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Introduction

This is a book about mathematics. At the same time it is a book about molec-
ular dynamics. Typical books with this combination of topics try to give a math-
ematical framework for what is done in standard molecular dynamics simulations
or consider the temporal discretization schemes used in molecular dynamics. This
book will not. Instead it will be concerned with one of the key challenges in molec-
ular dynamics: How can one analyze molecular function if the required simulation
timescales are infeasible?

For readers who are not familiar with molecular dynamics a few words ex-
plaining this key challenge seem appropriate: Applications in modern biotechnol-
ogy and molecular medicine require simulation of biomolecular systems in atomic
representation with immense length and timescales that are far beyond the capac-
ity of computer power currently available. The reason for this is that many of
the processes that constitute molecular function are rare event processes appear-
ing on timescales that are many orders of magnitude, say 10–15 orders of magni-
tude, longer than the typical time steps of the numerical simulation. As a conse-
quence, there is an increasing need for reduced models of the dynamical behavior
of molecular systems that still allow describing the relevant dynamical properties
while at the same time being less complex and thus allowing simulation on longer
timescales. However, whether such reduced descriptions reproduce the correct rare
event statistics is a question that in principle can only be answered mathematically.

In most molecular systems the biologically interesting and computationally
problematic rare events belong to so-called conformation changes. Conformations
are metastable sets of the dynamical behavior of the molecule, that is, regions of
the molecule’s state space that are attractive for the dynamics in the sense that typ-
ical trajectories remain within such regions for long periods of time before exiting
towards other metastable sets. This rough description may already be sufficient
for indicating that any mathematical approach to efficient rare event simulation
in molecular dynamics should address the issue of metastability of the dynamical
behavior of molecular systems. Consequently, this book will be concerned with
understanding the origin of metastability and with its mathematical description.
This, however, is just the first step. We will see how to exploit the existence of
metastable sets for constructing a reduced molecular dynamics model with good
approximation properties on the long timescales. In this reduced model, the so-
called Markov state model (MSM), the main metastable sets will form the states of
a Markov chain or Markov jump process while the transition probabilities or tran-
sition rates of the Markov model are given by the transition statistics of the original
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viii INTRODUCTION

molecular dynamics process. Mathematically, the process of reducing the original
molecular dynamics process to the MSM process will be a Galerkin discretization
of the so-called transfer operator of the molecular dynamics process. Thus, the
mathematics of projected transfer operators is central for our undertaking.

That is exactly what the book will focus on: metastability, MSMs, and the
mathematics of transfer operators that allows the analysis of the relation between
one and the other. The rough outline is as follows: We start with a more detailed
introduction to the idea behind MSMs in Chapter 1. Next we will outline the
different molecular dynamics models and the mathematical framework in which
they all can be handled together (Chapter 2). Then we can turn to the mathematical
concepts of metastability in Chapter 3 before we introduce transfer operators and
the spectral approach to metastability (Chapter 4), and the construction of MSMs
via projected transfer operators in Chapter 5. Last, we will investigate how to use
an existing MSM to get information on the transition pathways that dominate the
transitions from one metastable set into another (Chapter 6).

Recent years have seen an ever increasing publication activity on how to con-
struct MSMs for very different molecular systems ranging from peptides to pro-
teins, from RNA to DNA, and via molecular sensors to molecular aggregation (see
the next section for references). Presently, several books are under preparation
that will address these practical approaches in all algorithmic detail but not their
mathematical background. Therefore, the present book concentrates on the latter.

The material presented in the following has resulted from more than 12 years
of research on MSMs and metastability that started with the first publications by
the first author and his coworkers in the last millennium; see [15, 16, 95, 96]. It
has been compiled for mathematicians as well as practical computational scientists
interested in modern molecular dynamics.

The book is predominantly addressed to graduate students and researchers
wanting to get an overview of the theoretical background of MSMs and associ-
ated concepts in molecular dynamics. Therefore the mathematical technicalities
have been limited to the level that the authors believe to be accessible for theory-
interested nonmathematicians. The text includes many examples and helpful il-
lustrations. Everyone interested in deeper insights into the matter will find com-
prehensive references to the relevant literature. The authors hope that the present
book may help to bridge the still existing gap between mathematical research on
molecular dynamics and its practical use for realistic molecular systems by pro-
viding readers with tools for performing more in-depth analysis of simulation and
data-analysis methods in molecular dynamics.

Many extraordinarily talented people have contributed to the mathematics of
metastable systems in relation to the transfer operator approach, its algorithmic
realization, and its applications. We wish to acknowledge the efforts and excel-
lent skill of the following mathematicians: Peter Deuflhard (who has contributed
from the very beginnings in the last millennium till today), Eric Vanden-Eijnden,
Marcus Weber, and Frank Noe. Their contributions have been invaluable. Further-
more, we want to thank the DFG Research Center MATHEON “Mathematics for
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key technologie” and the Freie Universität Berlin for making this work possible by
providing funding and the creative atmosphere we treasure so highly.
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[95] Schütte, C. Conformational dynamics: modelling, theory, algorithm, and application to
biomolecules. Habilitation dissertation, Free University Berlin, 1998.
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[101] Schütte, C., Noé, F., Lu, J., Sarich, M., and Vanden-Eijnden, E. Markov state models based on
milestoning. J. Chem. Phys. 134(20):204105, 15 pp., 2011.
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