59
tensor derivation, 87
tensor field, 57
tensors, 52
Theorem on generic arcs, 547
thickening, 23
third model for the two-body problem (III), 622
Thom, R., 520, 535, 544, 583, 587, 593, 787
Thorne, K., 237, 382, 479, 777
Thorpe, J., 120, 189, 784
Tietze extension theorem, 10
time average, 238, 240
time-dependent flow, 61, 92
time-independent flow, 61
time-dependent Hamilton-Jacobi equation, 390
time-dependent vector field, 92, 370, 374
time of perihelion passage, 626
time translation, 446
Timoshenko, S., 506, 787
topological manifold, 17
topological space, 4
topologically conjugate vector fields, 534
topologically transitive set, 537
torque, 331, 337
torsion, 149
torus, 14
totally geodesic, 157
tower of absolute stability, 536
tower of stability, 536
transitional orbit of Meyer, 599
transitive, 261
transpose of a 2-form, 162
transversal, 50
transverse frequency of a closed orbit of a
Hamiltonian vector field, 574
Trautman, A., 774, 786, 787
Treves, F., 384, 779
Tricomi equation, 421
Tripathy, K. C., 787
trivial topology, 5
Trojan bifurcation, 604, 687
Tromba, A. J., 187, 787
Trubowitz, E., 472, 777
true anomaly, 626
True bifurcation, 551, 555
Truesdell, C., 141, 787
Truman, A., 425, 787
tubular neighborhood, 149
Tu
czy
cyw, W. M., 200, 223, 410, 412, 413, 414, 421, 422, 423, 424, 488, 774, 777, 785, 787
two equilateral solutions of Lagrange, 675
two-resonance bifurcations, 605
Tzafriti, L., 29, 775

U

Ulam, S., 544, 571, 779, 786
Ungar, P., 783
uniform topology on \(\mathcal{X}(M)\), 532
uniqueness of flow boxes, 67
unit disk bundle, 349
unit sphere bundle, 349
unitary group, 273
universal covering group, 273
unstable focus, 76
unstable manifold of a closed orbit, 526
unstable node, 76
upper half-space, 136
Urabe, M., 787
UrSELL, F., 543
Urysohn's lemma, 10

V

vague attractor, 583, 586
vague attractor of Kolmogorov, 583
Vainberg, M. M., 787
Vainberg's theorem, 131
VAK, 585, 586, 587
"VAK cylinder", 608
VAK-nested invariant tori of an elliptic orbit, 609
van de Kamp, P., 687, 787
van der Pol, B., 570
van der Pol equation, 495
van Hove, L., 425, 434, 441, 787
van Kampen, N. G., 787
van Karman, J., 787
van Moerbeke, P., 369, 467, 472, 488, 777
Varadarajan, V. S., 260, 425, 426, 435, 453, 487, 787
variation of constants formula, 74, 78
variational principle, 131
Variational principle of Hamilton, 248
VB-equivalent, 38
vector bundle, 38
vector bundle atlas, 37
vector bundle mapping, 40
vector bundle of tensors, 57
vector bundle structure, 38
vector field, 57, 60
velocity phase space, 208
Verhovskv, A., 782
Verona, A., 715, 763
vertical lift of a vector, 227
Vinogradov, A. M., 787
viriul function, 242
viriul theorem, 207, 242
Vitale, B., 764
volume, 123
volume elements, 105
volume preserving map, 128
von Neumann, J., 237, 238, 444, 452, 744, 770, 787, 788

W

Wadati, M., 471, 788
Wahlquist, H. D., 767
Wall, G. E., 788
Warner, F., 154, 788
wave equation, 454
wave operator, 456
weak symplectic form, 459
weakly nondegenerate, 162
weakly mixing, 140
weakly regular Lagrangian, 213
Weidmann, J., 772
Weingarten equation, 156
Weiss, B., 460, 486, 788
Weyl, H., 42, 763
Weyl commutation relations, 451
Whitehead's theorem, 282
Whitney, H., 509, 788
Whitney C* topology, 532
Whitney sum, 41
Whittaker, E. T., 161, 181, 187, 245, 246, 251, 252, 292, 312, 370, 584, 628, 641, 788
Whittaker's lemma, 290, 296, 641
Whittaker's lemma in cotangent formulation, 292
Whittaker's lemma in tangent formulation, 292
Whittaker map in cotangent formulation, 645
Whittaker map in tangent formulation, 639
Wightman, A. S., 425, 452, 453, 768, 776, 786
Wigner, E., 433, 453, 788
Williams, E. A., 804
Williams, R., 538, 542, 782, 784, 788
Williamson, J., 491, 788
Willmore, T. J., 87, 788
Winkelnkemper, H. E., 585, 788
Winkler, S., 468, 776
Wintner, A., 491, 623, 789
Witham, G. B., 462, 789
Witt, A., 489, 553, 759, 760
Wolf, J. A., 293, 786, 789
Woodhouse, N. M. J., 784
Wu, F. W., 789

Y
Yano, K., 157, 788
Yorke, J. A., 98, 503, 504, 553, 567, 759, 764, 772, 788
Yosida, K., 789
Young, G., 771

Z
Zakharov, V. E., 397, 472, 767, 788
Zeeman, E. C., 504, 536, 789
Zehnder, E., 583, 772, 789
Zero-elementary closed orbit, 578
zero section, 37, 38, 39
Ziegler, H., 789
Zoldan, A., 765
Glossary of Symbols

- E, F, \ldots: finite-dimensional real vector spaces
- $\|x\|$: norm of x
- $L(E, F)$: continuous linear mapping of E to F
- A^t or $A^* \in L(F^*, E^*)$: transpose of $A \in L(E, F)$
- $L^k(E, F)$: multilinear mappings
- $L^k_0(E, F) \subset L^k(E, F)$: skew-symmetric mappings
- $L^k_1(E, F) \subset L^k(E, F)$: symmetric mappings
- $U \subset E$: open subset
- $\mathfrak{f}: U \subset E \to F$: smooth ($C^\infty$) mapping
- $x \mapsto f(x)$: effect of f on x
- $D^k_f: U \subset E \to L^k_1(E, F)$: derivatives of f
- $D^k_{ij} f: U \subset E \to L^k(E_i, E_j)$: partial derivatives of f
- $c'(t) = Dc(t) \cdot \mathbf{v}$: tangent to a curve
- M, N, \ldots: C^∞ manifold
- $\pi: E \to B$: vector bundle
- $\Gamma^\infty(\pi)$: C^∞ sections of π
- $T^*_m M$: tangent space at $m \in M$
- $T^*_m M$ or Tf_m: tangent of f at m
- $\tau^*_m T^* M \to M$: tangent bundle
- $\omega^*_M: T^*_1(\mathcal{X}(M)) \to M$: cotangent bundle
- $\omega^*_M: \mathcal{O}_1^k(\mathcal{X}(M)) \to M$: tensor bundles
- $\omega^*_M: \mathcal{O}_1^k(\mathcal{X}_1(\mathcal{X}(M))) \to M$: exterior form bundles
- $f \in \mathcal{O}(M)$: C^∞ real-valued functions
- $X \in \mathcal{X}(M) = \Gamma^\infty(\tau^*_M)$: vector fields
- $\alpha \in \mathcal{X}^*(M) = \Gamma^\infty(\tau^*_M)$: one-forms
- $\omega \in \mathcal{O}^k(\mathcal{X}(M)) = \Gamma^\infty(\omega^*_M)$: tensor fields
- $\wedge^k: \mathcal{O}^k(\mathcal{X}(M)) \to \mathcal{O}^k(\mathcal{X}(M))$: tensor product
- $\mathcal{D}(\mathcal{X}(M)) \to \mathcal{O}(M)$: k-forms
- \wedge^k or $\wedge_{\mathcal{X}(M)}^k$: exterior product
- $f: M \to N$: mapping of manifolds
- $f^*: \mathcal{O}^k(N) \to \mathcal{O}^k(M)$: pullback of forms
- $\varphi: M \to N$: diffeomorphism of manifolds
- $\varphi^*: \mathcal{O}^k(N) \to \mathcal{O}^k(M)$: induced tensor bundle isomorphism
- $\varphi^*_\mathcal{X}(M) \to \mathcal{O}^k(M)$: induced tensor field isomorphism
- $U \subset M$: open submanifold
- $(U, \psi), \varphi: U \to U' \subset E$: local chart
- e_1, \ldots, e_n: basis of E
- $\alpha^1, \ldots, \alpha^n$: dual basis of $E^* = L(E, R)$
- ξ_1, \ldots, ξ_n: induced generators of $\mathcal{X}(U)$
- dx^1, \ldots, dx^n: induced dual generators of $\mathcal{X}^*(U)$
- $F_X: \mathcal{D}(\mathcal{X}) \subset M \times R \to M$: integral of vector field
- L_X: Lie derivative
- $[X, Y]$: Lie bracket

807
d exterior derivative
i_X inner product
Ω volume n form
μ_Ω measure of Ω
divΩX divergence of a vector field
detΩf determinant of a mapping
ω symplectic form
$X^\flat = \omega_b(X)$ lowering action
$\alpha^\flat = \omega_\sharp(\alpha)$ raising action
$X^\sharp = (dH)^\sharp$ Hamiltonian vector field
$Sp(E, \omega)$ symplectic group
$-\theta_0$ canonical one-form on $T^* M$
$\omega_0 = -d\theta_0$ canonical two-form on $T^* M$
$\{ f, g \}$ Poisson bracket of functions
$\{ \alpha, \beta \}$ Poisson bracket of one-forms
$\mathfrak{X}_G X$ locally Hamiltonian vector fields
\mathfrak{X}_M globally Hamiltonian vector fields
Σ_ϵ energy surface
FL Legendre transformation
ω_ϵ pullback of ω_0 by FL
$\Omega = -d\theta$ symplectic form determined by a metric
(M, ω) or (P, ω) symplectic manifold
$\Phi: G \times P \to P$ action of a Lie group G on P
\mathfrak{g} or $\mathfrak{e}(G)$ Lie algebra of G
$J: P \to \mathfrak{g}^*$ momentum mapping
$J(\xi)(p) = J(p) \cdot \xi$ dual momentum mapping
$P^\mu = J^{-1}(\mu)/G^\mu$ reduced phase space
$I_\mu = (H \times J)^{-1}(h, \mu)$ level surface of $H \times J$
V^μ amended or effective potential
ω_μ pullback of ω to $R \times M$
$X: R \times M \to TM$ time-dependent vector field
$\vec{X}: R \times M \to T(R \times M)$ vector field associated to X
t unit time vector field on $R \times M$
$\omega_t = \vec{\omega} + dH \wedge dt$ Cartan form
$F: R \times M \to R \times M$ canonical transformation
$K_F: R \times M \to R$ generating function of F
$j^*: M \to R \times M$ embedding at time t
S, W Hamilton principal functions
Supplement for *Foundations of Mechanics*

Second Edition, American Mathematical Society

Ralph Abraham\(^1\), Jerrold E. Marsden\(^2\) and Tudor S. Ratiu\(^3\)

with the collaboration of Richard Cushman\(^4\)

This file contains corrections and additional commentary for the American Mathematical Society edition of *Foundations of Mechanics*. We are grateful to readers of the book over the decades, who provided many thoughtful corrections. There are too many to name individually, but we would especially like to thank Ethan Aikin and David Rod.

This supplement contains not only errata known to us, but also some alternative approaches and updates on some of the topics treated in the book. It will be be updated online at http://www.cds.caltech.edu/~marsden/books/Foundations_of_Mechanics.html as additional items are found.

Additional Book References

Some other books on geometric mechanics that are an outgrowth of *Foundations of Mechanics*, along with abbreviations we shall use to simplify references are the following

Abraham, Marsden and Ratiu [1988], cited as [MTA]

Cendra, Marsden, and Ratiu [2001], cited as [LRBS]

Marsden and Ratiu [1999], cited as [MandS]

Marsden [1992], cited as [LoM]

Ortega and Ratiu [2004], cited as [HRed]

Marsden, Misiolek, Ortega, Perlmutter and Ratiu [1998], cited as [HStages].

In addition, there are many other useful books on geometric mechanics that the reader may find useful—these are listed in the references.

\(^1\)email: abraham@vismath.org; web: http://www.ralph-abraham.org/

\(^2\)email: jmarsden@caltech.edu; web: http://www.cds.caltech.edu/~marsden/

\(^3\)email: tudor.ratiu@epfl.ch; web: http://cag.epfl.ch/

\(^4\)cushman@math.ucalgary.ca
Errata and Supplementary Comments

Preface
Chorosoff (or Khorozov) should be written Horozov; see also page 697. This is how the name appears in several of his later papers.

Museum
The Museum is currently available only electronically; see http://www.cds.caltech.edu/~marsden/books/Foundations_of_Mechanics.html. Some corrections are as follows.

- Leibnitz should be Leibniz
- Kolmogorov (April 25, 1903–October 20, 1987),
- Moser (July 4, 1928–December 17, 1999),
- Carl Ludwig Siegel: December 31, 1896–April 4, 1981

Chapter 1. Differential Theory
1.1 Topology
Page 17, Exercise 1.1F. This exercise should be stated as follows: Let M be a topological space and $H: M \to \mathbb{R}$ continuous. Suppose that $e \in \text{int}(H(M))$. Then show that $H^{-1}(e)$ divides M; that is, $M \setminus H^{-1}(e)$ has at least two components.

Chapter 2. Calculus on Manifolds
2.2 Vector Fields as Differential Operators
Page 80, second line from bottom. $X \varphi$ should be $X \varphi$

Page 92. Two lines after Theorem 2.2.24, at the end of the line, the L should be L (it is a Lie derivative)

2.4 Cartan’s Calculus of Differential Forms
Page 119, After the proof. Add this remark: The proof shows that the Poincaré lemma in \mathbb{R}^n is valid on any star-shaped region, in particular a ball.

2.7 Some Riemannian Geometry
Page 150, line 9. The third term $Y \langle X, Y \rangle$ should be $Y \langle X, Z \rangle$.
Chapter 3. Hamiltonian and Lagrangian Systems

3.2 Symplectic Geometry

Page 178. In the display in Theorem 3.2.10, \(\alpha_q \circ T_{\tau_q}^* (w_{\alpha_q}) \) should be \(\alpha_q \cdot T_{\tau_q}^* (w_{\alpha_q}) \).

3.4 Integral Invariants, Energy Surfaces, and Stability

Page 206, line −3. “Exercise 4.3H” should be “Exercise 4.3I”.

3.7 Mechanics on Riemannian Manifolds

Page 230. In part (c) of Corollary 3.7.9, it should say that \(Z(v) \) is the negative of the normal component of \(\nabla_v v \). Perhaps some clarifying remarks are also in order regarding the comments on page 231 following the proof of this Corollary. In fact, the simple example of a particle moving around in a circle of radius \(r \) in the plane may help clarify things. In this case, the position is \(c(t) = (r \cos \omega t, r \sin \omega t) \), the velocity is \(v(t) = (-r \omega \sin \omega t, r \omega \cos \omega t) \) and the second derivative, \(\ddot{v} = -\omega^2 c(t) \). This is the acceleration that also equals \(\nabla_v v \) in this case. The negative of this is \(Z(v) \). Thus, \(Z(v) \) points in the (outward) normal direction and has magnitude \(\|v\|^2 / r \), consistent with what was stated on page 231. Thus, \(Z(v) \) can be thought of as the force pulling outwards, namely the centrifugal force, while its negative corresponds to the force of constraint, the force keeping the particle moving in the circle. Thus, the interpretations on page 231 are correct if, in the first line after the proof, \(Z(t) \) is changed to \(-Z(t)\).

Page 244. The first display above the Exercises should read

\[
p|V| = NkT - \frac{1}{3 \mu_e(\Sigma_e)} \sum_{j<k} \int_{\Sigma_e} \nabla V_{jk}(q_j - q_k) \cdot (q_j - q_k) \mu_e
\]

Chapter 4. Hamiltonian Systems with Symmetry

4.1 Lie Groups and Group Actions

Page 255, last line. “passing through \(\psi_\xi(s) \)” should be “passing through \(\phi_\xi(s) \)”

Page 257, line 9 from the bottom. “for every \(A \in \text{Gl}(2, \mathbb{R}) \)” should read “for every \(A \in L(\mathbb{R}^2, \mathbb{R}^2) \)”

Page 258, line 11. The argument starting with the sentence “Also, \(B \) cannot...” is incorrect. One has to rule out case (ii) on this page for the matrix \(B \). This is done by first noting that the eigenvalues of matrices of the form (ii) are \(e^{\alpha} (\cos \beta \pm i \sin \beta) \). These are real only when \(\beta = 0, \pi, \ldots \) and in this case the two eigenvalues are coincident. Thus, these two numbers cannot equal \(-2\) and \(-1\).

Page 259, line 13. The expression \(e^{2\pi i p_k} \) should be \(e^{2\pi i p_k} \alpha \)
Page 262, Theorem 4.1.20. We make a few remarks on an alternative exposition of the ideas on quotient manifolds that are relevant to this theorem. First of all, there is a more general result that we now state. The proof of this more general result may be found in [MTA], towards the end of Section 3.5, in the material on quotient manifolds.

Definition. An equivalence relation R on a manifold M is called **regular** if the quotient space M/R carries a manifold structure such that the canonical projection $\pi : M \to M/R$ is a submersion. If R is a regular equivalence relation, then M/R is called the quotient manifold of M by R.

There is an important characterization of regular equivalence relations due to Godement; the exposition of the proof of this given in [MTA] follows the presentation in Serre [2006].

Theorem. An equivalence relation R on a manifold M is regular iff

(i) $\text{graph}(R)$ is a submanifold of $M \times M$, and

(ii) $p_1 : \text{graph}(R) \to M$, $p_1(x, y) = x$ is a submersion.

For the case of quotients M/G by free and proper group actions one can check these hypotheses as follows. The equivalence relation in this case is of course, xRy when there is a $g \in G$ such that $y = gx$, where here we denote the action of g on x by simple concatenation. Thus,

$$\text{graph}(R) = \{(x, gx) \mid x \in M, g \in G\} \subset M \times M.$$

To show that $\text{graph}(R)$ is a submanifold of $M \times M$, we consider the smooth map

$$F : G \times M \to M \times M; \quad (g, x) \mapsto (x, gx).$$

Note that F is injective because the action is free. The derivative of F is given by

$$T_{(g, x)}F(T_x L_g \xi, v_x) = (v_x, gv_x + g \xi_M(x)),$$

(*)

where $g \in G$, $x \in M$, $\xi \in g$, $v_x \in T_x M$ and again the obvious group actions are denoted by concatenation. We claim that $T_{(g, x)}F$ is injective. Indeed, if the right hand side of (*) is zero, then clearly $v_x = 0$, so $g \xi_M(x) = 0$, and hence $\xi_M(x) = 0$. Thus, $\xi = 0$ because otherwise $\exp(t\xi) \in G$ would be a curve of group elements fixing x, contradicting the freeness of the action. Thus, F is an injective immersion. But F is also a closed map by definition of properness, and hence F is an injective immersion which is a homeomorphism onto its image (with the subset topology). Thus, F is an embedding and so its image, which equals $\text{graph}(R)$ is a submanifold of $M \times M$. This verifies condition (i) of the Theorem.

To prove (ii), note that an arbitrary tangent vector to $\text{graph}(R)$ has the form (*) and from this it is clear that the derivative of p_1 is onto from the tangent space to $\text{graph}(R)$ at (x, gx) to $T_x M$. Specializing M to be a Lie group G and G to be a closed subgroup H, we see that this result on M/G shows that the quotient G/H is a smooth manifold.
The proof of Corollary 4.1.22 is incorrect. A restatement and proof of this Corollary is as follows.

4.1.22 Corollary If $\Phi : G \times M \to M$ is an action and $x \in M$, then $\tilde{\Phi}_x : G/G_x \to M$ is an injective immersion whose range is the orbit $G \cdot x$. If Φ is proper, the orbit $G \cdot x$ is a closed submanifold of M, and $\tilde{\Phi}_x$, regarded as a map of $G/G_x \to G \cdot x$ is a diffeomorphism.

Proof. First of all, $\tilde{\Phi}_x : G/G_x \to M$ is smooth because $\tilde{\Phi}_x \circ \pi = \Phi_x$, where $\pi : G \to G/G_x$ is the projection and Φ_x is smooth (see the Remark following 4.1.20). As we have already noted, $\tilde{\Phi}_x$ is one-to-one. To show it is an immersion, we show that $T|_g[\tilde{\Phi}_x]$ is one-to-one. Since $\tilde{\Phi}_x \circ \pi = \Phi_x$, we see that $T|_g[\tilde{\Phi}_x(v_g)] = T_g(\Phi_x(v_g))$ for all $v_g \in T_g G$. Thus, $T|_g[\tilde{\Phi}_x]$ will be one-to-one if we can show that $\ker T_g(\Phi_x) = T_e L_g (T_e G_x)$ for all $g \in G$. Since $\Phi_g \circ \Phi_x = \Phi_x \circ L_g$, we have $T_g(\Phi_x) = T_e L_g = T_e \Phi_g \circ T_e \Phi_x$ which implies that

$$\ker T_g(\Phi_x) = \{ T_e L_g \xi \mid 0 = (T_g(\Phi_x) \circ T_e L_g)(\xi) = (T_x \Phi_g \circ T_e \Phi_x)(\xi) \} = \{ T_e L_g \xi \mid T_e \Phi_x(\xi) = 0 \}$$

since $T_x \Phi_g$ is an isomorphism. The proof is finished if we show that the Lie algebra of G_x equals $\{ \xi \in T_e G \mid T_e \Phi_x(\xi) = 0 \}$. However, by Proposition 4.1.13, $\xi \in T_e G$ is an element of $T_e G_x$ if and only if $\exp_G t\xi \in G_x$ for all $t \in \mathbb{R}$ which is equivalent to the identity $\Phi(\exp_G t\xi, x) = x$ for all $t \in \mathbb{R}$. This in turn is equivalent to $\frac{d}{dt} \Phi(\exp_G t\xi, x) = 0$ for all $t \in \mathbb{R}$, because $\Phi(e, x) = 0$. The derivative at $s = 0$ of the identity

$$\Phi(\exp_G (t + s)\xi, x) = (\Phi_{\exp_G t\xi} \circ \Phi_x)(\exp_G s\xi)$$

gives

$$\frac{d}{dt} \Phi(\exp_G t\xi, x) \bigg|_{s=0} = \frac{d}{ds} \Phi(\exp_G (t + s)\xi, x) \bigg|_{s=0} = (\Phi_{\exp_G t\xi} \circ \Phi_x)(\exp_G s\xi)$$

which shows that $T_x \Phi_x(\xi) = 0$ if and only if $\frac{d}{dt} \Phi(\exp_G t\xi, x) = 0$ for all $t \in \mathbb{R}$, since $T_x \Phi_{\exp_G t\xi}$ is an isomorphism. Therefore, the Lie algebra of G_x is $\{ \xi \in T_e G \mid T_e \Phi_x(\xi) = 0 \}$, as required.

If the action is also proper, then one checks from the definition of proper and the quotient topology that $\tilde{\Phi}_x$ is a closed mapping and hence its image, the orbit $G \cdot x$, is closed. Also, since $\tilde{\Phi}_x$ is closed, it is a homeomorphism onto its image. The map $\tilde{\Phi}_x$ is thus an injective immersion that is a homeomorphism onto its image and therefore this image is a closed, embedded submanifold and the map $\tilde{\Phi}_x$ itself is a diffeomorphism. □

Page 265, line 1 from bottom. “Here, ker Φ_x...” should read “Here, ker $T \Phi_x$...”.
Page 267, Remark. With suitable interpretations, this remark holds even if the action is not proper and not free. The orbit \(G \cdot x \) is endowed, by definition, with the manifold structure that makes \(\tilde{\Phi}_x \) (defined above Corollary 4.1.22) a diffeomorphism. With this differentiable structure, the orbit \(G \cdot x \) is an initial manifold (see the correction for page 557). Since the range of \(T_{[x]} \tilde{\Phi}_x \) is, on one hand, the tangent space to the orbit by the definition of the manifold structure on \(G \cdot x \) and, on the other hand, a direct computation shows that it equals \(\{ \xi_M(x) \mid \xi \in g \} \), the statement in the Remark follows. For details see [HRed], Chapter 2.

Page 275. The first displayed formula should read

\[
T_g (\text{Ad}^*_{g^{-1}} \mu)(\xi_g) = - \text{ad} (T_g R_{g^{-1}}(\xi_g))^* \text{Ad}^*_{g^{-1}} \mu
\]

and the second displayed formula should read:

\[
T_g (\text{Ad}^* \mu)(\xi_g) = \text{ad} (T_g L_{g^{-1}}(\xi_g))^* \text{Ad}^* \mu
\]

For another exposition of formulas like this, see [MandS], §9.3.

4.2 The Momentum Mapping

Page 282, line 2. There should be a minus sign after the equals sign.

Page 285. The momentum map in Corollary 4.2.13 is equivariant.

Page 291, line 17 from the bottom. The kinetic energy expression, namely “\(K(q, \dot{q}) = \frac{1}{2} \|q\|^2 \)” should be “\(K(q, \dot{q}) = \frac{1}{2} \|\dot{q}\|^2 \)”

Page 291, line 7 from the bottom. “\(G \circ FL = \overline{G} \)” should be “\(G \circ FL = G \)”

Page 292, line 5. The last term on this line, namely “\(d(G \circ \pi_2) d\pi_1 \)” should be “\(d(G \circ \pi_2) \wedge d\pi_1 \)”

4.3 Reduction of Phase Spaces with Symmetry

Page 301. The third displayed equation should read

\[
T_{[x]}^*(M/G) \cong \{ \alpha_x \in T_x^* M \mid \alpha_x(T_x(G \cdot x)) = 0 \}
\]

See [HStages], §2.2 for details and further explanations.

Page 301, line 3 from the bottom of the main text. One has to assume here that \(H^{-1}(e)/R \) is a smooth quotient manifold.

Page 305. The discussion around Figure 4.3-1 is related to the theory of Berry phases and geometric phases, both in classical and quantum mechanics, a topic that has seen much attention in the past couple of decades. While the literature is now quite extensive, a couple of the classical references are Berry [1984] and Wilczek and Shapere [1988]. There is also much mathematical literature, such as Montgomery [1990], Weinstein [1990], and Marsden, Montgomery, and Ratiu [1990]. There is also an extensive Physics literature,
not always connected as well as it could be with the Mathematics literature; see, for instance Chruściński and Jamiołkowski [2004]. Further references and literature can be found in [MandS] and Cushman and Bates [1997].

In the figure itself, the label \(\varphi_0 \) should be \(p_0 \) and it should be the point where the two curves intersect.

Page 307, Lemma 4.3.9. There is no need to assume that \(E = \ker A \oplus E_1 \).

Take \(e_1 \in E \) such that \(A(e_1) = f \). Erase the footnote.

4.5 The Topology of Simple Mechanical Systems

Page 340, line 4 from the bottom of the main text. This line should read “If we assume that \(f \) is proper (and so the level sets are compact), then”

Page 343. In line 4, the sentence “If it is surjective then \(\mu = J(\alpha) \) is a regular value of \(J \); that is, \(\mu \in g^* \backslash J(\sigma(J)) \)” should read “If it is surjective then \(\alpha \) is a regular point of \(J \); that is, \(\mu \in g^* \backslash J(\sigma(J)) \)”

Chapter 5. Hamilton-Jacobi Theory and Mathematical Physics

5.1 Time-Dependent Systems

Page 372, line \(-2\). The expression \(\omega = d\theta \) should be (consistent with the coordinate expression) \(\omega = -d\theta \).

Page 373, line \(-2\). Again, it should be \(\omega = -d\theta \).

Page 374. Replace the last two lines of Proposition 5.1.9 with the following:

If \(\omega = -d\theta \) and \(\tilde{\theta} = dt + \pi^*_\theta \), where \(t : \mathbb{R} \times P \to \mathbb{R} \) is the projection on the first factor, then \(\tilde{\omega} = -d\tilde{\theta} \) and \((\mathbb{R} \times P, \tilde{\theta})\) is an exact contact manifold.

Page 374. In the third displayed formula, “for all \(\omega_p \)” should be replaced by “for all \(w_p \)”, in the last line of proof it should read: “since \(-d\tilde{\theta} \equiv \tilde{\omega} \) and ...” and on line \(-2\), replace \(\tilde{F}_t(s, m) = (t + s, F_t(s)(m)) \) by \(\tilde{F}_t(s, m) = (t + s, F_t,0(m)) \).

Page 375, Figure 5.1-1. Replace \(X \) by \(\tilde{X} \).

Page 376. In the text after the proof of Proposition 5.1.12, the positioning of the indices is reversed. It should read

\[
\frac{d}{dt} \left[H(t, q^i(t), p_j(t)) \right] = \frac{\partial H}{\partial t}(t, q^i(t), p_j(t))
\]

where \(q^i(t), p_j(t) \) is an integral

Page 376. The last part of (ii) of Theorem 5.1.13 should be \(\tilde{F}_t^* \omega_H = \omega_H \), where \(\tilde{F}_t \) is the flow of \(\tilde{X}_H \). The proof of this is as follows: By the Lie derivative formula

\[
L_{\tilde{X}_H} \omega_H = di_{\tilde{X}_H} \omega_H + i_{\tilde{X}_H} d\omega_H
\]
and the first term is zero since, by the first part of (ii), $i_{\tilde{X}_H}\omega_H = 0$ and the second term is zero since $d\omega_H = 0$.

Page 376. Theorem 5.1.13 (iii) should read as follows: if $\omega = -d\theta$ and $\theta_H = \pi_2^*\theta - Hdt$, then $\omega_H = -d\theta_H$; if $\theta(X_H) - H$ is nowhere zero, then $(R \times P, \theta_H)$ is an exact contact manifold.

Page 377. In the fourth line above Theorem 5.1.14, $H + (\theta \circ \pi_2)(X_H)$ should read $\theta(X_H) - H$.

Page 377. In the second line of Theorem 5.1.14, $\omega = d\theta$ should be $\omega = -d\theta$.

Page 377. There are typos in the proof of (iii). It should read as follows:

Clearly $-d\theta_H = \omega_H$. Also, using the definition of θ_H,

$$\theta_H(\tilde{X}_H) = (\pi_2^*\theta)(X_H + \tilde{t}) - Hdt((X_H + \tilde{t})$$

$$= \theta(X_H) - H$$

and so θ_H does not vanish on the characteristic bundle of ω_H. Thus, $(R \times P)$ is an exact contact manifold (see 5.1.8).

Notice that $\theta(X_H) - H$ is the Lagrangian associated to H according to 3.6.7.

Page 378. In the first line of exercise 5.1.C (ii), insert a minus sign: $\omega = -d\theta$ and in the last line write $(-1/\theta(X_H)) \cdot X_H$.

Page 378. In the first line of Exercise 5.1.G, replace $\theta_H = \tilde{\theta}_0 + Hdt$ by $\theta_H = \tilde{\theta}_0 - Hdt$ and in third line $dg = -i_Y\omega_H$ by $dg = i_Y\omega_H$.

5.2 Canonical Transformations and Hamilton-Jacobi Theory

Page 381, lines 7, 8, 9 from the bottom. The d should be d.

Page 384, line 18. [1972) should be [1972]

Page 386, third line of 5.2.8. Replace π by π_2.

Page 386, lines 6 and 8 from the bottom. The d should be d. Same correction on the last two lines of the proof of 5.2.13 on page 388.

Page 387. In the third line of the proof of Proposition 5.2.13, “from 5.2.12” should be “from 5.1.13(ii)”.

Page 388. In the third line from the end of the proof of Proposition 5.2.13, replace $i_{F^*\tilde{\omega}_1}$ by $i_{F^*\tilde{\omega}_1}$ and replace “and as” by “and by 5.1.13, “.

Page 389, the sentence after 5.2.15. This sentence should read: “Notice that if F satisfies (C1) and (C2) then the local existence W is equivalent to F being canonical.”

Page 389. Two lines above Definition 5.2.17, “All points for \tilde{X}_K” should read “At all points, $X_K = 0$ and hence are”.

Page 390, lines 3 and 4. These lines need correction and a little more explanation. For clarity, let us write $\tilde{W}(t, Q^i, P^i)$ for the W which is a time dependent function on P_1, which, in the text, is the W that appears in Definition 5.2.15 and Proposition 5.2.16. Let W be the function of (t, q^i, Q^i) that is obtained by changing variables. That is,

$$W(t, q^i(t, Q^j, P^j), Q^i) = \tilde{W}(t, Q^i, P^i).$$

By the chain rule,

$$\frac{\partial \tilde{W}}{\partial t} = \frac{\partial W}{\partial t} + \frac{\partial W}{\partial q^i} \frac{\partial q^i}{\partial t}.$$

One also computes, using the displayed equation preceding Proposition 5.2.16 and the second line on page 390, that

$$\dot{F} = p_i \frac{\partial q^i}{\partial t} = \frac{\partial W}{\partial q^i} \frac{\partial q^i}{\partial t}.$$

Therefore,

$$K = H \circ F + \frac{\partial \tilde{W}}{\partial t} - \dot{F} = H \circ F + \frac{\partial W}{\partial t}.$$

Remarks. For different arrangement of Hamilton-Jacobi theory that has a simpler treatment of time dependent canonical transformation theory, see [MandS], Section 7.9. Another basic result in this theory, which was an omission in Foundations is the Jacobi theorem. Namely, Allowing L to be time-dependent, Jacobi in 1866 showed that the action integral defined by

$$S(q^i, \bar{q}^i, t) = \int_{t_0}^{t} L(q^i(s), \dot{q}^i(s), s) \, ds,$$

where $q^i(s)$ is the solution of the Euler–Lagrange equation subject to the conditions $q^i(t_0) = \bar{q}^i$ and $q^i(t) = q^i$, satisfies the Hamilton–Jacobi equation. There are several implicit assumptions in Jacobi’s argument: L is regular and the time $|t - t_0|$ is assumed to be small, so that S is a well-defined function of the endpoints. One can allow $|t - t_0|$ to be large as long as the solution $q(t)$ is near a nonconjugate solution. For a proof and discussion, see [MandS], Section 8.2.

Page 391. In the second paragraph of the proof of Theorem 5.2.19, the third sentence should read: Also, F_λ is symplectic and $\tilde{F_\lambda} = X_H$.

Page 392, line 5. The domain of the map α should be $(-\varepsilon, \varepsilon) \times V$.

Page 393. The last part of Definition 5.2.20 defines complete integrability in infinite dimensions. Certainly on line 6, one has to replace T_pP by the tangent space to the common level sets of the integrals. But this topic has many subtleties that are discussed in the literature, such as Kappeler and Pöschel [2003].

Page 394, line -5 of the proof. Replace the lower index k by n.
Proposition 5.2.23.

First notice that a proof of the special case for the two torus is given in Example 4.1.11. Since a complete proof in the general case is not so easy to find, we include it here. Our proof of Proposition 5.2.23 will be based on the following classical result that Bröcker and tom Dieck [1995] attribute to Kronecker.

Theorem. Let \(\nu = (\nu_1, \ldots, \nu_n) \in \mathbb{R}^n \setminus \{0\} \). The cyclic group \(\{k[\nu] \mid k \in \mathbb{Z}\} \subset T^n \) is dense in the n torus \(T^n = \mathbb{R}^n / \mathbb{Z}^n \) if and only if the real numbers \(\{1, \nu_1, \ldots, \nu_n\} \) are linearly independent over \(\mathbb{Z} \).

Proof. The proof consists of two steps.

Step 1. We will show that \(K := \overline{\{k[\nu] \mid k \in \mathbb{Z}\}} \neq T^n \) if and only if \([\nu] \in \ker f \) for some non-trivial Lie group homomorphism \(f : T^n \to T^3 := S^1 \). Indeed, first, note that \(K \neq \{0\} \) since \(\nu \neq 0 \). If \(K \neq T^n \), the quotient group \(T^n / K \) is a non-trivial compact connected commutative Lie group and hence is isomorphic to a torus \(T^p, \ p \geq 1 \) (see Exercise 4.1K). Denote this Lie group isomorphism by \(\varphi : T^n / K \to T^p \). The canonical projection \(\pi : T^n \to T^n / K \) is a surjective submersive Lie group homomorphism. Let \(p : T^p \to S^1 \) denote the projection on one of the factors in \(T^p = S^1 \times \cdots \times S^1 \) \((p\) times). Since \(\pi(K) = \{0\} \), it follows that \(K \subset \ker(p \circ \varphi \circ \pi) \).

Conversely, assume that \([\nu] \in \ker f \) for some nontrivial Lie group homomorphism \(f : T^n \to S^1 \). Thus \(\{k[\nu] \mid k \in \mathbb{Z}\} \subset \ker f \neq T^n \) since ker \(f \) is a closed Lie subgroup of \(T^n \) and \(f \) is not the trivial homomorphism mapping \(T^n \) to the identity element of \(S^1 \).

Step 2. We use Step 1 to prove the theorem. Take a non-trivial Lie group homomorphism \(f : T^n \to S^1 \). Let \(\{e_1, \ldots, e_n\} \) be the standard basis of \(\mathbb{R}^n \) and let \(k_i = f'(e_i) \in \mathbb{R} \), where \(f' : \mathbb{R}^n \to \mathbb{R} \) is the induced Lie algebra homomorphism. Since the projections \(\pi_n : \mathbb{R}^n \to \mathbb{R}^n / \mathbb{Z}^n = T^n \) are the exponential maps (see Proposition 4.1.7), it follows that \(\pi_1 \circ f' = f \circ \pi_n \) and hence \((\pi_1 \circ f')(\mathbb{Z}^n) = (f \circ \pi_n)(\mathbb{Z}^n) = \{0\} \), which implies that \(f'(\mathbb{Z}^n) \subset \ker \pi_1 = \mathbb{Z} \) and hence \(k_i \in \mathbb{Z} \). Consequently, \([\nu] \in \ker f \) if and only if

\[
[0] = f([\nu]) = (f \circ \pi_n)(\nu) = (\pi_1 \circ f')(\nu) = (\pi_1 \circ f')(\sum_{i=1}^{n} \nu_i e_i) = \pi_1(\sum_{i=1}^{n} \nu_i k_i)
\]

which is equivalent to \(\sum_{i=1}^{n} \nu_i k_i \in \mathbb{Z} \), that is, to the existence of some \(k_0 \in \mathbb{Z} \) such that \(k_0 + \sum_{i=1}^{n} \nu_i k_i = 0 \). We have thus shown that \([\nu] \in \ker f \) if and only if \(\{1, \nu_1, \ldots, \nu_n\} \) are linearly dependent over \(\mathbb{Z} \).

By Step 1, we conclude that \(\{1, \nu_1, \ldots, \nu_n\} \) are linearly dependent over \(\mathbb{Z} \) if and only if \(\{k[\nu] \mid k \in \mathbb{Z}\} \neq T^n \). □

We will next turn to the proof of Proposition 5.2.23. Note that it assumes something a bit different than Kronecker’s result, namely that the numbers \(\nu_1, \ldots, \nu_n \) are linearly independent over \(\mathbb{Z} \), without the extra 1. We will need to show that this condition is equivalent to the denseness of each nontrivial \(\varphi_t \) orbit.
Proof of Proposition 5.2.23. Let \(\mu \in \mathbb{R}^n \) and recall that \(\varphi_t([\mu]) = [\mu + t\nu] \). For fixed \(\mu \in \mathbb{R}^n \), the map \(\psi_{\mu} : [\lambda] \in T^n \mapsto [\lambda + \mu] \in T^n \) is a diffeomorphism and the \(\varphi_t \)-orbit through \([\mu]\) is

\[
\{ \varphi_t([\mu]) \mid t \in \mathbb{R} \} = \{ [\mu + t\nu] \mid t \in \mathbb{R} \} = \psi_{\mu}(\{[\nu] \mid t \in \mathbb{R}\}) = \psi_{\mu}(\{\varphi_t([0]) \mid t \in \mathbb{R}\}).
\]

Therefore, the \(\varphi_t \)-orbit through \([\mu]\) is dense in \(T^n \) if and only if the \(\varphi_t \)-orbit through \([0]\) is dense in \(T^n \). Thus, to prove the proposition, we only need to show that the \(\varphi_t \)-orbit through \([0]\) is dense in \(T^n \) if and only if \(\{\nu_1, \ldots, \nu_n\} \) are linearly independent over \(\mathbb{Z} \).

Since \(\nu \neq 0 \) by hypothesis, at least one of its components is not zero. So, let us assume that \(\nu_n \neq 0 \). Then \(\{\nu_1, \ldots, \nu_n\} \) are linearly independent over \(\mathbb{Z} \) if and only if \(\{\nu_1/\nu_n, \ldots, \nu_{n-1}/\nu_n, 1\} \) are linearly independent over \(\mathbb{Z} \) which, by Kronecker’s theorem, is equivalent to the fact that the cyclic group \(C \) generated by \([\nu']\) is dense in \(T^{n-1} \), where \(\nu' := (\nu_1/\nu_n, \ldots, \nu_{n-1}/\nu_n) \in \mathbb{R}^{n-1} \).

However,

\[
S := \{ \varphi_t([0]) \mid t \in \mathbb{R} \} \cap (T^{n-1} \times \{[0]\})
= \{ [t\nu_1, \ldots, t\nu_n] \mid t \in \mathbb{R}, t\nu_n \in \mathbb{Z} \}
= \left\{ \left[\frac{t\nu_1}{\nu_n}, \ldots, \frac{t\nu_{n-1}}{\nu_n}, t\nu_n \right] \mid t \in \mathbb{R}, t\nu_n \in \mathbb{Z} \right\}
= \left\{ \left[\frac{k\nu_1}{\nu_n}, \ldots, \frac{k\nu_{n-1}}{\nu_n}, k \right] \mid k \in \mathbb{Z} \right\}
= \left\{ \left[\frac{k\nu_1}{\nu_n}, \ldots, \frac{k\nu_{n-1}}{\nu_n}, 0 \right] \mid k \in \mathbb{Z} \right\}
\]

is exactly this cyclic group \(C \).

In summary, the proposition is proved if we can show that \(\{ \varphi_t([0]) \mid t \in \mathbb{R} \} \) is dense in \(T^n \) if and only if \(S \) is dense in \(T^{n-1} \times \{[0]\} \). To do this, we first show the “only if” part. So, first assume that \(\{ \varphi_t([0]) \mid t \in \mathbb{R} \} \) is dense in \(T^n \); we need to show that \(S \) is dense in \(T^{n-1} \times \{[0]\} \). So we work in the unit \(n \)-cube with boundaries identified in the usual way. Choose a point \(\mathbf{x} = (x_1, x_2, \ldots, x_n-1, 0) \in T^{n-1} \times \{[0]\} \) and pick a Euclidean disk \(D_\epsilon(\mathbf{x}) \) about \(\mathbf{x} \) of radius \(\epsilon > 0 \) in \(T^n \), so that \(D_\epsilon(\mathbf{x}) \cap (T^{n-1} \times \{[0]\}) \) is a neighborhood of \(\mathbf{x} \) in \(T^{n-1} \times \{[0]\} \). Since the orbit \(\{ \varphi_t([0]) \mid t \in \mathbb{R} \} \) is dense in \(T^n \), there is a \(t_0 \) such that \(\varphi_{t_0}([0]) = (t_0\nu_1, \ldots, t_0\nu_n) \in D_\epsilon(\mathbf{x}) \). Let \(\tau = t_0\nu_n - \lfloor t_0\nu_n \rfloor \), where \(\lfloor t_0\nu_n \rfloor \) denotes the integer part of \(t_0\nu_n \). Then it is easily checked that the point \(\varphi_{t_0 - \tau/\nu_n}([0]) \) lies in \(D_\epsilon(\mathbf{x}) \cap (T^{n-1} \times \{[0]\}) \); that is, its last component is zero. This proves the “only if” part as required.

Conversely, showing the “if” part proceeds in a somewhat similar manner; we sketch the main ingredients. So, assume that \(S \) is dense in \(T^{n-1} \times \{[0]\} \). Now pick a point \(\mathbf{x} = (x_1, x_2, \ldots, x_{n-1}, x_n) \in T^n \); specifically, assume we work with the representative of \(\mathbf{x} \) that lies in the unit cube. Now again, let \(D_\epsilon(\mathbf{x}) \) be an \(\epsilon \)-disk about \(\mathbf{x} \); we need to show that the orbit \(\{ \varphi_t([0]) \mid t \in \mathbb{R} \} \) intersects
this disk at some point \(t_0 \). This is done as follows, consider the new \(\epsilon \) disk \(D_\epsilon(y) \) that is obtained by translating the disk \(D_\epsilon(x) \) as a set, along the orbit through \(x \) (which of course need not be the orbit through zero) by an amount \(-\tau \), until the center hits the set \(T^{n-1} \times \{0\} \); that is, \(y \) has last component zero. By assumption, there is a point \(z \in (S \cap D_\epsilon(y)) \). Translating this point \(z \) along the orbit by the same amount \(\tau \) produces a point that is close to \(x \). One has to take into account the fact that the image of \(D_\epsilon(y) \) under the flow by an amount \(\tau \) might not be entirely contained in \(D_\epsilon(x) \); but this is just a matter of shrinking the original \(\epsilon \) by a geometrical factor.

Page 395, line 3 of the proof of 5.2.24. Replace 5.2.20 by 5.2.21.

Page 395, the line after the diagram. In the right hand side of the second formula, replace \(\varphi_t \) by \(\chi_t \).

Page 396, line \(-8\). Replace \(T^k \) by \(T^n \).

Page 397. In the displayed formula in (ii) of Definition 5.2.25 replace \(\varphi^{-1} \) by \(\psi^{-1} \).

Page 399, the third displayed equations. The various \(d \) should be \(\mathfrak{d} \) and the second two integrals should be closed path integrals: \(\oint \).

Page 401, Exercise 5.2E. The (i) and (ii) in this Exercise refer to Theorem 5.2.18.

Page 402, Exercise 5.2I. At the end of line 7 of the Exercise, replace \(G_\mu \times \mathfrak{g}^* \) by \(G_\mu \times \mathfrak{g}^*_\mu \).

5.3 Lagrangian Submanifolds

Page 403. A more direct proof of (iii) of Proposition 5.3.2 is as follows. As in this section, \((E, \omega)\) is a finite-dimensional symplectic vector space and \(F \subset E \) is a subspace. We want to show that \(\dim F + \dim F^\perp = \dim E \). To prove this, note that \(F^\perp = \ker(i^* \circ \omega^\flat) \), where \(i : F \to E \) is the inclusion and \(i^* : E^\ast \to F^\ast \) is its dual, which is surjective. But \(\omega^\flat \) is an isomorphism and so \(i^* \circ \omega^\flat : E \to F^\ast \) is surjective. Thus, \(E/F^\perp \) is isomorphic to \(F^\ast \), so \(\dim E - F^\perp = \dim F^\ast = \dim F \).

Page 423. In Exercise 5.3.K, the “5” is missing in the Exercise label.

5.4 Quantization

Page 445, first paragraph. Assume that \(P \) is connected. The last phrase of the paragraph should read as follows: ... are invariant, then \(\{H, \tilde{J}(\xi)\} \) is a constant function on \(P \) for each \(\xi \in \mathfrak{g} \). The reason for this is as follows: Since \(H \circ \Phi_{\exp t\xi} - H = c(\exp t\xi) \) is constant on \(P \) for all \(t \in \mathbb{R} \) and \(\xi \in \mathfrak{g} \), taking the derivative at \(t = 0 \) we conclude that \(T_{\xi}\mathfrak{c} = \mathfrak{d}H(\xi_P) = \mathfrak{d}H \left(X_{\tilde{J}(\xi)} \right) = \{H, \tilde{J}(\xi)\} \) which is a constant function on \(P \), for every \(\xi \in \mathfrak{g} \).
5.5 Introduction to Infinite Dimensional Hamiltonian Systems

Page 467, line 1. $c = 4$ should be $c = -4$.

Page 467, line 9. $f_0(u) = u$ should be $f_0(u) = u/2$ and $\delta f_0(u)/\delta u = 1$ should be $\delta f_0(u)/\delta u = 1/2$.

Chapter 7. Differentiable Dynamics

7.2 Stable Manifolds

Page 527, line 10. The sentence

“Recall from, Sect. 1.5 that a subset $S \subset M$ is an immersed submanifold of it is the image of a mapping $f : V \rightarrow M$ that is injective and locally a diffeomorphism onto a submanifold of M.”

with the following text:

“For the statement of the next corollary we need to introduce the concept of an initial manifold. Let M and V be smooth manifolds. Then V is said to be an initial submanifold of M if there is an injective immersion $f : V \rightarrow M$ satisfying the following condition: for any smooth manifold P, an arbitrary map $g : P \rightarrow V$ is smooth if and only if $f \circ g : P \rightarrow M$ is smooth. Often one does not distinguish between V and its image $f(V) \subset M$ and refers to $f(V)$ as an initial submanifold of M.

Useful criteria for when a manifold satisfies this condition may be found in [HRed], Lemma 1.1.11 on page 6 and 1.1.12 in formula (1.1.4) on page 7. The main implications are that any embedded submanifold is an initial manifold which in turn is an injectively immersed submanifold. The reverse implications are, in general, false.

Page 527, last word of line 14. “immersed” should be changed to “initial”.

Chapter 8. Hamiltonian Dynamics

8.1 Critical Elements

Page 573, line 2. Replace “Section 3.3” by “Section 3.1”.

8.3 Stability of Orbits

Page 585. The famous figure 8.3-3 is of course related to KAM theory about which much has been written since the book was written, such as Gallavotti [1983] and Celletti and Chierchia [2007] and even material in infinite dimensions, such as Kappeler and Pöschel [2003] and Kuksin [2000].
Chapter 9. The Two–Body Problem

Sections 9.2–9.5. The proof of the symplectic nature of the Delaunay variables is incorrect in these sections because of a confusion between the mean and true anomaly, although the overall strategy may be correct. For a correct proof and an interesting approach to this result, the reader can consult the following references:

1. In the paper of Chang and Marsden [2003] an elegant and geometric construction of the Delaunay variables is given as follows: a symplectic T^3 (three torus) action, together with its associated momentum mapping J is constructed on the elliptic elements of the Kepler problem with the property that the angle variables of T^3 together with the components of J comprise the Delaunay variables. It follows naturally from this construction that these variables are canonical. This is the main result, attributed to Lagrange, in Theorem 9.4.1 on page 635. The construction of Chang and Marsden [2003] has other nice features, such as yielding an interpretation of the phase shift of satellites, when the bulge of the Earth is taken into account, as a geometric phase.

2. There is another derivation of the Delaunay variables using Hamilton-Jacobi theory, which can be found in § 21, 22 of Born [1927], which is summarized as follows. The rotational symmetry of the Kepler Hamiltonian allows one to use separation of variables in the Hamilton-Jacobi equation, yielding three action variables. This step involves a special integration trick using complex variables due to Sommerfeld. Then, one makes use of the degeneracy of the corresponding angle variables to obtain a new set of angle and action variables so that two of the three angle variables do not change in time. Finally, one seeks the physical meaning of this set of action-angle variables, which requires nontrivial geometric intuition.

3. Another approach to constructing the Delaunay variables can be based on the Liouville-Arnold theorem. This approach is sketched in Arnold, Kozlov, and Neishtadt [2006], which refers to Charlier [1927] for details. In this approach one begins with first integrals in involution. Even though this general machinery guarantees that one gets a set of action-angle variables, it lacks geometric insight and it involves some complicated integrations.

9.6 Poincaré Variables

Page 647. The reference for this section is Poincaré [2005]. In particular, in this reference in Volume I, Chapter III, pages 79–84, it is shown that the transformation between the Poincaré elements and the Cartesian coordinates with their conjugate variables is an analytic diffeomorphism from the set

$$\{(L, x, y) \in \mathbb{R}^3 \mid L > 0, |x| < \sqrt{2L}, |y| < \sqrt{2L}\} \times S^1$$

to the subset of the phase space of the Kepler planar problem consisting of the elliptic Keplarian orbits.
Chapter 10. The Three–Body Problem

10.4 Topology of the Planar n-Body Problem

Page 721. Figure 10.4.1, illustrating Theorem 10.4.13 should look as follows.

Page 740, Conjecture 10.4.25. This conjecture has been solved in Llibre and Simo [1981].
References

Arnold, V. I., V. V. Kozlov, and A. I. Neishtadt [2006], Mathematical aspects of classical and celestial mechanics, volume 3 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, third edition. [Dynamical systems. III], Translated from the Russian original by E. Khukhro.

Weinstein, A. [1990], Connections of Berry and Hannay type for moving Lagrangian submanifolds, Adv. in Math. 82, 133–159.
