Stochastic Processes
Stochastic Processes
S. R. S. Varadhan
Courant Institute of Mathematical Sciences

16 Stochastic Processes

Courant Institute of Mathematical Sciences
New York University
New York, New York

American Mathematical Society
Providence, Rhode Island
Library of Congress Cataloging-in-Publication Data
Varadhan, S. R. S.
Stochastic processes / S. R. S. Varadhan.
p. cm. — (Courant lecture notes ; 16)
Includes bibliographical references and index.
ISBN 978-0-8218-4085-6 (alk. paper)
1. Stochastic processes. I. Title.

QA274.V37 2007
519.2'3-dc22 2007060837

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

© 2007 by the author. All rights reserved.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
10 9 8 7 6 5 4 3 2 12 11 10 09
Dedication

To Gopal

I had planned to complete this book within a short time of the publication of the volume on probability theory. But the events of September 11, 2001, intervened. We lost our son Gopal that day, a victim of violence in the name of God. I dedicate this volume to his memory.
This page intentionally left blank
Contents

Preface ix

Chapter 1. Introduction 1
 1.1. Continuous Time Processes 1
 1.2. Continuous Parameter Martingales 3
 1.3. Semimartingales 8
 1.4. Martingales and Stochastic Integrals 10

Chapter 2. Processes with Independent Increments 13
 2.1. The Basic Poisson Process 13
 2.2. Compound Poisson Processes 16
 2.3. Infinite Number of Small Jumps 17
 2.4. Infinitesimal Generators 20
 2.5. Some Associated Martingales 21

Chapter 3. Poisson Point Processes 25
 3.1. Point Processes 25
 3.2. Poisson Point Process 26

Chapter 4. Jump Markov Processes 29
 4.1. Simple Examples 29
 4.2. Semigroups of Operators 31
 4.3. Example: Birth and Death Processes 34
 4.4. Markov Processes and Martingales 35
 4.5. Explosion 39
 4.6. Recurrence and Transience 44
 4.7. Invariant Distributions 45
 4.8. Beyond Explosion 47

Chapter 5. Brownian Motion 49
 5.1. Definition of Brownian Motion 49
 5.2. Markov and Strong Markov Property 51
 5.3. Heat Equation 53
 5.4. Recurrence 55
 5.5. Feynman-Kac Formula 56
 5.6. Arcsine Law 57
 5.7. Harmonic Oscillator 59
 5.8. Exit Times from Bounded Intervals 60
5.9. Stochastic Integrals 61
5.10. Brownian Motion with a Drift, Girsanov Formula 69
5.11. Ornstein-Uhlenbeck Process 72
5.12. Invariant Densities 75
5.13. Local Times 76
5.14. Reflected Brownian Motion 79
5.15. Excursion Theory 81
5.16. Invariance Principle 83
5.17. Representation of Martingales 85

Chapter 6. One-Dimensional Diffusions 87
6.1. Stochastic Differential Equations 87
6.2. Properties of the Solution 90
6.3. Connections with Differential Equations 94
6.4. Martingale Characterization 97
6.5. Random Time Change 99
6.6. Some Examples 100

Chapter 7. General Theory of Markov Processes 107
7.1. Introduction 107
7.2. Semigroups, Generators and Resolvents 108
7.3. Generators and Martingales 110
7.4. Invariant Measures and Ergodic Theory 111

Appendix A. Measures on Polish Spaces 113
A.1. The Space $C[0, 1]$ 116
A.2. The Space $D[0, 1]$ 118

Appendix B. Additional Remarks 121

Bibliography 123

Index 125
Preface

This is a continuation of the volume on probability theory and likewise covers the contents of courses given at the Courant Institute. This volume deals with certain elementary continuous-time processes. We start with a description of the Poisson process and related processes with independent increments. After a brief look at Markov processes with a finite number of jumps we proceed to study Brownian motion. We then go on to develop stochastic integrals and Itô’s theory in the context of one-dimensional diffusion processes. It ends with a brief survey of the general theory of Markov processes.
This page intentionally left blank
This page intentionally left blank
Bibliography

This page intentionally left blank
Index

C[a, b], 3
D[a, b], 3

arcsine law, 57

Bessel process, 104
birth and death process, 34
Brownian motion, 49
 geometric, 100
 Markov property, 51
 strong Markov property, 51

Chapman-Kolmogorov equations, 29
continuous-parameter martingale, 3

differential equations and Markov processes, 94
Doob decomposition, 8
Doob’s h-transform, 105
Doob’s inequality, 4
Doob-Meyer decomposition, 8
Dynkin’s formula, 110

excursion theory, 81
exit distribution, 36
exit time, 36
 distribution, 60
explosion, 39, 71, 102

Feller’s test, 102
Feynman-Kac formula, 56
filtration, 3

generator, 31
Girsanov formula, 69

harmonic oscillator, 59
heat equation, 53

infinitesimal generator, 20, 31
invariant distribution, 45, 75, 111

Itô’s formula, 66
 for stochastic integrals, 91

jump Markov process, 29
 and strong Markov property, 32

Lévy-Khintchine representation, 18
life after death, 47
local time, 76

martingale, 3, 22
 exponential martingale, 23, 68
 martingale problem, 97

one-dimensional diffusions, 87
option pricing, 101
optional stopping, 5, 6
Ornstein-Uhlenbeck process, 72
outer measure, 2

point process, 25
 marked, 27
 Poisson, 26
Poisson process, 13
 compound, 16
 rate, 15
Poisson random measure, 26
processes with independent increments, 17

quadratic variation, 61

random time change, 99
recurrence, 55
reflected Brownian motion, 79
reflection principle, 52
regularity
 C[0, 1], 116
 D[0, 1], 118

semigroup, 20, 31
semimartingale, 8
stable laws, 19
stochastic differential equation
 existence of, 87
 properties of solutions of, 90
 uniqueness of, 87
stochastic integration, 10, 61
stochastic process, 1
stopped field, 4
stopping time, 4
submartingale, 4
supermartingale, 4

Tulceas’ theorem, 30

Wiener’s stochastic integral, 62
Stochastic Processes
S. R. S. VARADHAN

This is a brief introduction to stochastic processes studying certain elementary continuous-time processes. After a description of the Poisson process and related processes with independent increments as well as a brief look at Markov processes with a finite number of jumps, the author proceeds to introduce Brownian motion and to develop stochastic integrals and Itô's theory in the context of one-dimensional diffusion processes. The book ends with a brief survey of the general theory of Markov processes.

The book is based on courses given by the author at the Courant Institute and can be used as a sequel to the author's successful book Probability Theory in this series.

For additional information and updates on this book, visit
www.ams.org/bookpages/cln-16