Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities
Selected Titles in This Series

Volume

5 Emmanuel Hebey
 Nonlinear analysis on manifolds: Sobolev spaces and inequalities
 2000

3 Percy Deift
 Orthogonal polynomials and random matrices: A Riemann-Hilbert approach
 2000

2 Jalal Shatah and Michael Struwe
 Geometric wave equations
 2000

1 Qing Han and Fanghua Lin
 Elliptic partial differential equations
 2000
Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities
Courant Lecture Notes in Mathematics

Executive Editor
Jalal Shatah

Managing Editor
Paul D. Monsour

Production Editor
Reeva Goldsmith

Copy Editor
Joe Shearer
5 Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities

Courant Institute of Mathematical Sciences
New York University
New York, New York

American Mathematical Society
Providence, Rhode Island
2000 Mathematics Subject Classification. Primary 58E35; Secondary 53C21.

Library of Congress Cataloging-in-Publication Data

Hebey, Emmanuel, 1964–

Nonlinear analysis on manifolds : Sobolev spaces and inequalities / Emmanuel Hebey.
p. cm. — (Courant lecture notes ; 5)
Includes bibliographical references.
ISBN 0-8218-2700-6
II. Series.
QA323.H43 2000
515.782—dc21 00-061835

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.

© 1999 held by the author. All rights reserved.
Printed in the United States of America.

Reprinted by the American Mathematical Society, 2000
The American Mathematical Society retains all rights except those granted to the United States Government.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

Visit the AMS home page at URL: http://www.ams.org/
To Isabelle
Contents

Preface xi

Chapter 1. Elements of Riemannian Geometry 1
 1.1. Smooth Manifolds 1
 1.2. Riemannian Manifolds 7
 1.3. Curvature and Topology 10
 1.4. From Local to Global Analysis 11
 1.5. Special Coordinates 13

Chapter 2. Sobolev Spaces: The Compact Setting 19
 2.1. Background Material 19
 2.2. Sobolev Spaces on Riemannian Manifolds 21
 2.3. Sobolev Embeddings: General Results 25
 2.4. The Case of the Euclidean Space 30
 2.5. Sobolev Embeddings I 32
 2.6. Sobolev Embeddings II 33
 2.7. Compact Embeddings 37
 2.8. Poincaré and Sobolev-Poincaré Inequalities 40
 2.9. A Finiteness Theorem 44

Chapter 3. Sobolev Spaces: The Noncompact Setting 47
 3.1. Density Problems 47
 3.2. Sobolev Embeddings I 52
 3.3. Sobolev Embeddings II 63
 3.4. Disturbed Sobolev Inequalities 67

Chapter 4. Best Constants in the Compact Setting I 75
 4.1. Program \(B, \text{ Part I}\) 76
 4.2. The Role of \(\alpha_q(M)\) 84
 4.3. Program \(A, \text{ Part I}\) 91
 4.4. On the Scale of Optimal Inequalities 114
Chapter 5. Best Constants in the Compact Setting II
 5.1. The Case of the Standard Unit Sphere 120
 5.2. Program B, Part II 124
 5.3. Program A, Part II 132
 5.4. The Role of $B_0(g)$ 150
 5.5. One More Question 155

Chapter 6. Optimal Inequalities with Constraints
 6.1. The Case of an Arbitrary Compact Manifold 161
 6.2. The Case of the Sphere 166
 6.3. Applications to the Nirenberg Problem 170

Chapter 7. Best Constants in the Noncompact Setting
 7.1. Questions 1 and 2 182
 7.2. Questions 3 and 4 186
 7.3. Proof of Theorem 7.2 191
 7.4. Explicit Inequalities 222

Chapter 8. Euclidean-Type Sobolev Inequalities
 8.1. Euclidean-Type Generic Sobolev Inequalities 226
 8.2. Euclidean-Type Optimal Sobolev Inequalities 235
 8.3. Nash’s Inequality 244

Chapter 9. The Influence of Symmetries
 9.1. Geometric Preliminaries 249
 9.2. Compact Manifolds 251
 9.3. Optimal Inequalities for Compact Manifolds 253
 9.4. Compactness for Radially Symmetric Functions 260
 9.5. A Main Lemma for Complete Manifolds 263
 9.6. The Codimension 1 Case 266
 9.7. The General Case 271

Chapter 10. Manifolds with Boundary 279

Bibliography 283
Preface

These notes deal with the theory of Sobolev spaces on Riemannian manifolds. Though Riemannian manifolds are natural extensions of Euclidean space, the naive idea that what is valid for Euclidean space must be valid for manifolds is false. Several surprising phenomena appear when studying Sobolev spaces on manifolds. Questions that are elementary for Euclidean space become challenging and give rise to sophisticated mathematics, where the geometry of the manifold plays a central role. The reader will find many examples of this in the text.

These notes have their origin in a series of lectures given at the Courant Institute of Mathematical Sciences in 1998. For the sake of clarity, I decided to deal only with manifolds without boundary. An appendix concerning manifolds with boundary can be found at the end of these notes. To illustrate some of the results or concepts developed here, I have included some discussions of a special family of PDEs where these results and concepts are used. These PDEs are generalizations of the scalar curvature equation. As is well known, geometric problems often lead to limiting cases of known problems in analysis.

The study of Sobolev spaces on Riemannian manifolds is a field currently undergoing great development. Nevertheless, several important questions still puzzle mathematicians today. While the theory of Sobolev spaces for noncompact manifolds has its origin in the 1970s with the work of Aubin, Cantor, Hoffman, and Spruck, many of the results presented in these lecture notes have been obtained in the 1980s and 1990s. This is also the case for the applications already mentioned to scalar curvature and generalized scalar curvature equations. A substantial part of these notes is devoted to the concept of best constants. This concept appeared very early on to be crucial for solving limiting cases of some partial differential equations. A striking example of this was the major role that best constants played in the Yamabe problem.

These lecture notes are intended to be as self-contained as possible. In particular, it is not assumed that the reader is familiar with differentiable manifolds and Riemannian geometry. The present notes should be accessible to a large audience, including graduate students and specialists of other fields.

The present notes are organized into nine chapters. Chapter 1 is a quick introduction to differential and Riemannian geometry. Chapter 2 deals with the general theory of Sobolev spaces for compact manifolds, while Chapter 3 deals with the general theory of Sobolev spaces for complete, noncompact manifolds. Best constants problems for compact manifolds are discussed in Chapters 4 and 5, while Chapter 6 deals with some special type of Sobolev inequalities under
constraints. Best constants problems for complete noncompact manifolds are discussed in Chapter 7. Chapter 8 deals with Euclidean-type Sobolev inequalities. The influence of symmetries on Sobolev embeddings is discussed in Chapter 9. An appendix at the end of these notes briefly discusses the case of manifolds with boundaries.

It is my pleasure to thank my friend Jalal Shatah for encouraging me to write these notes. It is also my pleasure to express my deep thanks to my friends and colleagues Tobias Colding, Zindine Djadli, Olivier Druet, Antoinette Jourdain, Michel Ledoux, Frédéric Robert, and Michel Vaugon for stimulating discussions and valuable comments about the manuscript. Finally, I wish to thank Reeva Goldsmith, Paul Monsour, and Joe Shearer for the wonderful job they did in the preparation of the manuscript.

Emmanuel Hebey
Paris, September 1998
Bibliography

Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities

EMMANUEL HEBEY

This volume offers an expanded version of lectures given at the Courant Institute on the theory of Sobolev spaces on Riemannian manifolds. “Several surprising phenomena appear when studying Sobolev spaces on manifolds,” according to the author. “Questions that are elementary for Euclidean space become challenging and give rise to sophisticated mathematics, where the geometry of the manifold plays a central role.”

The volume is organized into nine chapters. Chapter 1 offers a brief introduction to differential and Riemannian geometry. Chapter 2 deals with the general theory of Sobolev spaces for compact manifolds. Chapter 3 presents the general theory of Sobolev spaces for complete, noncompact manifolds. Best constants problems for compact manifolds are discussed in Chapters 4 and 5. Chapter 6 presents special types of Sobolev inequalities under constraints. Best constants problems for complete noncompact manifolds are discussed in Chapter 7. Chapter 8 deals with Euclidean-type Sobolev inequalities. And Chapter 9 discusses the influence of symmetries on Sobolev embeddings. An appendix offers brief notes on the case of manifolds with boundaries.

This topic is a field undergoing great development at this time. However, several important questions remain open. So a substantial part of the book is devoted to the concept of best constants, which appeared to be crucial for solving limiting cases of some classes of PDEs.

The volume is highly self-contained. No familiarity is assumed with differentiable manifolds and Riemannian geometry, making the book accessible to a broad audience of readers, including graduate students and researchers.