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Preface

This book is based in part on a graduate course given by the first author at the
Courant Institute in fall 2005. Subsequently, the second author gave a modified
version of this course at the University of Rochester in spring 2007. In an earlier
book on the subject [21] the author considered only unitary ensembles; here the
primary focus is on orthogonal and symplectic ensembles.

In the first part of this book we present a unified treatment of the algebraic as-
pects of the unitary, orthogonal, and symplectic ensembles, following the approach
of Tracy and Widom [99] and Widom [103]. The second part of the book contains
an exposition of the work of the authors on the proof of universality in the bulk for
orthogonal and symplectic ensembles in [24]. A proof of universality in the bulk
for unitary ensembles can be found in [21].

Universality at the edge for the three types of invariant ensembles was ad-
dressed in [23]. The proof of universality in the bulk and at the soft and hard spec-
tral edges for orthogonal and symplectic ensembles with generalized Laguerre-type
weights using the methods of [23, 24] was given in [25]. In this introductory text,
however, we will limit our presentation to results from [24]. We will, however,
incorporate the streamlined proof of an important technical result (see Section 6.8)
from [16]: this replaces the more cumbersome approach in [23, 24].

We note that in this book we prove quantitative versions of the error estimates
for the Widom correction terms for orthogonal and symplectic ensembles with gen-
eralized Hermite-type weights. This is in contrast to [23, 24], where the authors
prove only o.1/ estimates for the errors (see Section 1.3).

The first author was supported in part by NSF Grant DMS–0500923. The
second author was supported in part by NSF Grant DMS-0556049; he would like
to thank the University of Rochester for the opportunity to serve on the faculty and
for the very conducive working atmosphere. In addition, he greatly appreciates
the value that Wilshire Associates Incorporated places on basic research, and is
grateful for the arrangement that allowed him to complete the work on the present
monograph.

The authors would also like to thank Alexei Borodin, Thomas Kriecherbauer,
and Chris Sinclair for very useful comments and information. Finally, the authors
would like to thank Paul Monsour for his masterful editing of the manuscript, for
his patience, and for his good cheer in the face of many last-minute changes to
the text.

Percy Deift and Dimitri Gioev
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