C O U R A N T

____14

PETER D. LAX

LECTURE NOTES

Hyperbolic Partial Differential Equations

American Mathematical Society Courant Institute of Mathematical Sciences

Hyperbolic Partial Differential Equations

Courant Lecture Notes in Mathematics

Executive Editor Jalal Shatah

Managing Editor Paul D. Monsour

Assistant Editors Reeva Goldsmith Suzan Toma

Copy Editors Will Klump Marc Nirenberg Joshua Singer Peter D. Lax *Courant Institute of Mathematical Sciences* With an Appendix by Cathleen S. Morawetz

14 Hyperbolic Partial Differential Equations

Courant Institute of Mathematical Sciences New York University New York, New York

American Mathematical Society Providence, Rhode Island 2000 Mathematics Subject Classification. Primary 35L05, 35L10, 35L15, 35L20, 35L25, 35L30, 35L35, 35L40, 35L45, 35L50, 35L55, 35L60, 35L65, 35L67, 35P25.

For additional information and updates on this book, visit www.ams.org/bookpages/cln-14

Library of Congress Cataloging-in-Publication Data Lax, Peter D.

Hyperbolic partial differential equations / Peter D. Lax. p. cm. — (Courant lecture notes, ISSN 1529-9031 ; 14)

Includes bibliographical references.

ISBN-13: 978-0-8218-3576-0 (alk. paper)

1. Differential equations, Hyperbolic. I. Title.

2006050151

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

> © 2006 by the author. All rights reserved. Printed in the United States of America.

Some the paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/

 $10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1 \qquad 11 \ 10 \ 09 \ 08 \ 07 \ 06$

Contents

Foreword	vii
Chapter 1. Basic Notions	1
Chapter 2. Finite Speed of Propagation of Signals References	5 14
 Chapter 3. Hyperbolic Equations with Constant Coefficients 3.1. The Domain of Influence 3.2. Spacelike Hypersurfaces 3.3. The Initial Value Problem on Spacelike Hypersurfaces 3.4. Characteristic Surfaces 3.5. Solution of the Initial Value Problem by the Radon Transform 3.6. Conservation of Energy References 	15 15 19 23 25 29 33 34
 Chapter 4. Hyperbolic Equations with Variable Coefficients 4.1. Equations with a Single Space Variable 4.2. Characteristic Surfaces 4.3. Energy Inequalities for Symmetric Hyperbolic Systems 4.4. Energy Inequalities for Solutions of Second-Order Hyperbolic Equations 4.5. Energy Inequalities for Higher-Order Hyperbolic Equations References 	 37 37 39 41 45 46 53
Chapter 5. Pseudodifferential Operators and Energy Inequalities References	55 60
 Chapter 6. Existence of Solutions 6.1. Equivalence of the Initial Value Problem and the Periodic Problem 6.2. Negative Norms 6.3. Solution of the Periodic Problem 6.4. A Local Uniqueness Theorem References Chapter 7. Waves and Rays Introduction The Unit Initial Value De Idle of the Distribution	61 63 65 66 67 69 69
 7.1. The Initial Value Problem for Distributions 7.2. Progressing Waves 7.3. Integrals of Compound Distributions 	71 74 77

CONTENTS

7.4.	An Approximate Riemann Function		
	and the Generalized Huygens Principle	79	
Refer	References		
Classic		02	
Chapter	8. Finite Difference Approximation to Hyperbolic Equations	83	
8.1.	Consistency	83	
8.2.	Domain of Dependence	84	
8.3.	Stability and Convergence	85	
8.4.	Higher-Order Schemes and Their Stability	88	
8.5.	The Gibbs Phenomenon	96	
8.6.	The Computation of Discontinuous Solutions		
	of Linear Hyperbolic Equations	98	
8.7.	Schemes in More Than One Space Variable	103	
8.8.	The Stability of Difference Schemes	108	
Refer	ences	119	
Chaptor	0 Scottering Theory	121	
	Asymptotic Debayion of Solutions of the Ways Equation	121	
9.1.	The Ler Dhilling Sectoring Theory	121	
9.2.	The Lax-Phillips Scattering Theory	125	
9.3.	The Associated Semigroup	129	
9.4.	Back to the wave Equation in the Exterior of an Obstacle	132	
9.5.	The Semigroup Associated with Scattering by an Obstacle	139	
9.6.	Analytic Form of the Scattering Matrix	144	
9.7.	Scattering of Automorphic Waves	154	
Refer	ences	163	
Chapter	10. Hyperbolic Systems of Conservation Laws	165	
10.1	Scalar Equations: Basics	165	
10.2	The Initial Value Problem for Admissible Solutions	169	
10.2.	Hyperbolic Systems of Conversation Laws	178	
10.5.	The Viscosity Method and Entrony	184	
10.4.	Finite Difference Methods	180	
10.5.	The Flow of Compressible Fluids	102	
Defer	ances	195	
Kelei	ences	197	
Appendi	x A. Huygens' Principle for the Wave Equation		
	on Odd-Dimensional Spheres	201	
Refer	ences	202	
Annondi	r D. Humanhalia Dalumanniala	205	
Appendi	x b. Hyperbolic Polynolillais	203	
Refer	ences	206	
Appendi	Appendix C. The Multiplicity of Eigenvalues		
Refer	ences	209	
		011	
Appendi	x D. Mixed Initial and Boundary Value Problems	211	
Refer	ences	214	
Appendix E. Energy Decay for Star-Shaped Obstacles			
	by Cathleen S. Morawetz	215	
		210	

vi

Foreword

The theory of hyperbolic equations is a large subject, and its applications are many: fluid dynamics and aerodynamics, the theory of elasticity, optics, electromagnetic waves, direct and inverse scattering, and the general theory of relativity.

The first seven chapters of this book, based on notes of lectures delivered at Stanford in the spring and summer of 1963, deal with basic theory: the relation of hyperbolicity to the finite propagation of signals, the concept and role of characteristic surfaces and rays, energy, and energy inequalities.

The structure of solutions of equations with constant coefficients is explored with the help of the Fourier and Radon transforms. The existence of solutions of equations with variable coefficients with prescribed initial values is proved using energy inequalities. The propagation of singularities is studied with the help of progressing waves.

Chapter 8 of the second part describes finite difference approximations of hyperbolic equations. This subject is obviously of great importance for applications, but also intriguing for the theorist. The proof of stability of difference schemes is analogous to the derivation of energy estimates, but much more sophisticated.

Chapter 9 presents a streamlined version of the Lax-Phillips scattering theory. The last section describes the Pavlov-Faddeev analysis of automorphic waves, and their mysterious connection to the Riemann hypothesis.

Chapter 10, the only one dealing with nonlinear waves, is about hyperbolic systems of conservation laws, an active research area today. We present the basic concepts and results.

Five brief appendices sketch topics that are important or amusing, such as Huygens' principle, a theory of mixed initial and boundary value problems, and the use of nonstandard energy identities.

I hope that this book will serve well as an introduction to the multifaceted subject of hyperbolic equations.

Peter Lax New York February 2006

Titles in This Series

Volume

- 14 Peter D. LaxHyperbolic partial differential equations 2006
- 13 Oliver BühlerA brief introduction to classical, statistical, and quantum mechanics 2006
- 12 Jürgen Moser and Eduard J. Zehnder Notes on dynamical systems 2005
- 11 V. S. VaradarajanSupersymmetry for mathematicians: An introduction 2004
- 10 **Thierry Cazenave** Semilinear Schrödinger equations 2003
- 9 Andrew MajdaIntroduction to PDEs and waves for the atmosphere and ocean 2003
- 8 **Fedor Bogomolov and Tihomir Petrov** Algebraic curves and one-dimensional fields 2003
- 7 S. R. S. Varadhan Probability theory 2001
- 6 Louis NirenbergTopics in nonlinear functional analysis2001
- 5 Emmanuel Hebey
 Nonlinear analysis on manifolds: Sobolev spaces and inequalities
 2000
 - 2000
- 3 Percy Deift

Orthogonal polynomials and random matrices: A Riemann-Hilbert approach 2000

TITLES IN THIS SERIES

- 2 Jalal Shatah and Michael Struwe Geometric wave equations 2000
- 1 **Qing Han and Fanghua Lin** Elliptic partial differential equations 2000

Hyperbolic Partial Differential Equations

PETER D. LAX

The theory of hyperbolic equations is a large subject, and its applications are many: fluid dynamics and aerodynamics, the theory of elasticity, optics, electromagnetic waves, direct and inverse scattering, and the general theory of relativity. This book is an introduction to most facets of the theory and is an ideal text for a second-year graduate course on the subject.

The first part deals with the basic theory: the relation of hyperbolicity to the finite propagation of signals, the concept and role of characteristic surfaces and rays, energy, and energy inequalities. The structure of solutions of equations with constant coefficients is explored with the help of the Fourier and Radon transforms. The existence of solutions of equations with variable coefficients with prescribed initial values is proved using energy inequalities. The propagation of singularities is studied with the help of progressing waves.

The second part describes finite difference approximations of hyperbolic equations, presents a streamlined version of the Lax-Phillips scattering theory, and covers basic concepts and results for hyperbolic systems of conservation laws, an active research area today.

Four brief appendices sketch topics that are important or amusing, such as Huygens' principle and a theory of mixed initial and boundary value problems. A fifth appendix by Cathleen Morawetz describes a nonstandard energy identity and its uses.

For additional information and updates on this book, visit

www.ams.org/bookpages/cln-14

CLN/14

