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Preface

These notes were prepared for a one-semester graduate course in introductory
classical fluid mechanics. The fluid mechanics curriculum at the Courant Institute
has traditionally consisted of a two-semester introductory sequence, followed by
special topic courses. It was common to treat incompressible fluids, both ideal and
viscous, in the first semester, and then to move to compressible flow, gas dynamics,
and shock waves in the second. Because of the pressures of time and course sched-
uling, and the ever-expanding scope of the subject matter, a decision was made
to offer instead a one-semester introductory course, which would include at least
some of the material on compressible flow, to be followed by a second-semester
special topic fluids course that could change from year to year depending upon
faculty and student interests.

The present course was developed for students with a strong undergraduate
mathematics background, but I have assumed no previous exposure to fluid me-
chanics. The selected material is fairly standard, but it was chosen to emphasize
the mathematical methods that have their origin in fluid theory. A central prob-
lem of the classical theory is the subtle relation between an ideal fluid and a real
fluid of small viscosity (or more precisely, a fluid flow with a large Reynolds num-
ber). Many of the crowning achievements of the fluid dynamicists of the nineteenth
and twentieth centuries, certainly including Prandtl’s boundary layer theory, airfoil
theory, much of the theory of singular perturbations, and the recent developments
surrounding triple-deck theory, are all motivated by this problem. I have tried to
keep some of these issues front and center when presenting the classical results in
potential flow and in models for the lift and drag of bodies in a flow. Some atten-
tion is paid to the problem of locomotion in fluids, since it provides an interesting
example where both Eulerian and Lagrangian methods play a role.

As a course in a mathematics curriculum, fluid mechanics should, in my opin-
ion, be presented as a beautiful, practical subject, involving a moving continuum
whose deformations are determined by certain natural physical laws. But the math-
ematical complexity of the subject is legion; to take one of many examples, the
global existence of solutions of the Navier-Stokes equations for an incompressible
fluid remains an open question. In an introductory course we must be content with
the relatively small number of model problems that convey the flavor of the subject
without excessive analysis.

The choices made here leave out, or only touch upon, many interesting and
important topics. Among these are turbulence, shallow-water theory, rotating fluids
and associated geophysical models, water waves, hydrodynamic stability, surface

ix



x PREFACE

tension phenomena, and, importantly, computational fluid dynamics. Nevertheless,
it is hoped that these notes offer a fair introduction to the classical theory and a
preparation for more specialized courses in fluid mechanics.

STEPHEN CHILDRESS





Supplementary Notes

Chapters 1 and 2. Much of the background material in these notes is covered
in the excellent classical texts [1, 5, 8]. Our discussion of compressible flow is
based for the most part on [2]. The other selected reference texts above contain
useful supplementary material. In particular [7] begins with a thorough treatment
of fluid kinematics. The classic work of L. Prandtl [9] is a rich source of ideas basic
to modern fluid dynamics. Also to be recommended is the review by James Serrin,
“Mathematical principles of classical fluid mechanics,” Handbuch der Physik, vol.
VIII/I, pp. 125–263, Springer, 1959.

While the basic laws of mechanics that underlie our subject are due to Newton
(1642–1727), the mathematical formulation of classical fluid dynamics was largely
the creation of J. L. d’Alembert (1717–1783), J. and D. Bernoulli (1667–1748 and
1700–1782), and especially L. Euler (1707–1783). An early description of the
“Eulerian” viewpoint was put forward in 1749 by d’Alembert, but as Lamb [4]
notes, Euler generalized this approach and also introduced the “Lagrangian” form
of fluid kinematics. Two of three fundamental papers in hydrodynamics, written
by Euler in 1755 and published in 1757, are translated in the recent volume cele-
brating the 250th anniversary of Euler’s work (see [10]). The reader interested in
the history of fluid dynamics will want to consult this valuable reference. In par-
ticular, the paper “From Newton’s mechanics to Euler’s equations” by O. Darrigol
and U. Frisch in [10] provides an excellent discussion of the emergence of crucial
ideas such as that of fluid pressure and the convective component of acceleration
from the dynamical models of fluid motion prevalent in that day.

Chapter 3. We refer to the monograph of Truesdell [21] for a discussion of
the history and evolution of the theory of vorticity and circulation. For an excellent
survey of many problems of vortex dynamics, see the monograph of P. G. Saffman
[19]. The work of Hermann von Helmholtz (1821–1894) and W. Thomson (Lord
Kelvin, 1824–1907) laid out the basic laws of vortex theory, although the vector
field r �u appears in d’Alembert’s work. However, d’Alembert wrongly assumed
that steady flows of an ideal incompressible fluid were necessarily irrotational.

An important outstanding problem of classical fluid mechanics concerns the
evolution of the vorticity field in the initial value problem for Euler flow of an
ideal incompressible fluid when the initial flow field is smooth. What is the largest
ultimate rate of growth in time of the magnitude of the vorticity? How fast does
the

R
!2 dV ultimately grow with time? Is it possible that vorticity could become

infinite somewhere in a finite time? The question is discussed in papers in [10],
where many references to recent work may be found.

189



190 SUPPLEMENTARY NOTES

Chapter 4. Paul R. H. Blasius (1883–1970) was one of the first students of
Prandtl. The famous Blasius formulas appeared in 1910 (Z. Math. Phys. 58, pp. 90–
110). Locomotion in an ideal fluid was first studied by P. G. Saffman in 1968
(J. Fluid Mech. 28, pp. 385–389). Calculations of the virtual mass of bodies is
discussed in most texts; see especially [1, 5, 8]. Darwin’s theorem was the work of
Charles Galton Darwin (1887–1962), a physicist and grandson of Charles Darwin.
He derived the theorem in 1953 (Proc. Camb. Phil. Soc. 49, pp. 342–354).

Chapter 5. Calculations of drag lift of bodies moving in fluids have been cen-
tral to our subject since the time of Newton. D’Alembert’s finding of zero drag
in potential flow accounted for the early view of theoretical fluid dynamics as un-
physical and predictive of absurd conclusions. The reconciliation of d’Alembert’s
paradox with the modern theory of viscous fluids is a continuing theme in fluid
mechanics; see the excellent review by K. Stewartson, “D’Alembert’s paradox,”
SIAM Review, vol. 23, no. 3, pp. 308–343, 1981.

It is fair to say that the Kutta-Joukowski theory is incomplete in a larger sense
of providing a theory of the inviscid limit. The choice of the proper selection rules
for inviscid flows, accounting under various conditions for the effects of small
viscosity, remains an unsolved problem of fluid dynamics. Vol. III of [3] contains a
section by Witoszyński and Thompson on “The theory of single burbling,” a largely
forgotten attempt to improve on the lift computed in K-J theory by a modification
of conditions at the trailing edge. Recent efforts have tried to generalize the K-J
condition to unsteady flow; see D. G. Crighton, Ann. Rev. Fluid Mech. 17, pp. 411–
445, 1985, and also Allan D. Pierce, J. Acoust. Soc. Am. 109, no. 5, pp. 2469–2470,
2001.

For a useful collection of articles covering the aerodynamic theory of lift and
drag used in the design of early aircraft and many details concerning airfoil design,
see [3]. In particular, we remark that the cusped trailing edge of the Joukowski
foils is not well suited to wing fabrication, and foils having a finite tangent angle
at the trailing edge are desirable. These are provided by the Kármán-Trefftz family.
Writing our mapping z D Z C a2=Z in the form

z C 2a

z � 2a
D

�
Z C a

Z � a

�2
;

the Kármán-Trefftz theory generalizes this to

z C na

z � na
D

�
Z C a

Z � a

�n
:

If n D 2� �
�

, it can be shown that the tangents at the trailing edge form an angle 	 .
For an extended discussion of wakes and drag, including experimental results,

see [14].
Many additional examples of free-streamline flow calculations can be found in

[8]. A discussion of Prandtl’s lifting-line theory as a singular perturbation problem
for large aspect ratio is described in [22].

Erich Trefftz (1888–1937) was a German mathematician and aerodynamicist.
He studied at Aachen and then at Göttingen, where he was a student of Hilbert and
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Prandtl. His research included key problems of hydrodynamics, but ranged widely
in applied and numerical mathematics.

Chapters 6 and 7. The concept of stress is due to A. L. Cauchy (1789–
1857) from a paper in 1823, although the physics of fluid friction goes back to
Newton. Claude-Louis Navier (1785–1836) and George G. Stokes (1819–1903)
developed the equations we study here for Newtonian viscous flow. Jean Louis
Marie Poiseuille (1797–1869) was a French physician and physiologist whose ex-
periments in 1840 studied viscous flow through long, thin tubes. J. M. Burgers
(1895–1981) was a Dutch physicist whose research included many fundamental
aspects of fluid dynamics. A variety of examples of viscous flow may be found
in the review by R. Berker, “Intégration des équations du mouvement d’un fluide
visqueux incompressible,” Handbuch der Physik, vol. VIII/II, Springer (1963).

For a very complete text on creeping flows with emphasis on flows past bod-
ies, see J. Happel and H. Brenner, Low Reynolds number hydrodynamics, 2nd ed.,
Springer (1983). Stokes noted in 1851 the nonexistence of a solution of his equa-
tions appropriate to a circular cylinder in a uniform infinite flow. Carol Wilhelm
Oseen (1879–1944) introduced his equations and succeeded in 1910 in showing
that they allowed a solution of this problem for small Reynolds numbers. A dis-
cussion of the solution may be found in [4]. Oseen went on to publish his famous
monograph Neue Methoden und Ergebnisse in der Hydrodynamik, Akademische
Verlagsgesellschaft, Leipzig, in 1927, where many problems involving fluid inertia
are worked out in the linear setting provided by his equations. The modern analy-
sis of Stokes’ paradox is based on the seminal paper of S. Kaplun, “Low Reynolds
number flow past a circular cylinder,” J. Math. Mech. 6, pp. 595–603, 1957; see
also [22]. In this work the Stokes equations emerge from an inner limit and the Os-
een equations from an outer limit. A formal procedure of matching of the two sets
of solutions completely resolves the singular nature of the low Reynolds number
limit in the neighborhood of infinity.

For a discussion of locomotion in Stokes flow, see the delightful paper of E. M.
Purcell, “Life at low Reynolds number,” Am. J. Phys. 45, pp. 3–11, 1977, and
also M. J. Lighthill, Mathematical Biofluiddynamics, SIAM (1987), and S. Chil-
dress, Mechanics of Swimming and Flying, Cambridge University Press (1981).
The scallop theorem applies to a single locomoting body, but not to multiple inter-
acting Stokesian swimmers; see E. Lauga and D. Bartolo, “No many-scallop theo-
rem: Collective locomotion of reciprocal swimmers,” Phys. Rev. E 78, 030901(R)
(2008). Also, the constraint posed by the scallop theorem is broken at finite Rey-
nolds number, however small, but can lead for certain symmetric movements to a
bifurcation to locomotion at a positive critical Reynolds number; see S. Childress
et al., “Symmetry breaking leads to forward flapping flight,” J. Fluid Mech. 506,
pp. 147–155 (2004).

Chapter 8. For a discussion of early examples of the boundary layer con-
cept, see M. Van Dyke, "Nineteenth-century roots of the boundary-layer idea,"
Siam Review 36, pp. 415–424, 1994. For discussion of a range of topics in classi-
cal boundary layer theory, see [14] and especially H. Schlichting and K. Gersten,
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Boundary-layer theory, 8th ed., Springer (2000). The numerical solution of the
Prandtl equations was given by Blasius in his 1907 dissertation; see Zeitschr. Math.
Phys. 56, pp. 1–37, 1908. The solutions of Falkner and Skan appeared in Philos.
Mag. 12, pp. 865–896, 1931. For an interesting alternative treatment of the Bla-
sius and Falkner-Skan problems, see H. Weyl, “On the differential equations of the
simplest boundary-layer problems,” Ann. of Math. (2) 43, pp. 381–407, 1942. The
one-dimensional boundary layer model of Section 8.3 appeared in Fluid dynam-
ics, K. O. Friedrichs and R. von Mises, Springer (1971). The modern treatment of
fluid boundary layer theory as a singular perturbation problem is discussed in [22];
see also [16]. A landmark paper by S. Kaplun, “The role of coordinate systems
in boundary-layer theory,” Z. Angew. Math. Physik 5, pp. 111–135, 1954, showed
that there exist optimal coordinate systems for capturing the flow due to displace-
ment thickness within the boundary layer limit. The triple-deck theory emerged
from the work of many researchers, including Goldstein, Kaplun, Messiter, Nei-
land, Smith, Stewartson, and Sychev. For reviews of the triple-deck theory of
laminar separation, see F. T. Smith, “On the high Reynolds number theory of lam-
inar flows,” IMA J. Appl. Math 28, pp. 207–281, 1982, and R. E. Meyer, “A view
of the triple deck,” SIAM J. Appl. Math. 43, pp. 639–663, 1983. For a survey of
rigorous mathematical results for the Prandtl equations, see K. Nickel, “Prandtl’s
boundary-layer theory from the viewpoint of a mathematician,” Ann. Rev. Fluid
Mech. 5, pp. 405–428, 1973. For the origins of Prandtl-Batchelor theory, see L.
Prandtl, “Über Flüssigkeitsbewegung bei sehr kleiner Reibung,” Gesammelte Ab-
handlungen II, pp. 575–584, Springer (1961), and G. K. Batchelor, “A proposal
concerning laminar wakes behind bluff bodies at large Reynolds number,” J. Fluid
Mech. 1, pp. 388–398, 1956.

Chapters 9–12. The general solution of the initial value problem for the wave
equation in three dimensions was given by S. D. Poisson (1781–1840) in 1820 and
was obtained in the form given here by G. Kirchhoff (1824–1887) in 1876; see
Rayleigh’s The theory of sound, vol. II, Dover, p. 97 (1945). Sir James Lighthill
(1924–1998) and Theodore von Kármán (1881–1963) are two giants of twentieth-
century fluid mechanics who contributed substantially to the development of the
theory of compressible flow. The books of Lighthill [17] and Whitham [25] are ex-
cellent sources for the theory of linear and nonlinear waves in compressible fluids.
In connection with viscous and weak nonlinear effects on sound waves, we men-
tion the important review by Lighthill, “Viscosity effects in sound waves of finite
amplitude,” in Surveys in mechanics, pp. 250–351, Cambridge University Press
(1956). The theory of aerodynamic generation of sound, introduced in Problem
10.7, was developed by Lighthill in the 1950s. The theory was subsequently devel-
oped and expanded by J. E. Ffowcs Williams and others, and an excellent survey
is given by Ffowcs Williams in “Hydrodynamic noise,” Annu. Rev. Fluid Mech.
1, pp. 197–222, 1969, and “Aeroacoustics,” Annu. Rev. Fluid Mech. 9, pp. 447–
468, 1977. For a detailed account of linearized compressible flow, see [24]. For a
discussion of transonic similitude, see W. D. Hayes, “Pseudotransonic similitude
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and first-order wave structure,” J. Aero. Sci. 21, pp. 721–730, 1954. Hayes (1919–
2001) was a student of von Kármán at CalTech. His 1947 dissertation, “Linearized
supersonic flow” (see also his “Linearized supersonic flows with axial symmetry,”
Quart. Appl. Math. 4, pp. 255–261, 1946), contained the theoretical basis for the
area rule, later used in the design of transonic aircraft. Hayes’s monograph [15]
contains a full analysis of the Hugoniot curve under various physical assumptions.
For discussion of the water waves, and in particular a nice treatment of shallow-
water theory and its applications, see the book by J. J. Stoker [20].
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Absolute temperature, 141
Acoustics, 146, 151

weakly nonlinear, 155
Airfoil

unsteady motion of an, 79
Airship

flow around an, 54
Angle of attack, 75
Angle of attack

effective, 92
Apparent angular momentum, 62
Apparent mass, 57
Apparent mass matrix, 57, 59

alternative representation, 60
of an elliptic cylinder, 60
time-dependent, 62

Archimedean principle, 18
Aspect ratio, 91
Axisymmetric flow, 38

with swirl, 40
without swirl, 40

Barotropic fluid, 30, 140
Bernoulli function, 145–147, 150
Bernoulli theorem

for steady flow, 19
for unsteady flow, 22

Biot-Savart law, 92
Blasius solution, 125, 127
Blasius’ theorem, 49, 83
Body force, 16
Bound circulation, 80
Boundary conditions, 22
Boundary layer, 123

Blasius solution, 125, 127
Falkner-Skan solutions, 129
matching, 132
on an aligned flat plate, 123
Prandtl equations, 125
separation, 125

two-dimensional jet solution, 130
Burgers vortex, 104
Burgers’ equation, 158
Bursting balloon problem, 152
Butler sphere theorem, 54

Camber, 78
Cauchy-Riemann equations, 47
Characteristic velocity, 163
Characteristics, 151, 161, 164
Chord, 79
Circle theorem, 48
Circulation, 29, 46, 58, 75
Coefficient

of lift, 79
Complex potential, 47
Complex variables, 47
Configuration space, 119
Conformal map, 48, 75
Conservation

of momentum, 16
of mass, 13

Continuity equation, 14
Convection identity, 15
Convection theorem, 8
Coordinate

Lagrangian, 1
Couette flow, 101
Critical velocity, 182
Crocco’s relation, 145

D’Alembert’s paradox, 52, 60, 168
Darwin’s theorem, 69
Delta function, 51, 152
Derivative

material, 6
Deviatoric stress tensor, 99

general form of, 99
Displacement thickness, 127
Domain of dependence, 151
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Downwash, 92, 93
Drag

induced, 93
in the Kármán vortex street model, 81
in the Oseen model for a flat plate, 137
of an aligned flat plate, 128
of a circular cylinder, 107
of a flat plate in Kirchhoff’s model, 87
of a slender body in supersonic flow, 170
of a sphere in Stokes flow, 116
on a Rankine fairing, 52

Drift, 65
area or volume, 66
calculations for a circular cylinder, 66

Dynamical similarity, 106

Energy, 139
free, 144
internal, 141
kinetic, 139
mechanical, 139

Energy equation, 143, 149
Enthalpy

free, 144
total, 145

Entropy, 141
increase across a normal shock, 181

Equation of continuity, 14
Equation of state, 141
Euler flow, 17
Euler’s equations, 17
Euler-Tricomi equation, 174
Eulerian description, 2
Eulerian realm, 111
Expansion wave, 164
Expansion fan, 162, 165

Falkner-Skan family of boundary layers, 129
Favorable pressure gradient, 129
First law of thermodynamics, 141
Flapping flight

quasi-steady theory of, 80
Flat plate

flow normal to a, 85
Flat plate foil, 75
Flow

compressible, nondissipative, 145
down an incline, 103
homentropic, 145
irrotational, 147
isentropic, 145
isentropic, polytropic gas, 147
stagnation point, 105

with circular streamlines, 104
Fluid

acceleration, 6
barotropic, 30
boundary conditions for real case, 22
compressible, 17
continuum, 1
ideal, 16
incompressible, 6, 17
of constant density, 18
parcel, 1
particle, 1
velocity, 1

Force
experienced by a cylinder in

two-dimensional potential flow, 50
on a cylinder in the presence of a source,

50
Fourier’s law of heat conduction, 143
Free energy, 144
Free enthalpy, 144
Free streamline theory, 85

Gas constant, 141
Gases, 1

Harmonic flows, 45
Helmholtz’ laws, 32
Hodograph method, 86
Hugoniot curve, 181
Huygens’ principle, 155
Hydraulic jump, 186
Hydrostatics, 18

Ideal fluid, 16
Ideal gas, 141
Incline

flow down an, 103
Incompressible fluid, 6
Induced drag, 93
Internal energy, 141
Intrinsic coordinates, 20
Invariant

material, 6
Irrotational flow, 21, 27
Isotropicity

of pressure, 17
Isotropy

of the stress tensor, 99

Jacobian, 18
Jacobian matrix, 5
Joukowski airfoils, 77
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Kármán-Trefftz family of airfoils, 190
Kármán vortex street, 81
Kelvin’s theorem, 30, 80

in a compressible fluid, 146
Kinematic viscosity, 100
Kinetic energy

calculated for potential flow past a body,
58

of fluid about a moving body, 57
Kirchhoff flow, 125
Kirchhoff model, 85
Kutta-Joukowski

condition, 76, 77, 81
theorem, 77

Lagrangian coordinate, 1
Laminar jet

cylindrical, 137
two-dimensional, 130

Leading edge suction, 77
Lie derivative, 9
Lift

in three dimensions, 88
Lift coefficient, 79
Lifting line theory, 88
Limit process, 73
Linearized supersonic flow, 166
Liquids, 1
Locomotion

by a deformable body in potential flow, 62
by recoil, 63
by squirming, 63

Mach cone, 155
Mach number, 155, 166
Mach waves, 168
Mass

conservation of, 13
Eulerian form, 13
Lagrangian form, 14

Matching, 132
Material derivative, 6
Maxwell relations, 144
Mechanical energy, 139
Moment

acting on a body in potential flow, 62
on a Joukowski airfoil, 78

Momentum
conservation of

Eulerian form, 16
Lagrangian form, 16, 18

Moving sound source, 155

Navier-Stokes equations, 100, 128

in cylindrical coordinates, 102
Newtonian viscous fluid, 97, 98
No-slip condition, 101
Nonuniqueness

of flow past a circular cylinder, 47

Oseen equations, 118, 137

Particle path, 1, 10, 165
Perfect gas, 141
Peristaltic pump, 43
Piston

shock formation by a, 182
Point vortices

equations for a system of, 49
Point vortex, 3, 47
Poiseuille flow, 102

entry effect, 103
Polytropic gas, 143, 180

isentropic flow of, 147, 162
Potential flow, 45

in three dimensions, 51
of constant density, 21
past a circular cylinder, 23
past a sphere, 55
uniqueness of, 46

Prandtl
lifting line theory of, 88

Prandtl boundary layer equations, 125
Prandtl’s relation, 181
Prandtl-Batchelor theory

steady flow, 134
time dependence, 135

Pressure, 16, 17
favorable gradient, 129

Quasi-steady flow, 80

Range of influence, 151
Rankine fairing, 52
Rankine’s combined vortex, 35
Rankine-Hugoniot relations, 180
Rayleigh problem, 101
Reciprocal theorem for Stokes flow, 122
Reversible system, 141
Reynolds number, 111

typical values, 108
Rheology, 97
Riemann invariant, 163
Riemann problem, 183
Rotational flow, 27

Scallop theorem, 121
Second viscosity, 99
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Self-similarity
of the Blasius boundary layer, 126

Separation, 125, 130, 133
from the leading edge of an airfoil, 76

Shallow-water theory, 186
Shear flow, 28
Shock fitting, 183
Shock tube, 183
Shock velocity

dependence on conservation law, 176
scalar case, 175

Shock wave
stationary normal, in gas dynamics, 178

Shock waves
scalar case, 175

Similarity, 106
Simple wave, 163

produced by a piston, 164
region, 163

Simply connected domain, 46
Single-valued function, 46
Singular perturbation, 118
Slender body theory, 169
Solid-body rotation, 28
Sonic boom, 178
Sound, 45, 146, 151
Sound waves

one-dimensional, 151
Source

in three dimensions, 51
Specific enthalpy, 144
Specific entropy, 141
Specific heats, 142
Sphere

potential flow in presence of a source, 55
potential flow past a, 55

Stagnation point, 2, 75
Stagnation point flow, 105
Stall, 76
Standard atmosphere, 148
Starting vortex, 80
Stokes equations, 113

solutions of, 113
Stokes flow, 111

fundamental solution, 113
past a sphere, 114
time reversibility, 119
uniqueness, 114

Stokes relation, 100
Stokes stream function, 52
Stokes’ paradox, 117
Stokes’ theorem, 29
Stokesian realm, 111

Streak line, 4
Streamline, 3

instantaneous, 3
Stream function, 8, 37

Stokes, 40, 52
Stress tensor, 16, 17, 97

deviatoric , 99
Stretched variable, 124
Supersonic flow

quasilinear, 177
Symmetry

of deviatoric stress tensor, 99

Thermal convection, 150
Thermodynamic variables

extensive and intensive, 141
Thermodynamics

classical, 141
first law of, 141

Thin airfoil theory
subsonic flow, 168
supersonic flow, 167

Three-dimensional wing, 89
Thrust

in flapping flight, 80
Time reversibility, 119
Time-reversal symmetry, 120, 121
Traffic flow, 177
Transonic flow, 173
Transonic similitude, 173
Triple deck, 133
Turbulence, 107

Uniqueness
of potential flow, 46

Unsteady motion
of an airfoil, 79

Variables
Eulerian, 2

Vector field
material, 9

Velocity
critical, 182
derivative matrix, 97
supersonic, 155

Velocity field
associated with a given vorticity field, 34
local analysis of, 27
solenoidal, 7

Viscosity, 98
kinematic, 100
limit of small, 73
second, 99
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Viscous stress tensor, 139
Von Mises coordinates, 138
Vortex

Burgers, 104
Vortex dipole, 37
Vortex force, 27
Vortex lines, 27
Vortex shedding, 73
Vortex sheet, 88

strength, 88
Vortex street, 81
Vortex tube, 27
Vorticity

shed, 80, 90
shedding of, 73

Vorticity equation, 30
Lagrangian form, 31

Vorticity field, 27

Wake
energy flux in, 74

Water waves, 23, 45
Wave drag, 168
Wave equation, 151, 161

d’Alembert’s solution in one dimension,
151

fundamental solution in three dimensions,
152

Kirchhoff’s solution of initial value
problem in three dimensions, 153

Wingspan, 89
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