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Preface

The previous volume, Linear Algebra I (LA I), provided a self-contained
account of basic topics thatmight be covered in one semester at the introductory
graduate level, ending with:

• In Chapter 5, a general discussion of diagonalization including: norm
convergence of linear operators, matrix-valued power series, and use
of the exponential map Exp(𝐴) = 𝑒𝐴 to solve systems of differential
equations 𝑑𝑋/𝑑𝑡 = 𝐴 ⋅ 𝑋(𝑡) in which 𝐴 is diagonalizable.

• In Chapter 6 we discuss orthogonal diagonalization of operators on
inner product spaces, including spectral decomposition, spectralmap-
ping theorem, polar decomposition 𝑇 = 𝑈 ⋅ |𝑇|, and singular value
decomposition.

Linear Algebra II begins with more challenging basic topics, presented in
Chapters 1–3, whose contents are described below. The final Chapters 4 and 5
are different. They are intended asmore-or-less independent and self-contained
surveys of two special topics:

• Chapter 4: Tensor Fields, Differentiable Manifolds and Vector Calcu-
lus

• Chapter 5: Matrix Lie Groups
Both are vast subjects, so presentations in these chapters will not be as fully
developed as those in preceding chapters or LA I. Our intent was to present
some advanced topics that illustrate uses of linear algebra in realms beyond a
standard second course in linear algebra. In practice, every instructor could
choose which to present, according to his or her interests and those of the class.
Each chapter in LA II begins with a detailed overview of the topics that will be
covered. Here is brief description of the chapter contents.

Chapter 1. Generalized Eigenspaces and the Jordan Decompo-
sition. The first serious obstacle to diagonalization is dealing with nilpotent
operators, which is addressed by working out a detailed procedure for com-
puting their cyclic subspace decompositions. Although there are elegant ex-
istence proofs regarding such decompositions, the desired cyclic subspaces are
not unique (unlike eigenspaces in diagonalization), and any procedure for find-
ing them is inevitably complicated by the need to make some arbitrary choices.

For any linear operator 𝑇 ∶ 𝑉 → 𝑉 the space 𝑉 is uniquely a direct sum
(the Fitting decomposition) 𝑉 = 𝐾∞(𝑇)⊕𝑅∞(𝑇) of 𝑇-invariant subspaces, the
“stable kernel” and “stable range” of 𝑇, on which 𝑇|𝐾∞ is nilpotent and 𝑇|𝑅∞ is

ix
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bijective. If 𝜆 is an eigenvalue of 𝑇, (𝑇 − 𝜆𝐼) is obviously nilpotent on its stable
kernel𝑀𝜆(𝑇) = 𝐾∞(𝑇−𝜆𝐼), the generalized 𝜆-eigenspace of 𝑇. These spaces are
𝑇-invariant and linearly independent. Whenever the characteristic polynomial
𝑝𝑇(𝑥) = det(𝑇 − 𝜆𝐼) splits in 𝕂[𝑥], a proof by induction on dim(𝑉) employs
the Fitting decomposition to show that 𝑉 is the direct sum 𝑉 = ⨁𝜆𝑀𝜆(𝑇)
of its generalized eigenspaces. Since each component𝑀𝜆(𝑇) has its own cyclic
subspace decomposition, this “generalized eigenspace decomposition” leads di-
rectly to the Jordan canonical form 𝐽(𝑇) for 𝑇, which has many applications.

Chapter 1 ends with a brief appendix reviewing key theorems about diago-
nalization that were covered in Linear Algebra I, illustrating a few techniques
of proof that will be relevant in discussing what to do when diagonalization
fails.

Chapter 2. Further Applications of the Jordan Form. In the first
half of this chapter we employ the Jordan form to solve higher-order ODEs by
converting them into linear systems 𝑑𝑋/𝑑𝑡 = 𝐴 ⋅ 𝑋(𝑡) of constant coefficient
first-order equations. We then recast the coefficent matrix 𝐴 in Jordan canoni-
cal form 𝐽(𝐴)made up of diagonal blocks 𝐵𝑘 = 𝜆𝑘𝐼 + 𝐸𝑘 in which 𝐸𝑘 is an ele-
mentary nilpotent matrix. Owing to nilpotence, the one-parameter groups 𝑒𝑡𝐵𝑘

can be written explicitly, and the system solved by taking 𝑋(𝑡) = 𝑒𝑡𝐽(𝐴) ⋅ 𝑋(0).
The solution of the original 𝑛th-order ODE is easily read from this.

These techniques work when the characteristic polynomial 𝑝𝐴(𝑥) splits
into linear factors in the space of polynomials 𝕂[𝑥]. The second half of Chap-
ter 2 concerns itself with complexifying real vector spaces and linear operators
𝑇 ∶ 𝑉 → 𝑉 to get complex spaces 𝑉ℂ and operators 𝑇ℂ to which the preceding
methods apply. By reverse-engineering the construction of the Jordan form
𝐽(𝑇ℂ), the original ℝ-linear operator 𝑇 can be recast in a “real-normal form”
that reveals its structure. There are actually two such real forms, depending
on whether 𝑇ℂ is diagonalizable or not (in which case one applies the Jordan
form).

Chapter 3. Bilinear, Quadratic, and Multilinear Forms. Bilinear
forms 𝐵(𝑥, 𝑦) on a vector space 𝑉 arise often in many areas of mathematics,
inner products on real vector spaces being just one example. We restrict atten-
tion to the symmetric and antisymetric𝐵, the onesmost frequently encountered.
Bilinear forms can be described by 𝑛 × 𝑛matrices [𝐵]𝔛 = [𝐵(𝑒𝑖, 𝑒𝑗)] once a ba-
sis 𝔛 = {𝑒𝑖} in 𝑉 is specified. Modulo a change of basis, bilinear forms over
ℝ or ℂ can be classified according to their normal forms, for which there are
only three possibilites. We also work out the transformation law [𝐵]𝔛 → [𝐵]𝔜
between coordinate descriptions of 𝐵.

Every bilinear form 𝐵 ∶ 𝑉 × 𝑉 → 𝕂 determines a group Aut(𝐵) of au-
tomorphisms, linear operators that leave 𝐵 invariant, so 𝐵(𝑇𝑥, 𝑇𝑦) = 𝐵(𝑥, 𝑦).
As examples we have the orthogonal group of linear rigid motions O(𝑛) on ℝ𝑛,
and the unitary operators U(𝑛) on ℂ𝑛, that preserve the usual inner products
on these spaces; there is also a third family, the symplectic groups Sp(2𝑛, 𝕂).
These classical groups are prevalent in physics and geometry, or wherever one
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has to deal with symmetries. As an example we discuss the Lorentz group, the
automorphism group Aut(𝐵) = SO(3, 1) for the form

𝐵(𝐱, 𝐲) = 𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3 − 𝑥4𝑦4 for 𝐱.𝐲 ∈ ℝ4.

This is the symmetry group underlying Einstein’s theory of special relativity
(taking 𝑥1, 𝑥2, 𝑥3 to be space coordinates and 𝑥4 = time). It tells us how to
transform measurements made in one space-time coordinate frame to those
made in a different frame moving at constant velocity. (The outcome is decid-
edly nonintuitive!)

Beyond all this, Chapter 3 makes an initial foray into the world of tensors
and multilinear forms, which have become central topics in differential geom-
etry, and physics too — general relativity is all about tensors, as is much of
electromagnetic theory and the analysis of stress in solid media. This part of
Chapter 3 covers a few basic facts that set the stage for a much more extensive
discussion of tensor algebra and differential geometry in Chapter 4, should the
instructor choose to pursue this special topic upon completion of Chapters 1–3.

Chapter 4. Tensor Fields, Manifolds, and Vector Calculus. This
chapter explores aspects of linear and multilinear algebra that lie at the heart
of modern differential geometry and ends with a reinterpretation of the main
results of traditional multivariate calculus. After a brief review of the classical
vector operators div, grad, and curl of calculus, attention shifts to the concept of
a differentiable manifold and the present-day interpretation of the vector fields
that live on them, which are now recognized to be of many types — fields of
tangent vectors, cotangent vectors, and tensors of various ranks.

Early on, manifolds were viewed as smooth hypersurfaces embedded in
some Euclidean space; tangent vectors, normal vectors, and tensor were re-
alized as objects within that external space. But everyone knew this universal
Euclidean space was a fiction. Furthermore, in trying to do calculus on, say,
a 4-dimensional hypersurface 𝑀 embedded in a 10-dimensional space, one is
confronted with some vexing questions, for instance:

What dowemean by a “tangent vector to𝑀” if we are forbidden
to speak of anything external to𝑀?

More generally, how can one get rid of all reference to some mythical “all-
encompassing Euclidean space” and deal with such questions in an intrinsic
and coordinate-independent way?

A satisfactory answer emerged in the first quarter of the twentieth century,
based on the concept of a differentiable manifold which circumvented these
philosophical issues. Along with it came the realization that many different
types of vector fields could be associated with amanifold. We illustrate the pos-
sibilities by examining a few examples from the physical sciences, in which we
explain why:

• velocity fields, as in fluid flow, must be regarded as fields of tangent
vectors,
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• force fields such as electric fields, gravitational fields, etc., must be in-
terpreted as fields of cotangent vectors.

• On the other hand, magnetic fields are usually described in introduc-
tory courses as vector fields, but the vectors involved are something
quite different, neither tangent nor cotangent vectors. They are in fact
represented by fields of rank-2 antisymmetric tensors.

Our goals in Chapter 4 are to:
• Develop enough of the theory of differentiablemanifolds, and themul-
tilinear forms (tensor fields) that live on them, to reformulate tradi-
tional multivariate calculus in modern terms.

• Work through basic concepts of multilinear algebra needed to under-
stand the concepts uponwhichmodern differential geometry is based.

• Provide enough exposure to these concepts so that one can carry out
meaningful computations.

The last section of this chapter is focused on tying the concepts discussed in
this chapter, to what you might have been taught in lower-level multivariate
calculus.

Chapter 5. Matrix Lie Groups. The subject of Lie groups is the nexus
where three major areas of mathematics come into play — calculus-style anal-
ysis, modern algebra, and differential geometry are all intertwined in this field,
underpinned by the tools linear algebra provides. That interplay among so
many disciplines can be daunting, but it is also what makes Lie groups such
an interesting subject.

This brief chapter cannot be a treatise on the subject. It is intended to be
an introduction to the players involved, a few of the most important concepts,
and examples illustrating the techniques involved in working with them. Some
knowledge of differential geometry will be assumed, but the necessary topics
reprised early in the chapter to make the discussion self-contained. For addi-
tional information see Section 4.1.

Many Lie groups of interest in physics and geometry were originally mod-
eled as curvilinear smooth hypersurfaces𝑀 embedded in Euclidean spaces ℝ𝑛

(and sometimes ℂ𝑛), for example the “classical matrix groups” — the orthogo-
nal groupsO(𝑛), unitary groupsU(𝑛), and symplectic groups Sp(2𝑛) introduced
inChapter 3 as the symmetry groups associatedwith various bilinear forms that
arise throughoutmathematics—are realized as subsets ofmatrix spaceM(𝑛,𝕂)
with 𝕂 = ℝ or ℂ.

Beginning in the twentieth century Lie theory (and most of differential ge-
ometry as well) moved away from the notion of embedded hypersurfaces and
developed an intrinsic theory of such spaces — now called differentiable man-
ifolds — in which Lie groups and manifolds were regarded as self-contained
universes in their own right. However, to keep things simple we focus on ma-
trix Lie groups, which can be modeled as subsets of matrix space over ℝ or ℂ.
Besides, almost everything said formatrix Lie groups carries over to the general
theory of Lie groups, although some proofs get harder in that setting.
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Main topics of Chapter 5 are:
• To showhowdifferentiable structure can be imposed on amatrix group
𝐺 using the implicit function theorem to define Euclidean coordinates
on a family of open sets 𝑈𝛼 that cover 𝐺. Equipped with these coordi-
nate charts, 𝐺 becomes a Lie group, in which the group multiplication
operation 𝐺 × 𝐺 → 𝐺 becomes a differentiable map.

• To discuss what tangent vectors, tangent spaces, and derivatives of func-
tions 𝑓 ∶ 𝐺 → ℝ” might mean on a group 𝐺 equipped with differen-
tiable structure, which might be realized as curvilinear hypersurface
of high dimension. This is the realm of differential geometry.

• The result is a construct 𝐺 that has both geometric and algebraic as-
pects. Lie groups can be quite complicated, but deal with them we
must because they turn up at the heart of modern physics (and other
fields), for instance as the symmetry groups that govern: the inter-
actions of subatomic particles; the behavior of the cosmos according
to special and general relativity; and the seemingly paradoxical rules
of quantum mechanics. Even the periodic table of chemistry can in
the end be deduced as a consequence of the mathematics associated
with that classic example of a Lie group— the special orthogonal group
SO(3) of rotations in 3-dimensional space.

• Finally, we will show that the tangent space to a Lie group 𝐺 at its
identity element, which at first sight is just a vector space of the same
dimension as the coordinate charts that cover 𝐺, acquires algebraic
structure induced by the multiplication law in 𝐺 and becomes what is
known as a Lie algebra.

The important point is that this Lie algebra is a linear structure,
much easier to dealwith than𝐺, and yet it encodes almost all the infor-
mation to completely reconstruct and understand the Lie group from
which it was derived.

Organization of the Text
The handling of exercises is somewhat unconventional. Many are placed

within the main text, as the topics they address first occur. Each chapter ends
with an extensive set of section-by-section Additional Exercises. Some recap
the main topics of of each section; others are longer and intended to be more
challenging; each begins with a block of true/false questions, which students
often find more challenging than you might expect.

There are a fewunconventional notations, explained as they are introduced:
• We often write |𝑉| for the dimension dim(𝑉), and 𝑅(𝑇), 𝐾(𝑇) for the range
and kernel of 𝑇, respectively, when this is convenient.

• A special symbol 1- is used to distinguish the constant function (or polyno-
mial) everywhere equal to 1, from the scalar 1.

The symbol 𝕂 indicates a generic ground field.
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This book is the second of two volumes on linear algebra for graduate 
students in mathematics, the sciences, and economics, who have: a 
prior undergraduate course in the subject; a basic understanding 
of matrix algebra; and some proficiency with mathematical proofs. 
Both volumes have been used for several years in a one-year course 
sequence, Linear Algebra I and II, offered at New York University’s 
Courant Institute.

The first three chapters of this second volume round out the coverage 
of traditional linear algebra topics: generalized eigenspaces, further 
applications of Jordan form, as well as bilinear, quadratic, and 
multilinear forms. The final two chapters are different, being more 
or less self-contained accounts of special topics that explore more 
advanced aspects of modern algebra: tensor fields, manifolds, and 
vector calculus in Chapter 4 and matrix Lie groups in Chapter 5. The 
reader can choose to pursue either chapter. Both deal with vast topics 
in contemporary mathematics. They include historical commentary 
on how modern views evolved, as well as examples from geometry 
and the physical sciences in which these topics are important.

The book provides a nice and varied selection of exercises; examples 
are well-crafted and provide a clear understanding of the methods 
involved.

For additional information 
and updates on this book, visit

www.ams.org/bookpages/cln-30
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