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Introduction

. . . while the individual man is an insoluble puzzle, in the aggregate he becomes a
mathematical certainty. (Sherlock Holmes, Sign of the Four).

Complex diseases involve most aspects of population biology, including ge-

netics, demographics, epidemiology, and ecology. Mathematical methods, includ-

ing differential, difference, and integral equations, numerical analysis, and random

processes, have been used effectively in all of these areas. The aim of these notes is

to provide sufficient background in such mathematical and computational methods

to enable the reader to better understand complex systems in biology, medicine,

and the life sciences.

Malaria provides an important example of a complex disease system. Para-

site life cycles, described in Figure 6.1, show aspects of the disease process in

both the host (humans here) and mosquitoes. In addition to the complex parasite

life cycles, these populations are stratified in several ways: There are varieties of

genetic structures and immune systems, age structures and geographical distribu-

tions, interactions with physical habitats, and complicated timing issues. Overlaid

on these biological and physical systems are various social, medical, financial, and

governmental structures whose policies bear directly and indirectly on the disease

[35]. Many useful mathematical tools used to study various aspects of malaria are

described here.

Mathematics is the language of systems, and mathematical methods used for

synthesizing and analyzing them are widely applicable. These methods provide:

� systematic listings of the principal components of a system and their in-

teractions with others,

� mathematical tools of analysis including perturbation, bifurcation, stabil-

ity, computation, and probability methods,

� concise formulation of the overall structure,

� direct implementation in computers for monitoring, control, tracking,

prediction, evaluation, and simulation,

� guidance in deriving simplified models that are faithful to the overall

structure.

The mathematical background needed to handle this material is difficult to

specify — the material is usually taught in the format of a one-room school where

students have widely varying levels of preparation. For example, undergraduate

engineering students routinely handle linear time-invariant systems (like the re-

newal equation here), Laplace and Fourier transform methods, delta functions, and

vii



viii INTRODUCTION

random processes, while many people who finish a PhD in mathematics never en-

counter any of these ideas in their studies. On the other hand, mathematics students

usually end up with a good understanding of calculus and matrices and many of

their implications, which students of the nonmathematical sciences and engineer-

ing often do not.

Integration, differentiation, matrices, and probability are common threads to

almost all mathematical descriptions of the world as we know it. These topics

have been extended and refined over the past 400 years, but with the advent of

broadly available high-speed computing, they have taken on new meanings and

usefulness. Many of the operations formerly requiring advanced knowledge of

mathematics, such as Bessel, Legendre, Hermite, Chebyshev, and other special

functions, have now largely disappeared behind the computer screen — a metaphor

for mathematics being hidden in user-friendly software products. At the same time,

the computer has made possible deeper understanding of randomness and intrinsic

chaos in nonrandom systems.

While mathematics is the language of systems, many nonmathematical peo-

ple will find using mathematics to be challenging. Still, it is important for those

working in these areas to become familiar with the philosophy, terminology, and

methodologies in using mathematics. Not only does mathematics provide a way to

interface complex problems with computers for simulation and data processing, it

also provides a universal language for describing systems. Even when mathemat-

ical aspects have moved behind the computer screen, it is important to understand

what computer packages are trying to do.

The mathematician René Thom pointed out a cultural gap between the math-

ematical and observational sciences: The latter use ordinary language models that

are precise where data are known and suitably vague otherwise, and the former use

canonical mathematical models that are the simplest mathematical models that cap-

ture a particular feature of the phenomenon. Mathematics has an uncanny ability

to give insight in a variety of unusual settings: This is due in part to the remarkable

utility of canonical models that arise in the same form in many different applica-

tions. For example, the mathematics of chemical explosions and the propagation

of epidemic diseases in populations have been described using essentially the same

mathematical model. The result for explosions is the explosion limit for combina-

tions of pressure and temperature, and the result for epidemics is the tipping point

for combinations of infectives and susceptibles. There are only (relatively) few

types of bifurcations that can occur when something changes in a system. New-

ton’s implicit function methods and Thom’s singularity theory and its generaliza-

tions have clarified many aspects of such tipping points.

Population phenomena may be described in terms of discrete-time events or

continuous-time events. Both approaches have their strengths and weaknesses, and

in many ways are complementary. Discrete-event models often seem more intu-

itive, and when their time steps are synchronized with the acquisition of data, more

practical. They also usually make possible straightforward computer simulations.

But they can get messy when many variables are needed, and mathematical analy-

sis for them is difficult — even simple nonlinear discrete-event renewal models are
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at the frontier of mathematical research. On the other hand, continuous-time mod-

els provide concise mathematical descriptions (e.g., a sequence of discrete-event

variables may be replaced by a single function), and they may be analyzed using

methods of differential and integral calculus. However, simulating continuous-

time models on a computer may require sophisticated numerical analysis. Both

approaches are used here.

Charles Darwin, who is a hero to most people working in the life sciences, is

generally perceived as having used no mathematics, but in fact it did provide him

with something important to his work — a theory. He said in his autobiography

(1876):

In October 1838, that is, fifteen months after I had begun my

systematic inquiry, I happened to read for amusement Malthus
on Population, and being well prepared to appreciate the strug-

gle for existence which everywhere goes on from long-continued

observation of the habits of animals and plants, it at once struck

me that under these circumstances favourable variations would

tend to be preserved, and unfavourable ones to be destroyed.

The results of this would be the formation of a new species.

Here, then I had at last got a theory by which to work.

The physicist R. Feynman said (paraphrased) that mathematics produces cor-

rect results that take many additional years of work to “understand” in physical

terms. An example is the development and application of quantum mechanics,

which is even now not fully “understood.” Much of this “understanding” is rote

memorization of what mathematics tells until it seems natural. Similarly, our

understanding of electromagnetic theory is shaped by knowing the solutions to

Maxwell’s equations, not by direct physical observation; our understanding of fluid

mechanics is largely based on mathematical solutions of the Navier-Stokes equa-

tions, and our understanding of the mechanical universe is based on Newton’s and

Einstein’s mathematical theories.

Mathematics plays comparable roles in population biology. Our understand-

ing of population genetics is based in large part on mathematical models by Fisher,

Wright, and Haldane. Renewal theory, built largely on work of Euler and La-

grange, describes how populations age and reproduce. The Kermack-McKendrick,

Reed-Frost, and Ross-Macdonald theories of epidemics describe the propagation of

diseases in small groups, and they have been useful in formulating optimal vaccina-

tion strategies and identifying tipping points for epidemics that measure likelihood

of severe disease outbreaks. Mathematics is also used in working with microbial

ecologies, such as describing nutrient uptake, that are central to food and drug

production.

These notes build partly on the text Modeling and Simulation in Medicine and
the Life Sciences [23]. Here we introduce and use slightly more advanced concepts

in mathematics to study population phenomena with the goal of describing com-

plicated aspects of a disease involving several species. But the mathematical level

is kept to essentially advanced undergraduate mathematics.
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The culmination of this work is in Chapter 6, where population stratifications

involve two kinds of age classes (chronological and infection age) for both the

mosquito and human populations, geographic distributions and movements of spe-

cies, and the microbial ecology of the parasites. Parasite dynamics in a human host,

parasite genetics in a mosquito, and the influences of these microfeatures on the

dynamics of human and mosquito populations are also described by these models.

For the most part, the components of the models are derived and tested in the

first five chapters. As pointed out in the earlier chapters, models may be modified

to include random perturbations, multiple time scales, and particular bifurcation

features. Better understanding of the disease results when the cumulative models

are analyzed by using the methods in the first five chapters. Still, one is in awe of

the ways in which the malaria parasite has evolved to thrive in a very challenging

environment, and the models here bring better appreciation of nature at work.

Some general principles of modeling are guided by Einstein’s remark: “Any

fool can make things bigger, more complex . . . . Make everything as simple as

possible, not simpler.” While mathematical population models may seem to far

outstrip present-day knowledge and data, they should be based on real mechanisms

of important phenomena, and should not be impeded by only what is known or

assumed today. In fact, describing a system as fully as possible guides acquisition

of data, evaluation of control efforts, prediction of likely outcomes when using

reasonable surrogate data, and identification of critical dimensionless parameters

that may characterize important aspects of a disease. They also guide how to derive

simpler models that capture critical aspects of the phenomenon; for example, using

quasi-static state methods in the spirit of the Michaelis-Menten and Jacob-Monod

approximations studied in Chapter 3. It is in this spirit that the malaria models in

this chapter are presented.

Notwithstanding the lack of data, there remain significant mathematical chal-

lenges in understanding these “simplest” models, which involve combinations of

time delays, geographical distributions, and nonlinear dynamics. The earlier chap-

ters introduce methods for time delays by introducing agelike variables, for ran-

dom forces by replacing parameters by stochastic processes, and for nonlinearities

by using mathematical analysis (gradient and perturbation methods) and computer

simulations.

Ordinary-language models may describe a disease in ways that are “precise”

where data are known and vague otherwise. For example, an ordinary-language

model of an S ! I ! R system, which is typical of diseases like measles and

chickenpox, might say “susceptibles are infected by contact with infectious people;

contact may vary with mixing group (family, play group, school, social organiza-

tion, etc.); communicability may depend on age; infectiousness may depend on

time since first infection; removal of infectives may be through treatment, immune

response, isolation, or death; recovered individuals may not again become suscep-

tible to the disease; the disease process is faster than arrival of new susceptibles;

there may be no carriers for the disease; and the disease is local.”

Kermack and McKendrick derived a mathematical model of such a disease

process to provide the simplest mathematical model that fits the “most important”
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of these restrictions: There is pairwise contact between susceptibles and infectives;

infectives may be removed; there is a single mixing group; removed individuals are

immune to further infection by the disease; chronological and infection ages are

ignored; population dynamics (birth, death) are ignored; carriers are ignored; and,

geographical movements are ignored. The result is the model (4.2). It is shown in

Chapter 4, equation (4.3), that the Kermack-McKendrick number

� D rS.0/

�
;

where r is the contact rate, � is the removal rate of infectives, and S.0/ is the

initial susceptible population size, defines a critical dimensionless parameter: If

� < 1, infectives will be removed without increasing their numbers. If � > 1, a

severe epidemic may occur. No matter what other features we add to the model, the

parameter � will still be relevant. In this sense, the Kermack-McKendrick model

is a canonical model of disease propagation.

This manuscript summarizes notes developed in a graduate course in compu-

tational biology and applied mathematics at the Courant Institute of Mathematical

Sciences in fall 2010. The models and results here should be taken as metaphors of

real-life phenomena, not as exact quantitative or qualitative descriptions of them.

In particular, these results are intended to provide readers with tools for performing

more in-depth analysis of population phenomena and make their own contributions

to resolving problems. I thank Charles Peskin, Andy Sundstrom, Don Chen, and

Karen Day for input to this work. They added valuable information for some of the

models at critical times, but only I can lay claim to the errors made in this book,

which I hope are few.

Frank C. Hoppensteadt

Courant Institute of Mathematical Sciences

New York University

New York, New York

April 29, 2011
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kernel, 124

Kronecker’s delta function, 32

Laplace transform, 5

characteristic equation, 7

least squares method, 2

Leslie-Fibonnaci model, see example

Lexis diagram, 12

linear time-invariant system, 5

locus of a gene, 95

Lotka-Volterra model, 86

LTI, see linear time-invariant system

malaria, 98, 113

dynamics, 116

intrinsic oscillations, 131

threshold, 123

Malthus model, 2

Malthus’s equation with time delays

Laplace transform solution, see example

periodic solutions, see example

map M, 124

Markov chain, see example, 35

periodic, 45

maternity function, 4

maternity function (Pearson), see example

Mendel’s laws of inheritance, 96, 97

merozoites, 115

method

of characteristics, 12, 40

of lines, 47

Michaelis-Menten model, x

migration operator, 126

mosquito, 113

multiple scales, 113, 115

natural selection, 96

nonchronological aging by bacteria, see
example

normal distribution, 40

ordinary-language model, x

overlapping generation model, 4

overlapping generations, 16

partial fractions, 8

PfEMP1, 115

phenotype, 96

plasmid, 96

Plasmodium falciparum, 113

plate growth, 46, 47, 61, 64

Poisson random variable, 37

polyploid cell, 95

population movement model, 114

population transect, 66

population wave equation, 11

potential function, 104

pour plate, 46, 51, 61

probability distribution, 34

probability generating function, 35

random forces, 114

random genetic drift, 96

random jump times, 34

random walk, 51, 124

RBC, 114

red blood cells, see RBC

Reed-Frost epidemic model, 73

renewal equation, discrete time, 19
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reproduction curves, see example

reproduction function, 2

residues, 8

Rhagoletes, 44

Ricker model, 3

Ross-Macdonald model, 89, 113, 117

Salmonella typhimurium, 59

sample path, 46

saturation constant, 64

serial dilutions, 58

slow selection, 99

solutivory chain, 62

speciation, 99

spectral decomposition, 32

sporogonic cycle, 115

model, 122

sporozoite, 115

stable age distribution, 15, 24, 26

stable birth rate, 7

state of stasis, 16

stochastic differential equation, 49

stochastic process, 29

telegrapher’s equation, 40, 41

Thom, 105

transition probability, 35

transpose of a matrix, 23

triangular coordinates, 102

tridiagonal matrix, 48, 63

two-state Markov chain, see example

two-well potential, 106

uptake velocity, 64

var genes, 115, 131

Verhulst model, 3

Waddington, 105

Wiener process, 49

z-transform, 35
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Complex diseases involve most aspects of population biology, including 
genetics, demographics, epidemiology, and ecology. Mathematical 
methods, including differential, difference, and integral equations, numer-
ical analysis, and random processes, have been used effectively in all of 
these areas. The aim of this book is to provide sufficient background in 
such mathematical and computational methods to enable the reader to 
better understand complex systems in biology, medicine, and the life 
sciences. It introduces concepts in mathematics to study population 
phenomena with the goal of describing complicated aspects of a disease, 
such as malaria, involving several species.
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applied mathematics taught at the Courant Institute of Mathematical 
Sciences in fall 2010. The mathematical level is kept to essentially 
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intended to provide readers with tools for performing more in-depth 
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