Asymptotic Analysis for Periodic Structures
Asymptotic Analysis for Periodic Structures

A. Bensoussan
J.-L. Lions
G. Papanicolaou

AMS CHELSEA PUBLISHING
American Mathematical Society • Providence, Rhode Island
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.</td>
<td>Another approach to Theorem 6.3</td>
<td>51</td>
</tr>
<tr>
<td>7.</td>
<td>Complements on boundary conditions</td>
<td>53</td>
</tr>
<tr>
<td>7.1.</td>
<td>A remark on the nonhomogeneous Neumann’s problem</td>
<td>53</td>
</tr>
<tr>
<td>7.2.</td>
<td>Higher order boundary conditions</td>
<td>54</td>
</tr>
<tr>
<td>7.3.</td>
<td>Proof of (7.1.6), (7.1.7)</td>
<td>57</td>
</tr>
<tr>
<td>8.</td>
<td>Reiterated homogenization</td>
<td>58</td>
</tr>
<tr>
<td>8.1.</td>
<td>Setting of the problem: Statement of the main result</td>
<td>58</td>
</tr>
<tr>
<td>8.2.</td>
<td>Approximation by smooth coefficients</td>
<td>61</td>
</tr>
<tr>
<td>8.3.</td>
<td>Asymptotic expansion</td>
<td>64</td>
</tr>
<tr>
<td>8.4.</td>
<td>Proof of the reiteration formula for smooth coefficients</td>
<td>67</td>
</tr>
<tr>
<td>8.5.</td>
<td>Correctors</td>
<td>69</td>
</tr>
<tr>
<td>9.</td>
<td>Homogenization of elliptic systems</td>
<td>70</td>
</tr>
<tr>
<td>9.1.</td>
<td>Setting of the problem</td>
<td>70</td>
</tr>
<tr>
<td>9.2.</td>
<td>Statement of the homogenization procedure</td>
<td>71</td>
</tr>
<tr>
<td>9.3.</td>
<td>Proof of the homogenization theorem</td>
<td>73</td>
</tr>
<tr>
<td>9.4.</td>
<td>Correctors</td>
<td>74</td>
</tr>
<tr>
<td>10.</td>
<td>Homogenization of the Stokes equation</td>
<td>76</td>
</tr>
<tr>
<td>10.1.</td>
<td>Orientation</td>
<td>76</td>
</tr>
<tr>
<td>10.2.</td>
<td>Statement of the problem and of the homogenization theorem</td>
<td>76</td>
</tr>
<tr>
<td>10.3.</td>
<td>Proof of the homogenization theorem</td>
<td>78</td>
</tr>
<tr>
<td>10.4.</td>
<td>Asymptotic expansion</td>
<td>80</td>
</tr>
<tr>
<td>11.</td>
<td>Homogenization of equations of Maxwell’s type</td>
<td>81</td>
</tr>
<tr>
<td>11.1.</td>
<td>Setting of the problem</td>
<td>81</td>
</tr>
<tr>
<td>11.2.</td>
<td>Asymptotic expansions</td>
<td>82</td>
</tr>
<tr>
<td>11.3.</td>
<td>Another asymptotic expansion</td>
<td>84</td>
</tr>
<tr>
<td>11.4.</td>
<td>Compensated compactness</td>
<td>85</td>
</tr>
<tr>
<td>11.5.</td>
<td>Homogenization theorem</td>
<td>87</td>
</tr>
<tr>
<td>11.6.</td>
<td>Zero order term</td>
<td>90</td>
</tr>
<tr>
<td>11.7.</td>
<td>Remark on a regularization method</td>
<td>91</td>
</tr>
<tr>
<td>12.</td>
<td>Homogenization with rapidly oscillating potentials</td>
<td>91</td>
</tr>
<tr>
<td>12.1.</td>
<td>Orientation</td>
<td>91</td>
</tr>
<tr>
<td>12.2.</td>
<td>Asymptotic expansion</td>
<td>92</td>
</tr>
<tr>
<td>12.3.</td>
<td>Estimates for the spectrum and homogenization</td>
<td>93</td>
</tr>
<tr>
<td>12.4.</td>
<td>Correctors</td>
<td>96</td>
</tr>
<tr>
<td>12.5.</td>
<td>Almost periodic potentials</td>
<td>97</td>
</tr>
<tr>
<td>12.6.</td>
<td>Neumann’s problem</td>
<td>98</td>
</tr>
<tr>
<td>12.7.</td>
<td>Higher order equations</td>
<td>99</td>
</tr>
<tr>
<td>12.8.</td>
<td>Oscillating potential and oscillatory coefficients</td>
<td>101</td>
</tr>
<tr>
<td>12.9.</td>
<td>A phenomenon of uncoupling</td>
<td>102</td>
</tr>
<tr>
<td>13.</td>
<td>Study of lower order terms</td>
<td>103</td>
</tr>
<tr>
<td>13.1.</td>
<td>Orientation</td>
<td>103</td>
</tr>
<tr>
<td>13.2.</td>
<td>Asymptotic expansion</td>
<td>105</td>
</tr>
<tr>
<td>13.3.</td>
<td>Energy estimates</td>
<td>106</td>
</tr>
<tr>
<td>14.</td>
<td>Singular perturbations and homogenization</td>
<td>107</td>
</tr>
<tr>
<td>14.1.</td>
<td>Orientation</td>
<td>107</td>
</tr>
<tr>
<td>14.2.</td>
<td>Asymptotic expansion</td>
<td>108</td>
</tr>
<tr>
<td>14.3.</td>
<td>Homogenization with respect to Δ^2</td>
<td>109</td>
</tr>
<tr>
<td>15.</td>
<td>Non-local limits</td>
<td>111</td>
</tr>
</tbody>
</table>
CONTENTS

15.1. Setting of the problem 111
15.2. Non-local homogenized operator 112
15.3. Homogenization theorem 114
16. Introduction to non-linear problems 114
16.1. Formal general formulas 114
16.2. Compact perturbations 115
16.3. Non-compact perturbations 116
16.4. Non-linearities in the higher derivatives 117
17. Homogenization of multi-valued operators 118
17.1. Orientation 118
17.2. A formal procedure for the homogenization of problems of the calculus of variations 119
17.3. Unilateral variational inequalities 121
18. Comments and problems 123

Chapter 2. Evolution Operators 129
Orientation 129
1. Parabolic operators: Asymptotic expansions 129
1.1. Notations and orientation 129
1.2. Variational formulation 130
1.3. Asymptotic expansions: Preliminary formulas 134
1.4. Asymptotic expansions: The case $k = 1$ 135
1.5. Asymptotic expansions: The case $k = 2$ 136
1.6. Asymptotic expansions: The case $k = 3$ 137
1.7. Other form of homogenization formulas 138
1.8. The role of k 140
2. Convergence of the homogenization of parabolic equations 140
2.1. Statement of the homogenization result 140
2.2. Proof of the homogenization when $k = 2$ 140
2.3. Reduction to the smooth case 142
2.4. Proof of the homogenization when $0 < k < 2$ 144
2.5. Proof of the homogenization when $k > 2$ 147
2.6. Proof of the homogenization formulas when $a_{ij} \in L^\infty(\mathbb{R}_y^n \times \mathbb{R}_t)$ using L^p estimates 149
2.7. The L^p estimates 150
2.8. The adjoint expansion 153
2.9. Use of the maximum principle 153
2.10. Higher order equations and systems 154
2.11. Correctors 156
2.12. Non-linear problems 158
2.13. Remarks on averaging 162
3. Evolution operators of hyperbolic, Petrowsky, or Schrödinger type 165
3.1. Orientation 165
3.2. Linear operators with coefficients which are regular in t 165
3.3. Linear operators with coefficients which are irregular in t 168
3.4. Asymptotic expansions (I) 169
3.5. Asymptotic expansions (II) 170
3.6. Remarks on correctors 172
3.7. Remarks on nonlinear problems 173
3.8. Remarks on Schrödinger type equations 175
3.9. Nonlocal operators 176
4. Comments and problems 179
4.1. Singular perturbation and homogenization 181
4.2. Reiteration 183
4.3. Homogenization with rapidly oscillating potentials 184
4.4. Homogenization and penalty 184
4.5. Homogenization and regularization 186

Chapter 3. Probabilistic Problems and Methods 189
Orientation 189
1. Stochastic differential equations and connections with partial differential equations 190
1.1. Stochastic integrals 190
1.2. Itô’s formula 192
1.3. Strong formulation of stochastic differential equations 192
1.4. Connections with partial differential equations 193
2. Martingale formulation of stochastic differential equations 195
2.1. Martingale problem 195
2.2. Weak formulation of stochastic differential equations 196
2.3. Connections with PDE 197
3. Some results from ergodic theory 198
3.1. General results 198
3.2. Ergodic properties of diffusions on the torus 202
3.3. Invariant measure and the Fredholm alternative 206
4. Homogenization with a constant coefficients limit operator 209
4.1. Orientation 209
4.2. Diffusion without drift 209
4.3. Diffusion with unbounded drift 218
4.4. Convergence of functionals and probabilistic proof of homogenization 222
5. Analytic approach to the problem (4.4.3) 227
5.1. The method of asymptotic expansions 227
5.2. The method of energy 230
6. Operators with locally periodic coefficients 236
6.1. Setting of the problem 236
6.2. Probabilistic approach 237
6.3. Remarks on the martingale approach and the adjoint expansion method 243
6.4. Analytic approach to problem (6.1.5) 245
7. Reiterated homogenization 251
7.1. Setting of the problem 251
7.2. Proof of Theorem 7.1 256
8. Problems with potentials 258
8.1. A variant of Theorem 6.7 259
8.2. A general problem with potentials 261
9. Homogenization of reflected diffusion processes 264
9.1. Homogenization of the reflected diffusion processes 264
9.2. Proof of convergence 266
9.3. Applications to partial differential equations 269
10. Evolution problems
10.1. Orientation 271
10.2. Notation and setting of problems 271
10.3. Fredholm alternative for an evolution operator 272
10.4. The case $k < 2$ 275
10.5. The case $k = 2$ 280
10.6. The case $k > 2$ 282
10.7. Applications to parabolic equations 286
11. Averaging 287
11.1. Setting of the problem 287
11.2. Proof of Theorem 11.1 287
11.3. Remarks on generalized averaging 292
12. Comments and problems 294

Chapter 4. High Frequency Wave Propagation in Periodic Structures 299
Orientation 299
1. Formulation of the problems 300
1.1. High frequency wave propagation 300
1.2. Propagation in periodic structures 303
2. The W. K. B. or geometrical optics method 304
2.1. Expansion for the Klein-Gordon equation 304
2.2. Eikonal equation and rays 306
2.3. Transport equations 307
2.4. Connections with the static problem 309
2.5. Propagation of energy 310
2.6. Spatially localized data 311
2.7. Expansion for the fundamental solution 313
2.8. Expansion near smooth caustics 314
2.9. Impact problem 314
2.10. Symmetric hyperbolic systems 315
2.11. Expansions for symmetric hyperbolic systems (low frequency) 319
2.12. Expansions for symmetric hyperbolic systems (probabilistic) 323
2.13. Expansion for symmetric hyperbolic systems (high frequency) 326
2.14. WKB for dissipative symmetric hyperbolic systems 333
2.15. Operator form of the WKB 338
3. Spectral theory for differential operators with periodic coefficients 341
3.1. The shifted cell problems for a second order elliptic operator 341
3.2. The Bloch expansion theorem 342
3.3. Bloch expansion for the acoustic equation 343
3.4. Bloch expansion for Maxwell’s equation 344
3.5. The dynamo problem 344
3.6. Some nonselfadjoint problems 345
4. Simple applications of the spectral expansion 347
4.1. Lattice waves 347
4.2. Schrödinger equation 349
4.3. Nature of the expansion 351
4.4. Connection with the static theory 354
4.5. Validity of the expansion 355
4.6. Relation between the Hilbert and Chapman-Enskog expansion 358
4.7. Spatially localized data and stationary phase 358
4.8. Behavior of probability amplitudes 360
4.9. The acoustic equations 361
4.10. Dual homogenization formulas 363
4.11. Maxwell’s equations 366
4.12. A one dimensional example 370
5. The general geometrical optics expansion 372
5.1. Expansion for Schrödinger’s equation 372
5.2. Eikonal equations and rays 376
5.3. Transport equations 376
5.4. Connections with the static theory 379
5.5. Spatially localized data 380
5.6. Behavior of probability amplitudes 380
5.7. Expansion for the wave equation 380
5.8. Expansion for the heat equation 381
6. Comments and problems 384

Bibliography 387
Preface

In the thirty three years since this book appeared, homogenization, or the theory of partial differential equations with rapidly oscillating coefficients, has flourished. The book has been out of print for many years and many other book-level expositions of various aspects of homogenization have appeared in the meantime. We decided to re-print the book, with minor corrections and bibliographical additions, for two reasons. First, we are very fond of the book since it contains work in our favorite subject, which was done at an early part of our career and has cemented our life-long friendship. Second, we want to pay homage to our senior co-author and mentor Jacques-Louis Lions, who is no longer with us. He introduced us to this field and he was the driving force behind this book, with his own contributions and his enthusiasm for carrying out this endeavor.

We hope that the book will still be useful to those interested in homogenization. We would like to thank all our colleagues with whom we have worked on problems in the area of homogenization in the past. The book was typed in LaTeX by Simon Rubinstein-Salzedo at Stanford. We thank him and appreciate very much his help. We also thank the American Mathematical Society for including the book in their publications.

Alain Bensoussan
George Papanicolaou

June 2011
Bibliography

[83] François Murat. Sur l’homogénéisation d’inéquations elliptiques du 2ème ordre, relatives au convexe $k(\psi_1, \psi_2) = \{ v \in H^1_0(\Omega) \mid \psi_1 \leq v \leq \psi_2 \text{ p.p. dans } \Omega \}$, 1976.

