SPACES OF CONSTANT CURVATURE

SIXTH EDITION

JOSEPH A. WOLF

AMS CHELSEA PUBLISHING
American Mathematical Society • Providence, Rhode Island
Spaces of Constant Curvature

Sixth Edition
TO LOIS
PREFACE

This book grew out of lectures I gave at the University of California (Berkeley) in the spring semester of 1964. The lectures were planned to cover a specific and beautiful topic in riemannian geometry, the geometry of spaces of constant curvature, presenting known progress toward the solution of its outstanding problems. Halfway through the semester I was trapped by the subject and lingered on to solve a few of those problems. The state of the theory now warrants a book, and I hope that this is the book so warranted.

The theory of spaces of constant curvature might be said to have originated with euclidean geometry. But it really began with the Gauss-Lobatchevsky-Bolyai inventions of a non-euclidean geometry in the early nineteenth century. That geometry is now called the synthetic geometry of the hyperbolic plane. Its discovery marked the end of attempts to prove Euclid’s parallel postulate from the other postulates of euclidean geometry, for it has the property that (infinitely) many parallels to a given line pass through any point off that line. In 1854 Riemann invented two non-euclidean geometries with the property that two distinct lines cannot be parallel. Those geometries are now known as the synthetic plane spherical and elliptic geometries. At the same time Riemann laid the foundations for riemannian geometry and exhibited riemannian metrics of arbitrary given constant curvature. Then, in 1868, Beltrami proved the consistency of the hyperbolic and spherical geometries (relative to euclidean solid geometry) by realizing them as the intrinsic geometries of well-known surfaces in euclidean space. Those surfaces are the pseudosphere for hyperbolic geometry, which has constant negative curvature, and the ordinary sphere for spherical geometry, which has constant positive curvature. In addition to causing general acceptance of the non-euclidean geometries, Beltrami’s proof moved them into the domain of the then new riemannian geometry. Within a dozen years there was considerable interest in surfaces of constant curvature. In 1891, Killing published a book in which riemannian manifolds of arbitrary dimension and arbitrary constant curvature were exhibited and in which the problem of finding all riemannian manifolds of constant curvature was well formulated. That problem received additional impetus from Einstein’s invention of general relativity and was put in proper perspective by É. Cartan’s development of the theory of symmetric spaces.

The purpose of this book is to describe the classification problems in the theory of spaces of constant curvature and the theory of symmetric spaces. Results to date are given and a number of additional problems
are solved. The coverage is best explained by the following description
of the contents of this book and by reference to the table of contents.

The first half of the book (Parts I, II, and III) is concerned with spaces
of constant curvature \textit{per se}. The reader is expected to have some
familiarity with advanced calculus, point set topology, linear algebra,
and elementary group theory.

\textbf{Part I} (riemannian geometry) consists of two chapters. Chapter 1
develops the concepts of differentiable manifold and linear connection,
digresses for an exposition of the theory of covering spaces, and
concludes with a treatment of global affine differential geometry. The
results are essentially standard but many proofs are new. Chapter 2
develops the Levi-Civita connection and the concept of sectional
(riemannian) curvature, and touches on the geometry of spaces of
constant curvature. Then it illustrates the two main techniques of this
book, the first by the isometric classification of riemannian 2-manifolds
of constant curvature $K \geq 0$, and the second by the isometric classifi-
cation of riemannian homogeneous manifolds of arbitrary constant
curvature. These classifications are known but not standard.

\textbf{Part II} (the euclidean space form problem) consists of one chapter.
Chapter 3 describes the present state of the theory of flat (zero curvature)
complete riemannian manifolds by presenting the Bieberbach Theorems,
applying them to the euclidean space form problem, and using the
resulting structure theory to obtain the isometric classification of flat
complete riemannian 3-manifolds. That classification is new, although
it is only a refinement of other types of classifications of Nowacki and
Hantzsche-Wendt. The chapter ends by considering some lines of
research that look hopeful for the future.

\textbf{Part III} (the spherical space form problem) consists of four chapters.
It gives the isometric classification of complete riemannian manifolds of
constant positive curvature, solving the "Clifford-Klein spherical space
form problem" proposed by Killing in 1891. That solution is new, and
it forms the nucleus of this book. Chapter 4 is preparatory, developing
the representation theory of finite groups from the viewpoint of Frobenius' reciprocity. Chapter 5 develops elementary p-group theory
and then applies it with the representation theory to obtain Vincent's
partial solution to the spherical space form problem. Chapter 6 is the
classification of the family of finite groups which occurs in the spherical
space form problem. Chapter 7 is the synthesis, resulting in the
solution.

The second half of this book (Parts IV and V) deals with various
natural extensions of the class of spaces of constant curvature. The
pace is faster than in the first half, and the reader is expected to know
the basic facts on compact topological groups, Lie groups, and Lie
algebras.
PART IV (space form problems on symmetric spaces) consists of three chapters. It is concerned with the problem of extending the solution of the spherical space form problem to riemannian symmetric spaces of nonnegative curvature. Chapter 8 is a fairly complete introduction to riemannian symmetric spaces and two point homogeneous spaces. It contains the classification, including the linear isotropy representations, and a fair amount of new material toward the end. Chapter 9 extends the solution of the spherical space form problem to a large class of compact symmetric spaces, and Chapter 10 deals with symmetric spaces of non-negative curvature.

PART V (space form problems on indefinite metric manifolds) consists of two chapters. Chapter 11 is concerned with constant curvature indefinite metric manifolds, while Chapter 12 treats the generalization to indefinite metric of the two-point-homogeneous riemannian manifolds.

The working method in this book is a mixture of É. Cartan's method of moving frames and the theory of groups. Here I gratefully acknowledge my debt to my teacher S.-S. Chern, who stimulated and guided my interest in differential geometry. Thanks for guidance are also due A. A. Albert for teaching me how to sit down with an algebraic problem.

This book was originally written as a monograph but in part due to the selection of material has been used as a text. A number of people made useful suggestions which are incorporated into this edition, notably B. O'Neill, V. Ozols, R. E. Stong, W. Boothby and Wu-yi Hsiang. In contrast to the original 1967 edition, Chapter 1, Chapter 2 and the first half of Chapter 8 now form a reasonable introduction to differential geometry and symmetric spaces.

Special thanks are due to my wife Lois for her continuous encouragement and cooperation while I was writing and preparing revisions.

Berkeley, June 1977

J. A. W.
Since publication of the fifth (1984) edition of this book there has been a tremendous amount of activity in discrete subgroups of Lie groups and algebraic groups. This activity had emphasis in several areas, especially differential geometry, harmonic analysis, algebraic geometry and number theory. It also had applications via Fourier transform theory to signal processing and other areas.

Most of the new material in this sixth (2010) edition represents an attempt to indicate some of these developments. Much of this is done in Chapter 3 and in the Appendix to Chapter 12. Chapter 3 has some new results and an indication of updates in the section on flat homogeneous pseudo–riemannian manifolds. The Appendix to Chapter 12 sketches some background and a brief description (sometimes just consisting of current references) of the more recent work on discrete subgroups of real Lie groups. There the emphasis is on application to pseudo–riemannian geometry and pseudo–riemannian quotient manifolds, including of course the riemannian case. There has also been an enormous amount of work on spaces of functions on those quotients, but that is well beyond the scope of this book.

I thank Oliver Baues for his generous advice and updates concerning the revision of Chapter 3. Thanks also to Jonathan Wahl in connection with the change in the Remark on page 170. I was tempted to modernize the finite group theory in Chapter 6, but that could have made it inaccessible to many differential geometers, and I thank James Milgram and C. T. C. (Terry) Wall for convincing me not to do it. Finally, my thanks to Hillel Furstenberg, David Kazhdan and Toshiyuki Kobayashi for updates and references in the Appendix to Chapter 12.

In this new material, note that citations not in the 1986 “References” section are in “Additional References” just after.

As ever, special thanks are due to my wife Lois for her support while I was preparing this new edition.

Berkeley, July 2010

J. A. W.
NOTES TO THE READER

Sections are numbered within each chapter. Thus §3.2 is the second section of Chapter 3. Theorems, corollaries, formulae, etc., are numbered consecutively within each section, with chapter and section numbers given to facilitate cross reference. Thus Lemma 1.6.5 refers to the fifth numbered object of §1.6 and implies that it is a lemma; (2.4.12) refers to the twelfth numbered object in §2.4, which is a formula.

Numbers [n] in square brackets follow names and refer to the bibliography at the end of the book.

Chapter 3 is used in later chapters only in that Theorem 3.2.8 is needed in §10.1.

PART III (Chapters 4, 5, 6, and 7) is used in its sequel mainly by reference to the classification results of Chapter 7. This reference is made in Chapters 9 and 11. The only exception is that Theorems 6.1.11 and 6.3.1 are used in §11.2.

Chapter 6 is only used for its results (Theorems 6.1.11, 6.2.1, and 6.3.1), never for its methods—so the reader can feel free to skip the tedious argument of §6.2 if he is so inclined.

Chapters 1, 2, and 8 form a concise introduction to riemannian geometry and riemannian symmetric spaces.

Logical Interdependence of Chapters
CONTENTS

Prefaces . . vii, x

Notes to the Reader . . xi

PART I Riemannian Geometry 1

CHAPTER 1 Affine Differential Geometry 1
1.1 Differentiable manifolds 2
1.2 Vector fields 3
1.3 Differential forms 5
1.4 Maps 7
1.5 Lie groups 9
1.6 The frame bundle: parallelism and geodesics 14
1.7 Curvature, torsion and the structure equations 23
1.8 Covering spaces 31
1.9 The Cartan-Ambrose-Hicks Theorem 42

CHAPTER 2 Riemannian Curvature 45
2.1 The Levi-Civita connection 46
2.2 Sectional curvature 52
2.3 Isometries and curvature 57
2.4 Models for spaces of constant curvature 62
2.5 The 2-dimensional space forms 74
2.6 Finite rotation groups 83
2.7 Homogeneous space forms 88
2.8 Appendix: The metric space structure of a riemannian manifold 91

PART II The Euclidean Space Form Problem 97

CHAPTER 3 Flat Riemannian Manifolds 98
3.1 Discontinuous groups on euclidean space 98
3.2 The Bieberbach Theorems on crystallographic groups 100
3.3 Application to euclidean space forms 105
3.4 Questions of holonomy 107
3.5 Three dimensional euclidean space forms 111
3.6 Three attacks on the classification problem for flat compact manifolds 124
3.7 Flat homogeneous pseudo-riemannian manifolds 131
PART III The Spherical Space Form Problem . . . 137
CHAPTER 4 Representations of Finite Groups . . . 138
4.1 Basic definitions 138
4.2 The Frobenius-Schur relations 139
4.3 Frobenius reciprocity and the group algebra . 141
4.4 Divisibility 145
4.5 Tensor products and dual representations . . . 147
4.6 Two lemmas on representations over algebraically
 non-closed fields 150
4.7 Unitary and orthogonal representations . . . 151

CHAPTER 5 Vincent’s Work on the Spherical Space Form
 Problem 154
5.1 Vincent’s program 154
5.2 Preliminaries on p-groups 156
5.3 Necessary conditions on fixed point free groups . 159
5.4 Classification of the simplest type of fixed point
 free groups 162
5.5 Representations of finite groups in which every
 Sylow subgroup is cyclic 165
5.6 A partial solution to the spherical space form
 problem . 171

CHAPTER 6 The Classification of Fixed Point Free Groups . 172
6.1 Zassenhaus’ work on solvable groups with cyclic
 odd Sylow subgroups 173
6.2 The binary icosahedral group 181
6.3 Non-solvable fixed point free groups 195

CHAPTER 7 The Solution to the Spherical Space Form
 Problem 198
7.1 Representations of binary polyhedral groups . . . 198
7.2 Fixed point free complex representations 203
7.3 The action of automorphisms on representations . . 211
7.4 The classification of spherical space forms 218
7.5 Spherical space forms of low dimension 224
7.6 Clifford translations 227

PART IV Space Form Problems on Symmetric Spaces . 231
CHAPTER 8 Riemannian Symmetric Spaces 231
8.1 Lie formulation of locally symmetric spaces . . . 232
8.2 Structure of orthogonal involutive Lie algebras . . 234
8.3 Globally symmetric spaces and orthogonal involu-
 tive Lie algebras 240
8.4 Curvature . 245
8.5 Cohomology ... 247
8.6 Cartan subalgebras, rank and maximal tori 252
8.7 Hermitian symmetric spaces 257
8.8 The full group of isometries 263
8.9 Extended Schl"afli-Dynkin diagrams 264
8.10 Subgroups of maximal rank 275
8.11 The classification of symmetric spaces 286
8.12 Two point homogeneous spaces 293
8.13 Appendix: Manifolds with irreducible linear isotropy group ... 300

CHAPTER 9 Space Forms of Irreducible Symmetric Spaces ... 303
9.1 Feasibility of space form problems 304
9.2 Grassmann manifolds as symmetric spaces 306
9.3 Grassmann manifolds of even dimension 307
9.4 Grassmann manifolds of odd dimension 314
9.5 Symmetric spaces of positive characteristic 319
9.6 An isolated manifold 325

CHAPTER 10 Locally Symmetric Spaces of Non-negative Curvature 328
10.1 The structure theorems 329
10.2 Application of the structure theorems 333

PART V Space Form Problems on Indefinite Metric Manifolds ... 337

CHAPTER 11 Spaces of Constant Curvature 337
11.1 The classification of finite space forms 338
11.2 The geometry of pseudo-spherical space forms 341
11.3 Homogeneous finite space forms 347
11.4 The lattice space forms 354
11.5 A wild Lorentz signature 366
11.6 The classification for homogeneous manifolds of constant curvature 370

CHAPTER 12 Locally Isotropic Manifolds 374
12.1 Reductive Lie groups 374
12.2 Examples of locally isotropic manifolds 380
12.3 Structure of locally isotropic spaces 385
12.4 A partial classification of complete locally isotropic manifolds 389
Appendix to Chapter 12 396

References ... 402
Additional References 408
Index ... 413
SPACES
OF
CONSTANT
CURVATURE
REFERENCES

A. A. ALBERT

E. ALEXANDER

L. AUSLANDER

L. BIEBERBACH

G. BIRKHOFF

A. BLANCHARD

A. BOREL

G. BREDON

J. J. BURCKHARDT

W. BURNSIDE
[1] On finite groups in which all the Sylow subgroups are cyclic, Messenger of Mathematics, volume 35 (1905), pp. 46–50.
REFERENCES

H. BUSEMANN

E. CALABI

É. CARTAN

H. CARTAN

L. S. CHARLAP

S. S. CHERN

W. K. CLIFFORD

E. B. DYKNIN

S. EILENBERG. See H. CARTAN [1].

F. ENRIQUES

E. FEODOROFF
REFERENCES

H. FREUDENTHAL

F. GANTMACHER

A. GRAY. See J. A. WOLF [15].

W. Hantzsch

A. HATTORI

S. HELGASON

K. HERMANN. See E. ALEXANDER [2].

R. HERMANN

D. HILBERT

H. HOPF

N. IWAHORI

N. JACOBSON

W. KILLING

F. KLEIN
REFERENCES

K. Knopp

A. Korányi. Also see J. A. Wolf [13].

M. Kuranishi. See L. Auslander [1].

A. G. Kurosh

R. D. Levine

J. E. Marsden

H. Matsumoto. See N. Iwahori [1].

D. Montgomery

S. Murakami

T. Nagano

P. Niggli

W. Nowacki

S. Passiencier

G. Pólya

I. Reiner
REFERENCES

C. H. Sah. See L. S. Charlap [4].

H. Samelson. See D. Montgomery [1].

A. Schoenflies

H. Seifert. See W. Threlfall [1] and [2].

J. de Siebenthal. Also see A. Borel [1].

P. A. Smith

G. Springer

N. Steenrod

M. Suzuki

W. Threlfall

J. Tits

A. T. Vasquez. See L. S. Charlap [3].

H. O. Singh Varma

G. Vincent

H.-C. Wang

REFERENCES

H. WENDT. See W. HANTZSCHE [1].

H. WEYL

J. A. WOLF. Also see A. KORÁNYI [1].

H. YAMABE

H. ZASSENHAUS

ADDITIONAL REFERENCES

L. Auslander

A. Baklouti

O. Baues

A. Borel

K. Corlette

D. C. Duncan & E. C. Ihrig

D. Fried, W. M. Goldman & M. W. Hirsch

W. M. Goldman & M. W. Hirsch
M. GROMOV & I. PIATETSKY-SHAPIO

F. KASSEL

T. KOBAYASHI

R. L. LIPSMAN

V. S. MAKAROV

G. S. MARGULIS

N. MOK

G. D. MOSTOW

A. Selberg

E. B. Vinberg

J. A. Wolf

T. Yoshino
INDEX

Action of a group, 11
almost effective, 11
almost free, 11
discontinuous, 39
effective, 11
free, 11
kernel of, 11
linear (see Representation)
properly discontinuous, 39
transitive, 13
without fixed point, 11
Adjoint representation, 10
Admissible set for a covering, 32
Affine connection (see Connection)
Affine covering, 41, 42
Affine cylinder, 45
Affine diffeomorphism, 29
Affine group, 45
Affine locally symmetric space, 30, 31
Affine space, 44, 45
Affine symmetric space, 44
Affine torus, 45
Almost-complex structure, 258
integrability, 258
Alternation of a representation, 147
Analytic subgroup, 10
Antisymmetric bilinear form, 46
Antisymmetric bilinear invariant, 147
Auslander-Kuranishi Theorem, 110
Automorphism, outer, 288, 289

Bieberbach Theorems, 160
generalization to symmetric spaces, 329
Bilinear form, 46
antisymmetric, 46
direct sum of, 46
Gram-Schmidt Process, 50
invariant under a Lie algebra, 234
invariant under a Lie group, 234
invariant for a representation, 147–149
negative definite, 46
nondegenerate, 46
positive definite, 46
signature of, 64
symmetric, 46
Witt’s Theorem for, 62
Bilinear invariant, 147–149
Binary dihedral group, 87–89
Binary icosahedral group, 87–89
Binary octahedral group, 87–89
generalized, 198
Binary polyhedral group, 87–89
Binary tetrahedral group, 87–89
generalized, 198
Borel classification of prime characteristic homogeneous spaces, 284
Borel-de Siebenthal on subgroups of maximal rank, 275–288
classification, 275–284
criterion, 276, 277
Borel embedding, 260
Burnside’s Theorem, 159
Calabi construction, 124, 125
Cartan-Ambrose-Hicks Theorem, global affine version (Hicks), 42, 43
global pseudo-riemannian version
(Ambrose), 61
local affine version (Cartan), 30
local pseudo-riemannian version (Cartan), 59
Cartan classification, Lie algebras, compact, 268, 269
complex semisimple, 268, 269
riemannian symmetric spaces, 286, 287, 292–293
Cartan criterion for semisimplicity, 234
Cartan decomposition, Lie algebra, 265
symmetric space, 243
Cartan integers, 266
Cartan involution, 376
Cartan matrix, 266
Cartan structure equations, 24, 26, 27, 50, 51
Cartan structure theory, representations of
Lie algebras, 273
riemannian symmetric spaces, 286
semisimple Lie algebras, 268, 269
Cartan subalgebra, of a Lie algebra, 265, 266n.
of a symmetric space, 253
Cayley transformation, 70, 71
Character of a representation, 138, 141
Character group, 158
Christoffel symbols, 19–21, 49
Clifford group, 227–229
Clifford representation, 227, 229
Clifford translation, 90, 227
Cohomology, 247–252, 259, 312
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete connection</td>
<td>42</td>
</tr>
<tr>
<td>Complete geodesic</td>
<td>21</td>
</tr>
<tr>
<td>Complete manifold</td>
<td>42n., 47</td>
</tr>
<tr>
<td>Complete pseudo-riemannian metric</td>
<td>47</td>
</tr>
<tr>
<td>Complex coordinates</td>
<td>81, 257</td>
</tr>
<tr>
<td>Complex manifold</td>
<td>81, 257</td>
</tr>
<tr>
<td>Complex structure</td>
<td>257, 258</td>
</tr>
<tr>
<td>Almost-complex structure</td>
<td>258</td>
</tr>
<tr>
<td>Integrability</td>
<td>258</td>
</tr>
<tr>
<td>Components of connection</td>
<td>19–21, 49</td>
</tr>
<tr>
<td>of curvature tensor</td>
<td>26, 49</td>
</tr>
<tr>
<td>of metric</td>
<td>47</td>
</tr>
<tr>
<td>of torsion tensor</td>
<td>26</td>
</tr>
<tr>
<td>Conformal diffeomorphism</td>
<td>79</td>
</tr>
<tr>
<td>Conformal equivalence</td>
<td>79</td>
</tr>
<tr>
<td>Conformal flatness, local</td>
<td>81</td>
</tr>
<tr>
<td>Conjugacy in a compact Lie group</td>
<td>254, 255, 278</td>
</tr>
<tr>
<td>Connected case</td>
<td>254, 255, 278</td>
</tr>
<tr>
<td>General case</td>
<td>256</td>
</tr>
<tr>
<td>Connection, affine (= linear)</td>
<td>16</td>
</tr>
<tr>
<td>Complete</td>
<td>42</td>
</tr>
<tr>
<td>Components of</td>
<td>19–21, 49</td>
</tr>
<tr>
<td>Flat</td>
<td>44, 45</td>
</tr>
<tr>
<td>Form</td>
<td>16</td>
</tr>
<tr>
<td>Frame bundle</td>
<td>15, 16</td>
</tr>
<tr>
<td>Induced</td>
<td>41</td>
</tr>
<tr>
<td>Levi-Civita</td>
<td>47</td>
</tr>
<tr>
<td>Linear (= affine)</td>
<td>16</td>
</tr>
<tr>
<td>Product</td>
<td>17</td>
</tr>
<tr>
<td>Coordinate, complex</td>
<td>81, 257</td>
</tr>
<tr>
<td>Geodesic polar</td>
<td>80</td>
</tr>
<tr>
<td>Isothermal</td>
<td>79, 80</td>
</tr>
<tr>
<td>Local</td>
<td>2</td>
</tr>
<tr>
<td>Normal</td>
<td>22, 23</td>
</tr>
<tr>
<td>Coordinate frame</td>
<td>14</td>
</tr>
<tr>
<td>Coordinate neighborhood</td>
<td>2</td>
</tr>
<tr>
<td>Coordinate system, local</td>
<td>2</td>
</tr>
<tr>
<td>Coset space</td>
<td>13</td>
</tr>
<tr>
<td>Covariant derivative</td>
<td>19, 20</td>
</tr>
<tr>
<td>Covariant differential, for forms on the frame bundle</td>
<td>23</td>
</tr>
<tr>
<td>For vector fields on the manifold</td>
<td>21</td>
</tr>
<tr>
<td>Covering (= covering space)</td>
<td>32</td>
</tr>
<tr>
<td>Affine</td>
<td>41–43</td>
</tr>
<tr>
<td>Automorphism of</td>
<td>38</td>
</tr>
<tr>
<td>Deck transformation of</td>
<td>38</td>
</tr>
<tr>
<td>Differentiable</td>
<td>40, 41</td>
</tr>
<tr>
<td>Equivalence of</td>
<td>37</td>
</tr>
<tr>
<td>Induced</td>
<td>36</td>
</tr>
<tr>
<td>Multiplicity of</td>
<td>35</td>
</tr>
<tr>
<td>Normal (= regular)</td>
<td>35</td>
</tr>
<tr>
<td>Pseudo-riemannian</td>
<td>60</td>
</tr>
<tr>
<td>Regular (= normal)</td>
<td>35</td>
</tr>
<tr>
<td>Riemannian</td>
<td>60</td>
</tr>
<tr>
<td>Universal</td>
<td>37</td>
</tr>
<tr>
<td>Covering Homotopy Theorem</td>
<td>33</td>
</tr>
<tr>
<td>Covering map</td>
<td>32</td>
</tr>
<tr>
<td>Covering projection</td>
<td>32</td>
</tr>
<tr>
<td>Covering transformation</td>
<td>38</td>
</tr>
<tr>
<td>Crystallographic group</td>
<td>100</td>
</tr>
<tr>
<td>Algebraic characterization</td>
<td>103</td>
</tr>
<tr>
<td>Bieberbach structure theorems</td>
<td>100</td>
</tr>
<tr>
<td>Calabi construction</td>
<td>124, 125</td>
</tr>
<tr>
<td>Curvature, constant</td>
<td>57, 63, 66</td>
</tr>
<tr>
<td>Gauss (= gaussian)</td>
<td>52</td>
</tr>
<tr>
<td>Riemann (= riemannian = sectional)</td>
<td>54, 55</td>
</tr>
<tr>
<td>Sectional</td>
<td>54, 55</td>
</tr>
<tr>
<td>Involutive</td>
<td>379</td>
</tr>
<tr>
<td>Of symmetric spaces</td>
<td>245–247, 377</td>
</tr>
<tr>
<td>Curvature form</td>
<td>23</td>
</tr>
<tr>
<td>Curvature tensor</td>
<td>25</td>
</tr>
<tr>
<td>Curve</td>
<td>2</td>
</tr>
<tr>
<td>Cylinder, affine (= flat)</td>
<td>45</td>
</tr>
<tr>
<td>Deck transformation</td>
<td>38</td>
</tr>
<tr>
<td>Degree of a representation</td>
<td>138</td>
</tr>
<tr>
<td>Derivative covariant of, of a vector field</td>
<td>20</td>
</tr>
<tr>
<td>Exterior, of a differential form</td>
<td>6, 7</td>
</tr>
<tr>
<td>Ordinary, of a function</td>
<td>3</td>
</tr>
<tr>
<td>Derived group</td>
<td>163</td>
</tr>
<tr>
<td>Derived series</td>
<td>163</td>
</tr>
<tr>
<td>Diagram, Schlafli-Dynkin</td>
<td>268, 269</td>
</tr>
<tr>
<td>Automorphism of</td>
<td>288, 289</td>
</tr>
<tr>
<td>Extended</td>
<td>269, 270</td>
</tr>
<tr>
<td>Diffeomorphism</td>
<td>2</td>
</tr>
<tr>
<td>Differentiable action</td>
<td>11</td>
</tr>
<tr>
<td>Differentiable covering</td>
<td>40, 41</td>
</tr>
<tr>
<td>Differentiable function</td>
<td>2</td>
</tr>
<tr>
<td>Differentiable manifold</td>
<td>2</td>
</tr>
<tr>
<td>Differentiable map</td>
<td>3, 7–9</td>
</tr>
<tr>
<td>Differential, covariant</td>
<td>21, 23</td>
</tr>
<tr>
<td>Exterior</td>
<td>6, 7</td>
</tr>
<tr>
<td>Ordinary, of a function</td>
<td>6, 7</td>
</tr>
<tr>
<td>Differential form</td>
<td>5–7</td>
</tr>
<tr>
<td>Closed</td>
<td>247</td>
</tr>
<tr>
<td>Cohomologous</td>
<td>250</td>
</tr>
<tr>
<td>Exact</td>
<td>247</td>
</tr>
<tr>
<td>Invariant</td>
<td>248, 249</td>
</tr>
<tr>
<td>Dihedral group</td>
<td>83, 84</td>
</tr>
<tr>
<td>Binary version</td>
<td>87</td>
</tr>
<tr>
<td>Direct sum of bilinear forms</td>
<td>46</td>
</tr>
<tr>
<td>Disc, unit, in gaussian plane</td>
<td>82</td>
</tr>
<tr>
<td>Disc model for hyperbolic geometry</td>
<td>71</td>
</tr>
<tr>
<td>Discontinuous action</td>
<td>39</td>
</tr>
<tr>
<td>Discrete subgroup</td>
<td>98</td>
</tr>
<tr>
<td>Discrete uniform subgroup</td>
<td>98</td>
</tr>
<tr>
<td>Displacement function</td>
<td>90</td>
</tr>
<tr>
<td>Index</td>
<td>415</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Divisibility of the order of a group by the degree of an irreducible representation, 145</td>
<td>Fixed point free representation, of generalized binary tetrahedral group, 199 of group with all Sylow subgroups cyclic, 165, 168–170</td>
</tr>
<tr>
<td>Dual representation, 147</td>
<td>Flat, 44</td>
</tr>
<tr>
<td>Duality, for involutive orthogonal Lie algebras, 237</td>
<td>affine space, 44, 45</td>
</tr>
<tr>
<td>local, for locally symmetric spaces, 246 for symmetric spaces, 246</td>
<td>cylinder, 45</td>
</tr>
<tr>
<td>Dynkin diagram (see Diagram, Schläfi- Dyakin)</td>
<td>torus, 45</td>
</tr>
<tr>
<td>Elliptic geometry, 74</td>
<td>Frame, 14</td>
</tr>
<tr>
<td>Elliptic spaces, indefinite, 382</td>
<td>coordinate, 14</td>
</tr>
<tr>
<td>Embedding, 8</td>
<td>moving, 14</td>
</tr>
<tr>
<td>Borel, 260</td>
<td>orthonormal, 50</td>
</tr>
<tr>
<td>Euclidean group, 14, 65</td>
<td>Frame bundle, 15</td>
</tr>
<tr>
<td>Euclidean space, 14, 65</td>
<td>Free action, 11</td>
</tr>
<tr>
<td>Euclidean space form, 69</td>
<td>Frobenius Reciprocity Theorem, 142</td>
</tr>
<tr>
<td>compact, 105, 125</td>
<td>Frobenius-Schur Relations, 140</td>
</tr>
<tr>
<td>complete, 106</td>
<td>Frobenius-Schur Theorem, 153</td>
</tr>
<tr>
<td>classification, affine, 2-dimensional case, 77</td>
<td>Fundamental group, 34</td>
</tr>
<tr>
<td>3-dimensional case, 112, 117, 118, 120, 121</td>
<td>Fundamental Theorem of Riemannian Geometry, 47</td>
</tr>
<tr>
<td>isometric, 2-dimensional case, 77–79</td>
<td>Fundamental vector field, 16</td>
</tr>
<tr>
<td>3-dimensional case, 123, 124</td>
<td>Gauss (= gaussian) curvature, 52</td>
</tr>
<tr>
<td>Exponential map, of a connection, 22</td>
<td>Gauss Lemma, 80</td>
</tr>
<tr>
<td>of a Lie group, 10</td>
<td>Gauss (= gaussian) place, 82</td>
</tr>
<tr>
<td>of a linear Lie group, 13</td>
<td>General linear group, 13</td>
</tr>
<tr>
<td>Exterior derivative, 6, 7</td>
<td>Geodesic, 21</td>
</tr>
<tr>
<td>Exterior product, 6</td>
<td>complete, 21</td>
</tr>
<tr>
<td>Exterior tensor product of representations, 196</td>
<td>light-like, 342</td>
</tr>
<tr>
<td>Faithful representation, 138</td>
<td>maximal, 21</td>
</tr>
<tr>
<td>Fibre (= fiber), 16</td>
<td>minimizing, 93</td>
</tr>
<tr>
<td>Finite rotation groups, 83–87</td>
<td>space-like, 342</td>
</tr>
<tr>
<td>binary versions, 87, 88</td>
<td>time-like, 342</td>
</tr>
<tr>
<td>Finiteness theorems for discontinuous groups, 341, 389, 390</td>
<td>Geodesic convexity, 95, 342</td>
</tr>
<tr>
<td>Fixed point free groups, 155</td>
<td>Geodesic polar coordinates, 80</td>
</tr>
<tr>
<td>classification, all Sylow subgroups cyclic, 163</td>
<td>Germ of Killing vector field, 381</td>
</tr>
<tr>
<td>perfect, 181</td>
<td>Gram-Schmidt Process, 50</td>
</tr>
<tr>
<td>solvable, 179</td>
<td>Grassmann manifold (= grassmannian), 306</td>
</tr>
<tr>
<td>when not solvable, 195, 196</td>
<td>indefinite, 382</td>
</tr>
<tr>
<td>necessary conditions, 160</td>
<td>space forms of, 308, 318, 319</td>
</tr>
<tr>
<td>pq-conditions, 160</td>
<td>Hantzsche-Wendt Theorem, 117, 118, 120, 121</td>
</tr>
<tr>
<td>Sylow structure, 161</td>
<td>Hermitian manifold, 259</td>
</tr>
<tr>
<td>Fixed point free representation, 155</td>
<td>Hermitian metric, 259</td>
</tr>
<tr>
<td>under action of automorphisms, 216–218</td>
<td>Hermitian symmetric space, 260</td>
</tr>
<tr>
<td>of arbitrary group, 208</td>
<td>classification, 293</td>
</tr>
<tr>
<td>of binary icoshedral group, 181, 202</td>
<td>Holonomy, compact euclidean space forms, 110</td>
</tr>
<tr>
<td>of generalized binary octahedral group, 201</td>
<td>Holonomy group, 107, 108</td>
</tr>
<tr>
<td>Holonomy homomorphism, 109</td>
<td>Homogeneous coset space, 13</td>
</tr>
</tbody>
</table>
Homogeneous pseudo-riemannian manifold, 73, 377
classification, pseudo-riemannian, constant nonzero curvature, 370
locally isotropic, 391
riemannian, constant curvature, 88, 89
structure, pseudo-riemannian, flat, 135
Hopf-Killing Theorem, 69
Hopf-Rinow Theorem, 94
Horizontal curve, 18
Horizontal lift, 17
Horizontal space, 16
Horizontal vector, 16
Hyperbolic space, 67
disc model, 71
indefinite, 67
Poincaré bounded model, 71
Poincaré upper half space model, 71
Hyperbolic space form, 69
classification in homogeneous case, 88, 89

Icosahedral group, 85
binary version, 87
characterization, 181

Immersion, 8

Implicit Function Theorem (= Inverse Function Theorem), 8
Indefinite Cayley plane, 383
Indefinite elliptic space, 382
Indefinite Grassmann manifold, 382
finiteness theorem, 390
Indefinite hyperbolic space, 382
Indefinite orthogonal group, 381
Indefinite symplectic group, 381
Indefinite unitary group, 381
Induced connection, 41
Induced covering, 36
Induced representation, 141, 142
Induced vector field, 4, 11
Infinitesimal transvection, 233, 298
Inner product on tangent space, 46
Integrable almost-complex structure, 258
Integral curve, 4
Intertwining operator, 139
Invariant of a representation, 147
Invariant bilinear form, 147–149, 234
Invariant differential form, 248, 249
Invariant vector field, 10
Inverse Function Theorem, 8
Involution, 376
Cartan, 376
Involutioive orthogonal Lie algebra, 233, 334
classification, 286–293
duality, 237

Involutioive orthogonal Lie algebra, euclidean, 236
irreducible, 236
maximal, 235, 236
structure of, 236, 238, 240
sub-, 235

Involutioive sectional curvature, 379
Irreducible involutioive orthogonal Lie algebra, 236
Irreducible linear Lie group, 374
Irreducible pseudo-riemannian manifold, 242, 379
Irreducible representation, 138, 276
Irreducible riemannian manifold, 242
Irreducible symmetric space, 242, 243, 379
Isometry, 57
local, 57
Isothermal coordinates, 79
existence, 80
Isotropic pseudo-riemannian manifold, 371, 381
characterization, 385, 386, 394, 395
classification, constant curvature, 372, 373
homogeneous locally isotropic, 391
partial, locally isotropic, 391

Isotropic riemannian manifold, 293
characterization, 294, 299
classification, 299, 300

Isotropy algebra, 12
Isotropy group, 12
linear, 232, 282–283
local, 232, 380
isotropy irreducible homogeneous space, 300

Jacobi Identity, 5
Jordan Theorem, 100

Kaehler (= kaehlerian) form, 259
Kaehler (= kaehlerian) manifold, 259
Kaehler (= kaehlerian) metric, 259
Kaehler (= kaehlerian = hermitian) symmetric space, 260
classification, 293
Kernel of action, 11
Killing form, 234
Cartan criterion for semisimplicity, 234
Killing-Hopf Theorem, 69
Killing vector field, 381
Klein bottle, 76–78
Koebe Uniformization Theorem, 82

Lattice, of roots, 274
of weights, 274
Lattice space forms, 359, 362
Length, arc, 47, 91
Levi-Civitá connection, 47
Lie algebra, 5, 9
 Cartan classification, 268, 269
 Cartan integers, 266
 Cartan involution, 376
 Cartan matrix, 266
 center, 274, 275
 extended Schläfli-Dynkin diagram, 269, 270
 involution, 376
involutive orthogonal, 233, 234
 classification, 286–293
duality, 237
euclidean, 236
irreducible, 236
maximal, 235, 236
 structure of, 236, 238, 240
 sub-, 235
isomorphism theorem, 267
Killing form, 234
 positive root of, 266
reductive, 374, 375
 regular element of, 266
root of, 265
 root chain of, 265
 root space of, 265
Schläfli-Dynkin diagram, 268
 semisimplicity, 234
 simple root of, 266
 singular element of, 266
 subalgebra of maximal rank in, 275–286
 characterization, 276
 classification, 278–281
Lie group, 9
 (See also Lie algebra)
Lifting Map Theorem, 36
Light-like geodesic, 342
Linear differential form, 5, 7
 Local coordinate, 2
 complex, 81, 257
 neighborhood, 2
 system, 2
Local isometry, 57, 380
Local one parameter group, 4
Local transvection, 232
 Locally homogeneous, 381
 Locally isotropic, 381
 Locally simply connected, 35
 Locally symmetric space, affine, 31
 pseudo-riemannian, 60, 381
 riemannian, 60, 232
Lorentz group, 65
Lorentz manifold, 64

Lorentz metric, 64
Lorentz signature, 64

Manifold, complex, 81, 257
differentiable, 2
flat, 44
hermitian, 259
isotropic pseudo-riemannian, 371, 381
isotropic riemannian, 293
isotropy irreducible, 300
kaehlerian, 259
locally isotropic, 381
locally symmetric, 31, 60, 232
prime characteristic, 284
pseudo-riemannian, 46
riemannian, 46
symmetric, 44, 62, 240
two point homogeneous, 293

Map of maximal rank, 8
Matrix function of representation, 140, 141
Maximal geodesic, 21
Moebius band, 76, 78
Monomial representation, 141
 as induced representation, 142
Monothetic group, 254
 generator, 254
Moving frame, 14, 15
 orthonormal, 50
 structure equations, 26, 50, 51
Multiplicity of a covering, 35
 of a subrepresentation, 141
 of a weight, 271

Natural projection, 39
Negative definite, 46
Nondegenerate bilinear form, 46
Normal coordinate, 22
 neighborhood, 22
 system, 22
Normal (= regular) covering, 35

Octahedral group, 85
 binary version, 87
 generalized, 198
 fixed point free representations, 201
One parameter group, 5
 subgroup, 10
Order of a symmetric space, 333
Orbit, 12
Orbit space, 12, 39
Orientation, 81
space-, 345
time-, 345
topological, 81, 345
Orthogonal group, 13, i4, 65, 381
Orthogonal involutive Lie algebra (see Involutive orthogonal Lie algebra)
Orthogonal representation, 151
Orthornormal basis, 50
closed, 64, 131
Orthornormal moving frame, 50
structure equations, 50, 51

\(p\)-group, 156
Sylow sub-, 156
Parallel translation by a group element, 9
of affine space, 45
related to a connection, 18, 19
Parallelism, euclidean, 14, 64
Levi-Civit\(\hat{a}\), 47
Pfaffian form, 5, 7
Poincaré duality, 251
Poisson bracket, 5
Polyhedral groups, 84, 85
binary versions, 87
Positive definite, 46
\(pq\)-conditions, 160
Product, of connections, 17
of differentiable manifolds, 2
of pseudo-riemannian manifolds, 47
of riemannian manifolds, 47
Projective geometry, 74
Projective space, 74, 381
Properly discontinuous, 39
Pseudo-euclidean space, 64, 65
group of, 65
space forms, 68, 127–136
Pseudo-hyperbolic space, 67
space forms, 68, 337–373
Pseudo-riemannian covering, 60
Pseudo-riemannian euclidean space, 64, 65
Pseudo-riemannian hyperbolic space, 67
Pseudo-riemannian manifold, 46
completeness of, 47
homogeneity of, 73
Levi-Civit\(\hat{a}\) connection on, 47
metric on, 46
signature, 64
product of, 47
Pseudo-riemannian spherical space, 67
Pseudo-riemannian symmetric space, 60, 62
compact version, 377, 378
Pseudo-spherical space, 67
Pseudo-spherical space forms, 339
classical type, 347, 348
classification, finite case, 341
extrem, 341
structure, 339, 540

Pseudo-spherical space forms, classification, homogeneous case, 353, 362, 367, 370
compact subcase, 371
lorentzian subcase, 371
riemannian subcase, 88, 89, 371
isotropic case, 372
geodesic connectivity, 342
geodesic convexity, 342, 344
hyperbolic rotation type, 351, 352
lattice type, 357, 359
parabolic translation type, 356, 358

Quotient space, 12, 39
topology of, 12

Rank, of compact Lie group, 254
of differentiable map, 8
of finite abelian group, 304
of riemannian symmetric space, 253
Reductive Lie algebra, 375
Reductive Lie group, 375
Reductive subalgebra, 375
Reductive subgroup, 375
Regular (= normal) covering, 35
Regular map, 8
Related vector fields, 8

Representation, alternation of, 147
bilinear invariant of, 147–149
character of, 138, 141
complex, 151
conjugate, 152
degree of, 138
direct sum of, 138
divisibility of, 145
dual, 147
equivalence of, 138, 141
faithful, 138
fixed point free, 155
Frobenius-Schur relations on, 140
full reducibility of, 140, 270
fully reducible, 138, 139
of group, 138
induced, 142
invariant of, 147
irreducible, 138
of Lie algebra, 270–273
of Lie group, 270–273
matrix function of, 140, 141, 143, 144
monomial, 141
multiplicity of subrepresentation in, 141
orthogonal, 151
quaternionic, 153, 154
real, 151
INDEX

Representation, regular, 143
structure of, 143-145
sub-, 138
symmetrization of, 147
tensor product of, 147, 196, 271
transitive, 141
unitary, 151
(See also Fixed point free representation)
Representation space, 138
de Rham’s Theorem, 248
Riemann sphere, 82
Riemann surface, 81
Riemannian covering, 60'
Riemannian curvature (see Sectional curvature)
Riemannian euclidean space, 14, 65
Riemannian Geometry, Fundamental Theorem, 47
Riemannian hyperbolic space, 67
Riemannian manifold, 46
homogeneous, 13, 73
isotropic, 293
characterization, 294, 299
classification, 299, 300
isotropy irreducible, 300
symmetric, 60, 62, 232, 240
classification, 286-293
order, 333
(See also Space forms; Symmetric space)
two point homogeneous, 293
classification, 299, 300
Riemannian metric, 46
of constant curvature, 69
signature of, 64
Riemannian product, 47
Riemannian sphere, 67
Root of Lie algebra, 265
chain, 265
lattice, 274
positive, 266
simple, 266
space in Lie algebra, 265
Schläfli-Dynkin diagram, 268, 269
automorphism of, 289, 290
extended, 269, 270
F. Schur’s Theorem, 57
I. Schur’s Lemma, 139
Sectional curvature, 54, 55
constant, 57, 63, 66
gaussian, 52
involutive, 379
of symmetric space, 245-247, 377
Semi-locally 1-connected, 35
Semi-simple Lie group or algebra, 234
de Siebenfall-Borel on subgroups of
maximal rank, 275-286
classification, 276-281
criterion, 276, 277
de Siebenfall Conjugacy Theorem, 256
Signature, of bilinear form, 64
lorentzian, 64
of pseudo-riemannian manifold, 64
of pseudo-riemannian metric, 64
riemannian, 64
Simply connected, 34
locally, in the large, 35
Skew basis, 131, 132
Smooth curve, 2
Solvable group, 163
Space (see Manifold)
Space forms, 68, 69, 339
euclidean, 69, 77-79, 88, 105, 106, 112,
117-125
of Grassmann manifolds, 306, 308, 318, 319
hyperbolic, 69, 88
pseudo-hyperbolic, 339
(See also pseudo-spherical, below)
pseudo-riemannian homogeneous, 73, 88,
89, 135, 370-373, 391
pseudo-riemannian locally isotropic, 88-
89, 385, 386, 394, 355
pseudo-spherical, 339-341, 347, 348,
351-353, 356-359, 362, 367, 340-372
of riemannian symmetric spaces, compact
irreducible, 306, 308, 318-325
of non-negative curvature, 329, 333-336
spherical, 69, 74, 88-89, 155, 171, 218-222
Space-like geodesic, 342
Space-orientation, 345
Special linear group, 13
Spherical space form, 69
classification, homogeneous case, 88, 89,
371
even dimensional case, 74
(4k + 1)-dimensional case, 171
general case, 218-222
criterion for isometry, 155
Vincent’s program, 155, 156
Stable neighborhood, 101
Structure equations of É. Cartan,
frame bundle formulation, 24
moving frame formulation, 26
orthonormal frame formulation, 50, 51
polar coordinate formulation, 27
Submanifold, 8
Subrepresentation, 138
INDEX

Sylow subgroup, 156
Sylow Theorems, 156
Symmetric bilinear form, 46
Symmetric space, affine, 44
 locally, 31
 pseudo-riemannian, 62, 240, 377, 378
 compact version, 377–378
 curvature, 377–379
 locally, 60, 232
riemannian, 62, 240
 associated to involutive orthogonal
 Lie algebra, 241, 242
 classification, 286–293
 cohomology, 250, 251
 compact type, 245
 curvature, 245, 246
 decomposition, 243
 duality, 246
 euclidean type, 245
 hermitian, 260
 classification, 293
 structure, 260
 kaehlerian (= hermitian), 260
 local duality, 246
 locally, 60, 232
 noncompact type, 245
 rank, 253
 space forms (see Space forms; Spher-
 ical space forms)
 structure, 243
 two point homogeneous, 294–300
 Symmetrization of a representation, 147
Symmetry, geodesic, 31, 62

Tangent map, 7
Tangent space, 3
Tangent vector, 3
 field, 3
Tensor, curvature, 25
 Riemann, 25
 torsion, 25
Tensor product of representations, 147
 exterior, 196
Tetrahedral group, 84
 binary version, 87
 generalized, 198
 fixed point free representations, 199
Time axis, 343
Time function, 343
Time-like geodesic, 342
Time orientation, 345
Torsion form, 23
Torsion tensor, 25
Torus, flat, 45
 Transfer, 158
 Transformation formula for connec-
 tion form, 19
 Transition functions of frame bundle, 15
 Transitive group action, 13
 Translation, of affine space, 45
 Clifford, 90, 227
 of euclidean space, 14
 of Lie group, 9
 parallel, 18
 of symmetric space (= transvection), 232
 Transvection, 232
 infinitesimal, 233, 302
 local, 232
 Two point homogeneous space, 293
 characterization, 294, 299
 classification, 299, 300
Uniform subgroup, 98
Uniformization of Riemann surfaces, 82
Unique Lifting Theorem, 33
Unit disc, 82
Unitary representation, 151
Universal covering, 37
Urddangen, 96

Vector, tangent, 3
Vector field, 3
 fundamental, 16
 horizontal, 16
 invariant, 9
 Killing, 381
 related, 8
 vertical, 16
Verlagerung, 158
Vertical space, 16
Vertical vector, 16
Vincent's partial solution to the spherical
 space form problem, 171
Vincent's program for the spherical space
 form problem, 155, 156

Wedge product (= exterior product), 6
Weight of representation, 271
 chain of, 272
 greatest, 272
 determination of representation from,
 273
 lattice, 274
 multiplicity of, 271
 space, 271
 vector, 271
Weyl group, 254, 255, 266
 order of, 285–286
Witt's Theorem, 62