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Preface

These notes are based on a first-year graduate course on probability and limit
theorems given at Courant Institute of Mathematical Sciences. Originally written
during the academic year 1996-97, they have been subsequently revised during the
academic year 1998-99 as well as in the Fall of 1999. Several people have helped
me with suggestions and corrections and I wish to express my gratitude to them.
In particular, I want to mention Prof. Charles Newman, Mr. Enrique Loubet, and
Ms. Vera Peshchansky. Chuck used it while teaching the same course in 1998–99,
Enrique helped me as TA when I taught from these notes again in the fall of 1999,
and Vera, who took the course in the fall of 2000, provided me with a detailed
list of corrections. These notes cover about three-fourths of the course, essentially
discrete time processes. Hopefully there will appear a companion volume some
time in the near future that will cover continuous time processes. A small amount
of measure theory is included. While it is not meant to be complete, it is my hope
that it will be useful.
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