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Preface

The purpose of this book is to prepare you to cope with abstract mathematics. The intended
audience consists of: prospective math majors; those taking or intending to take a first
course in abstract algebra who feel the need to strengthen their background; and graduate
students (and possibly some undergraduates) in applied fields who need some experience
in dealing with abstract mathematical ideas. If you have studied calculus, you have had
some practice working with common functions and doing computations. If you have taken
further courses with an applied flavor, such as differential equations and matrix algebra,
you have probably begun to appreciate mathematical structure and reasoning. If you have
taken a course in discrete mathematics, you may have some experience in writing proofs.
How much of this is sufficient background for the present text? I don't know; it will
depend on the individual student. My suggestion would be that if you have taken some
math courses, enjoyed them and done well, give it a try.

Upon completing the book, you should be ready to handle a first course in abstract
algebra. (It is also useful to prepare for a first course in abstract analysis, and one possible
source is Real Variables With Basic Metric Space Topology by Robert B. Ash, IEEE Press,
1993. This basic analysis text covers the course itself as well as the preparation.)

In studying any area of mathematics, there are, in my view, three essential factors,
in order of importance:

1. Learning to think intuitively about the subject;
2. Expressing ideas clearly and cogently using ordinary English;
3. Writing formal proofs.

Abstract language is used by mathematicians for precision and economy in statements
and proofs, so it is certainly involved in item 3 above. But abstraction can interfere with
the learning process, at all levels, so for best results in items 1 and 2, we should use
abstract language sparingly. We are pulled in opposite directions and must compromise.
I will try to be as informal as I can, but at some point we must confront the beast (i.e.,
an abstract theorem and its proof). I think you'll find that if you understand the intuition
behind a mathematical statement or argument, you will have a much easier time finding
your way through it.

I've attempted to come up with a selection of topics that will help make you very
comfortable when you begin to study abstract algebra. Here is a summary:

v
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1. Logic and Foundations. Basic logic and standard methods of proof; sets, functions
and relations, especially partial orderings and equivalence relations.

2. Counting. Finite sets and standard methods of counting (permutations and combina
tions); countable and uncountable sets; proof that the rational numbers are countable but
the real numbers are uncountable.

3. Elementary Number Theory. Some basic properties of the integers, including the
Euclidean algorithm, congruence modulo m, simple diophantine equations, the Euler <p

function, and the Mobius Inversion Formula.

4. Some Highly Informal Set Theory. Cardinal numbers and their arithmetic; well
ordering and its applications, including Zorn's Lemma.

5. Linear Algebra. Finite-dimensional vector spaces, along with linear transformations
and their representation by matrices.

6. Theory of Linear Operators. Jordan Canonical Form; minimal and characteristic
polynomials; adjoints; normal operators.

A single chapter on a subject such as number theory does not replace a full course,
and if you find a particular subject interesting, I would urge you to pursue the area further.
The more mathematics you study, the more skillful you will become at it.

Another purpose of the book is to provide one possible model for how to write
mathematics for an audience with limited experience in formalism and abstraction. I try
to keep proofs short and as informal as possible, and to use concrete examples which
illustrate all the features of the general case. When a formal development would take
too long (notably in set theory), I try to replace the sequence of abstract definitions and
theorems by a consistent thought process. This makes it possible to give an intuitive
development of some major results. In the last chapter on linear operators, you are given
a powerful engine, the Jordan Canonical Form. The proof of existence is difficult and
should probably be skipped on first reading. But using the Jordan form right from the start
simplifies the development considerably, and this should contribute to your understanding
of linear algebra.

Each section has a moderate number of exercises, with solutions given at the end
of the book. Doing most of them will help you master the material, without (I hope)
consuming too much time.

The book may be used as a text for a course in learning how to think mathematically.
The duration of the course (one semester, one quarter, two quarters) will depend on
the background of the students. Chapter 3, Chapter 4, and Chapters 5-6 are almost
independent. (Before studying Chapter 5, it is probably useful to look at the description
of various algebraic structures at the beginning of Section 3.3 and the definition of a
vector space at the end of Section 4.2.) A shorter course can be constructed by choosing
one or two of these options after covering Chapters 1 and 2.
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We are doing theoretical, abstract mathematics, and students in applied fields may
wonder where the applications are. But a computer scientist needs to know some elemen
tary number theory in order to understand public key cryptography. An electrical engineer
might want to study basic set theory in order to cope with abstract algebra and thereby
learn about error-correcting codes. A statistician needs to know some theoretical linear
algebra (projections, diagonalization of symmetric matrices, quadratic forms) in order to
work with the multivariate normal distribution. There is potentially a large audience for
abstract mathematics, and to reach this audience it is not necessary for us to teach detailed
physical and engineering applications. The physics and engineering departments are quite
capable of doing this. It is certainly useful to suggest possible applications, and as an
illustration, I have included an appendix giving a typical application of linear algebra.
But it is essential that we write in an accessible and congenial style, and give informal
or heuristic arguments when appropriate.

Some acknowledgments: I got the idea of doing an intuitive development of set
theory after seeing an informal discussion of the Maximum Principle in Topology, A
First Course by James R. Munkres, Prentice-Hall 1975. I thank Ed Merkes for many
helpful suggestions to improve the exposition, Ken Ross and Andy Sterrett for their
encouragement and advice, and my wife Carol Ash for many insights on the teaching of
combinatorics and linear algebra. '

A typical reader of this text is likely to be motivated by a need to deal with formal
mathematics in his or her professional career. But I hope that in addition there will be
some readers who will simply take pleasure in a mathematical journey toward a high
level of sophistication. There are many who would enjoy this trip, just as there are many
who might enjoy listening to a symphony with a clear melodic line.

Robert B. Ash
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Appendix

An Application Of linear Algebra

Virtually every branch of science uses linear algebra. Here is an application that is of
interest in many fields. A finite Markov chain is a system with states Sl, ... , Sr and
transition probabilities Pij, i, j = 1, ... , r. Starting in an initial state at time t = 0, the
system moves from one state to another at subsequent times t = 1, 2, . . . . If the system is
in state i at a given time, the probability that it will move to state j at the next transition
is Pij. (We allow j = i, so that Pii can be greater than zero.)

The matrix A with entries Pij is called the transition matrix of the chain. It is an
example of a stochastic matrix: the entries are nonnegative and the sum across each row
is 1.

If we start in state i at t = 0, what is the probability p~~) that we will be in state
j after two transitions? One way this can happen is to move to state k at t = 1 and
then move from state k to state j at time t = 2. The probability that this will occur is
PikPkj. But k can be any integer from 1 to r, and we must add all of the corresponding
probabilities. The result is

r

(2) _ """
Pij - L..J PikPkj,

k=l

which is the ij entry of the matrix A2 .

Thus the entries of A2 are the two-step transition probabilities. Similarly, we can
consider three-step transition probabilities p~J). If we start in Si at t = 0, one way of
arriving at Sj at t = 3 is to be in Sk at t = 2 and move from Sk to Sj at t = 3. This

event has probability P~~)Pkj, and consequently

r
(3) _ """ (2)

Pij - L..J Pik Pkj,

k=l

the ij entry of A2 A = A3.
An induction argument shows that if p~7) is the probability, starting in Si, of being

in Sj n steps later, then p~;) is the ij entry of An. Thus to compute n-step transition
probabilities, we must calculate the nth power of the transition matrix A. This is quite

145
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a tedious chore for large n. But if A is diagonalizable (in particular, if A has distinct
eigenvalues), and the eigenvalues and eigenvectors of A are found, then all powers of A
can be computed efficiently, as follows.

Let P be a nonsingular matrix such that p-lAP == D, a diagonal matrix whose
main diagonal entries are the eigenvalues Ai (i == 1, ... , r) of A. Then A == P DP- 1

,

and if we begin to compute the powers of A, a pattern emerges quickly:

A 2 == AA == P DP- 1P DP- 1 == P D2p- 1 ,

A 3 == A 2 A == P D2p- 1P Dp- 1 == P D3p- 1 ,

and by induction,

But since D is diagonal, so is Dn, and the main diagonal entries of Dn are Ai, i ==

1, ... , r. Once the eigenvalues and eigenvectors have been found, the matrix P can be
taken to have eigenvectors as columns. The computation of An has been reduced to finding
the nth powers of the Ai, followed by a matrix inversion and two matrix multiplications,
one of which is easy (because Dn is diagonal).



Solutions to Problems

Section 1.1

1. A B AvB -,(A v B) -,A -,B (-,A) !\ (-,B)
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

2. To prove the first law, note that the left side is true iff Al !\ ... !\ An is false, which

happens iff at least one Ai is false, i.e., at least one (-,Ai ) is true, equivalently, the right

side is true. For the second law, note that the left side is true iff Al V ... V An is false,

which happens iff all Ai are false, i.e., all (-,A i ) are true, equivalently, the right side is

true.

3. A B A=*B -,A (-,A) V·B
T T T F T
T F F F F
F T T T T
F F T T T

4. A -,A AV(-,A) A!\ (-,A)
T F T F
F T T F

5. The left side is true iff A and (either B or C) are true. The right side is true iff either

(A and B) or (A and C) is true, in other words, A is true in conjunction with either B
or C. Thus the two sides have the same truth table. (If you are not comfortable with this

reasoning, construct the complete truth tables for A !\ (B V C) and (A !\ B) V (A !\ C),
and verify that they are identical.)

147
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6. The left side is true iff either A or (B and C) is true. The right side is true iff both
(A or B) and (A or C) are true. This will happen if A is true, but if A is false, both
Band C must be true (a proof by cases; see Section 1.3). Thus the right side is true iff
either A or (B and C) is true. As in Problem 5, this can be verified by a truth table.

7. Going from Problem 5 to Problem 6 gives a concrete example with the essential
features of the general case, so let's do it this way rather than use messy formal notation.
Having established the result of Problem 5, take the negation of both sides, using the
DeMorgan Laws. We get

-'[A 1\ (B V C)J ~ -,[(A 1\ B) V (A 1\ C)J

[(.A) V .(B V C)] {:} (r.(A /\ B)] /\ [.(A /\ C)])

[(.A) V ((.B) /\ (.C))] {:} (r(.A) V (.B)] /\ [(.A) V (.C)]).

This is the result of Problem 6, except that each proposition A, B, C is replaced by its
negation. But A, B, and C are arbitrary propositions, which is a key point; as A ranges
over all possible propositions, so does -,A. (A similar but perhaps more familiar statement
is that if x ranges over all real numbers, so does -x; if you want -x to equal y, take
x == -y). Thus the result of Problem 6 holds in general. Notice also that if a tautology
T appears in the original statement, taking the negation changes it to F, and similarly a
contradiction F is changed to T.

Section 1.2

1. Vx~N (N > x)

2. ~x VN (N ::; x), which says that there is a real number x that is at least as big as
every integer (false!).

Section 1.3

1. True for n == 1, since 1(2)/2 == 1. If true for n, then

1 + 2 + ... + n == n(n + 1)/2 by the induction hypothesis

n+l==n+1 (an identity), so

1 + 2 + ... + n + 1) == [n(n + 1)/2J + (n + 1) == (n + 1) [(n/2) + l)J

== (n + l)(n + 2)/2.

Thus the statement is true for n+1, and therefore the result holds for all n, by mathematical
induction.
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2. True for n = 1, since 22(1) - 1 = 4 - 1 = 3. If 22n - 1 is divisible by 3, consider

22(n+1) _ 1 = 2(2n+2) - 1 = (4)22n - 1 = (3)22n + (2 2n - 1).

By the induction hypothesis, 22n - 1 is divisible by 3, and it follows that 22(n+1) - 1 is
the sum of two numbers divisible by 3, and consequently is divisible by 3. The induction
argument is therefore complete.

3. True for n = 1, since 111 - 41 = 7. If lIn - 4n is divisible by 7, then

which (using the induction hypothesis) is the sum of two numbers divisible by 7. The
result follows.

4. True for n = 1, since 12 = 1(2) (3) /6. If true for n, then by the induction hypothesis,

by algebra

by more algebra.

n(n + 1)(2n + 1)
12 +22 +···+n2 +(n+1)2= +(n+1)2

6

(
2n

2
+n )==(n+1) 6 +n+1

(n + 1)(2n2 + 7n + 6)
6

(n + l)(n + 2)(2n + 3)
6

by factoring

Since 2n + 3 = 2(n + 1) + 1, the induction step is proved.

5. The assertion is true for a postage of n = 35 cents, since we can pay with seven
5-cent stamps. If the result holds for a postage of n cents (n ~ 35), consider a postage
of n + 1. In case 1, a postage of n can be I?aid with all 5' s, and it takes at least seven
of them since n ~ 35. If we replace seven 5's by four 9's, we have paid for n + 1 using
only 5' sand 9' s. In case 2, postage n is paid using at least one 9. To pay for n+ 1 in this
case, replace the 9 by two 5's, and again we have paid for n + 1 using only 5's and 9's.
This completes the induction step.

Section 1.4

1. We have x E (ni Ai)C iff x f{. ni Ai iff it is not the case that x belongs to Ai for
all i iff for at least one i, x tt Ai iff x E Ui (Ai).

2. We have x E Au (ni B i ) iff x E A or x E B i for all i iff for all i, x E A or x E B i

iff for all i, (x E A or x E B i) iff I E ni(A UBi).

3. We must show that A has no members. But if x E A then by hypothesis, x belongs
to the empty set, which is impossible.
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4. If i =1= j, then B i n B j ~ Ai n A j == cpo By Problem 3, B i n B j == cpo

5. No. For example, let A == {I, 2, 3, 4}, B == {1,2}, C == {1,4}. Then A U B ==
A U C == A, but B =1= C.

6. No. For example, let A == {I, 2, 3, 4}, B == {I, 2, 5}. Then AU(B\A) == {I, 2, 3, 4}U
{5} =1= B.

7. Au (B \ A) == Au B. For if x E Au (B \ A), then x belongs to A or x belongs to
B but not A, so that x E Au B. Conversely, if x E Au B, then it is convenient to do a
proof by cases:

Case 1. x E A; then certainly x E A U (B \ A).
Case 2. x tt A; then, since x E Au B, we must have x E B, so that x E B \ A.

(A Venn diagram may be useful in visualizing the result.)

8. The Distributive Law provides a concrete example with all the features of the general
case. In the original Distributive Law A n (U i B i ) == Ui(A n B i ), take the complement
of both sides and use the DeMorgan Laws to obtain Ac U (ni By) == ni(AC U BY). Since
the sets A and Bi are arbitrary, we may replace A C by A and By by B i to obtain the
second Distributive Law of Problem 2. Notice that if n appears in the original identity,
taking the complement changes n to 0. Similarly, 0 is replaced by n.

9. A ~ B iff (x E A => x E B) iff ((x E A) {::} (x E A and x E B)) iff ((x E B) {::}
(x E A or x E B)), and the result follows.

Section 1.5

1. If x3 == y3, we may take cube roots to conclude that x == y, so f is injective. Any
real number y has a real cube root x == yl/3, so f is surjective.

2. f is neither injective nor surjective, by an analysis similiar to that in the text for
f(x) == x 2

•

3. h(x) == g(f(x)), where f(x) == x 2 + 1 and g(y) == ylO.

4. If A consists of a single point then f is injective, and if B consists of a single point
(necessarily c), then f is surjective. These are the only circumstances.

5. If A == {al, ... ,am }, then B has at least m distinct points f(al), ... ,f(am ), so
m ::; n.

6. If B == {b1 , ... , bn } then for each i there is a point ai E A such that f (ai) == bi.
The elements ai are distinct, for otherwise the function f would map the same point to
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two different images in B, which is impossible. Thus A has at least n distinct points, so

that m ~ n.

7. In view of (1.5.5(a», we need only prove that f- 1 [f(C)] is a subset of C. If
x E f- 1 [f(C)], then f(x) E f(C), so that f(x) == f(y) for some y E C. Since f is
injective we have x == y, and therefore x E C.

8. In view of (1.5.5(b», we need only prove that D is a subset of f [f- 1 (D)]. If y E D,
then since f is surjective we have y == f (x) for some x E A. But then f (x) == Y ED,
so y == f(x) with x E f-l(D); that is, y E f[f-l(D)].

9. In view of (I.S.S(d», we need only prove that the intersection of the f(Ai ) is a subset

of f(ni Ai). If y E ni f(Ai ), then for each i we have y == f(Xi) for some Xi E Ai.
Since f is injective, all the Xi are equal (to x, say); hence y == f(x) with x E ni Ai, and
the result follows.

Section 1.6

1. R is reflexive (Wand W certainly begin with the same letter), symmetric (if Wand
V begin with the same letter, so do V and W) and transitive (if Wand V begin with the
same letter, and V and U begin with the same letter, then W and U begin with the same
letter). If W begins with a, the equivalence class of W consists of all words beginning
with a. Thus there are 26 equivalence classes, one for each possible letter.

2. If aRb, then bRa by symmetry, so a == b by antisymmetry. Conversely, if a == b, then
aRb by reflexivity. Thus aRb if and only if a == b.

3. The argument of Problem 2 uses re~exivity, which is no longer assumed.

4. Let A == {I, 2, 3} and let R consist of the ordered pairs (1,1) and (2,2). Then R is
symmetric and antisymmetric, but (3,3) 1:- R, so that R is not equality.

5. If R is relation that is reflexive, symmetric and antisymmetric, then R is the equality
relation. The argument of Problem 2 goes through in this case.

6. No. If a and b are maximal and R is total, then aRb or bRa. If, say, aRb, then since
a is maximal we have a == b.

7. The inclusion relation is reflexive (A ~ A), antisymmetric (if A ~ Band B ~ A
then A == B), and transitive (if A ~ Band B ~ C then A ~ C). The relation is not total
(unless W has at most one element). For example, if A == {I, 2, 3} and B == {2, 3, 4}
then A is not a subset of B and B is not a subset of A.

8. (a) If x E Aj , then certainly x E Ai for at least one i, so Aj ~ B.
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(b) We must show that if each Ai ~ C, then Ui Ai ~ C. But this follows directly
from the definition of union.

9. (a) If x E B, then x belongs to every Ai, so B ~ Ai for all i.
(b) We must show that if C ~ Ai for every i, then C ~ ni Ai. But this follows

directly from the definition of intersection.

Section 2.1

1. A bijective function from A to A corresponds to a permutation of A, and by (2.1.2),
the total number of permutations is n!

2. We have n choices for f(a), where a ranges over the k elements of A. The total
number of functions is (n)(n)··· (n) == nk

.

3. Once an element f (a) E B is chosen, it cannot be used again. Therefore the number
of injective functions is

n!
(n)(n-l)···(n-k+l)== .

(n - k)!

4. By Problem 2, the number of functions from A to {O, I} is 2n
.

5. Suppose that 1 and 4 go to R 1 , 5 to R 2 , and 2 and 3 to R 3 . This corresponds to
the sequence R1R3R3R1R2. In general, we are counting generalized permutations of R 1,
R 2, and R3 in which R 1 occurs twice, R 2 once and R 3 twice. The result is 2!~:2! == 30.

6. By the formula for generalized permutations, the number of assignments is

n!

7. The assignment of Problem 5 yields the partition {I, 4}, {5}, {2, 3}. But the assign
ment in which 1 and 4 go to R 3 , 5 to R 2 , and 2 and 3 to R 1 , yields the same partition,
since we get the same collection of disjoint subsets whose union is {I, 2, 3, 4, 5}. Because
there are two rooms of the same size, the computation of Problem 5 overcounts by a factor
of 2, and the correct answer is 30/2 == 15.

8. Suppose we have two subsets 8 1 and 8 2 of size 5, four subsets T1, T2, T3, and T4
of size 3, and one subset U1 of size 2. This can be converted into a room assignment by
permuting 8 1 and 8 2 , and then permuting T1, T2, T3, and T4. (There is only one permu
tation of the single symbol U1.) For example, 8281T3T4T2T1 corresponds to sending the
people in 8 2 to room R 1, the people in 8 1 to R 2, the people in T3 to R 3, T4 to R4, T2
to R s, and T1 to R6 • Thus the number of partitions times 2!4!1! is the number of room
assignments, so the correction factor is 2!4!1!.
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9. By the same reasoning as in Problem 8, we obtain

n!

153

10. We are counting the number of nonnegative integer solutions of Xl + X2 + X3 +
X4 + X5 = 10, which is

Section 2.2

1. (1 + l)n = I:~=o (~)lk1n-k, and the result follows.

2. (-1 + l)n = I:~=o (~)(_1)k1n-k, and the result follows.

3. By Problem 4 of Section 2.1, there are 2n subsets of a set A with n elements. But by

(2.1.4), there are (~) k-element subsets of A. Sum from k = a to n to obtain the desired
identity.

4. The desired identity is

n! (n - I)! (n - I)!
---- = + -----
k!(n - k)! (k - l)!(n - k)! k!(n - k - I)!·

Multiply by k!(n - k)! to obtain n! = k(n - I)! + (n - k)(n - I)! = n(n - I)!, which

is valid. The steps of this argument may be reversed to establish the original identity.

5. There are (~) k-element subsets of {I, 2, ... ,n}. Consider any fixed element of
{I, 2, ... ,n}, say n. If S is a k-element subset, there are two possibilities:

Case 1. n E S. Then there are k - 1 other elements of S, to be chosen from the

integers 1,2, ... ,n - 1. The number of such subsets is (~=~).

Case 2. n tf- S. Then S is a k-element subset of {I, 2, ... ,n - I}, and the number
of such subsets is (nkl).

Now any k-element subset falls into one of the two cases (but not both), and therefore

the total number of k-element subsets is the sum of the number of subsets in case 1 plus
the number in case 2. The result follows.

6. The sum of all the coefficients in the multinomial expansion of (al + ... + ar)n
may be obtained by setting all ai = 1 (cf. Problem 1). The sum of the coefficients is
therefore r n . When r == 3 and n == 4, we get 34 == 81, as expected.
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1. We must place i in position i, and the remaining n - 1 integers 1,2, ... ,i - 1, i +
1, ... ,n can be permuted arbitrarily. Thus N(A i ) is the number of permutations of a set
with n - 1 members, which is (n - 1)!

2. We must place iI, ... ,ik in their natural positions, and we can then permute the
remaining n - k integers arbitrarily. There are (n - k)! ways of doing this.

3. The number d(n) of derangements is the total number of permutations minus the
number of permutations in which at least one integer stands in its natural position. Thus
d(n) == n! - N(A I U ... U An), and we compute N(A I U ... U An) with the aid of
PIEn . There are (7) terms involving intersections of i of the sets A j • Terms involving
an even number of intersections appear with a minus sign, and by Problem 2, each term
is (n - i)! in absolute value. Therefore

The alternative expression for d(n) follows from the identity

(
n) n!
i - i!(n - i)!"

4. By Problem 3,

!d(n) - :' I = n! I.f (~~)i I·
z=n+1

Now an alternating series whose terms decrease in magnitude must be less than the first
term in absolute value, so

I

n! I n! 1 1dn -- < ---<-
() e (n+l)'-n+1-2'

and the result follows.

5. N (Ai) is the number of functions from a set with k elements to a set with n - 1
elements (one of the original n elements, namely i, is excluded). By Problem 2 of Section
2.1, N(A i ) == (n - 1)k.

6. We are counting the number of functions from a set with k elements to a set with
n - r elements (r of the original n elements are excluded). The result is (n - r)k.

7. The number S(k, n) of surjective functions is the total number of functions minus
the number of functions f such that some integer i E {1, ... , n} is missing from the
image of f. Thus S(k, n) == nk - N(A I U· .. U An), and we compute N(A I U· .. u An)
with the aid of PIEn. There are (7) terms involving intersections of i of the sets. Terms
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involving an even number of intersections appear with a minus sign, and by Problem 6,
each term is (n - i)k in absolute value. Therefore

S(k, n) = nk - t(_l)i-l (7) (n - i)k

= i)-1)i(7)(n-i)k.
~=o

8. A partition of {I, ... ,8} into four disjoint nonempty subsets gives rise to 4! == 24
surjective functions; there are 4 possible choices for f (1) (= f (2), and then 3 possible
choices for f(3) (== f(4) == f(5), and so on. For example, we might choose f(l) ==
f(2) == 3, f(3) == f(4) == f(5) == 1, f(6) == 4, f(7) == f(8) == 2. The correct statement
is that the number of surjective functions from {I, ... ,8} to {I, 2, 3, 4} is 4! times the
number of partitions of {I, ... ,8} into four disjoint nonempty subsets.

9. S(k, n) == n!P(k, n). The reasoning is the same as in the concrete example of
Problem 8.

10. S(k,n) == 34- (i)24+ (~)14 - (~)04 == 81- 48 + 3- 0 = 36

P(k ) == S(k, n) == 36 == 6
,n , 3' .n. .

The partitions are

{1,2},{3},{4}

{1,3},{2},{4}

{1,4},{2},{3}

{2,3},{1},{4}

{2,4},{1},{3}

{3, 4}, {I}, {2}.

Section 2.4

1. There is no way to guarantee that the number r selected is rational.

2. We give a proof by mathematical induction. The n == 2 case follows from the diagonal
scheme that we used to count the rationals. If Al == {aI, a2, ...} and A2 == {bl , b2, ...},
we simply replace the rational number i/j by the ordered pair (ai, hj). If we have proved
that the Cartesian product of n - 1 countable sets is countable, then the result for n
sets follows because an ordered n-tuple (Xl, X2, ... , Xn) can be regarded as an ordered
pair ((Xl, ... , Xn-l), xn ). The result then follows from the induction hypothesis and the
n == 2 case.
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3. Let

Primer of Abstract Mathematics

TI + T2x=--_o
2 '

then TI < x < T2, so x must occur after TI but before T2 on the list. This is a contradiction,
since we are given that TI is followed immediately by T2. Alternatively, simply observe
that there is no smallest positive rational, so the list cannot even get started.

4. Let al be any element of A, and set f(l) = al. Since A is infinite, it must contain
an element a2 =1= al; set f (2) = a2. Since A is infinite, it must contain an element a3
with a3 =1= al and a3 =1= a2; set f(3) = a3. We continue in this fashion, performing an
inductive procedure (compare the proof of (1.6.5». At step n we have distinct points
al,'" ,an, with f(i) = ai, 1 ~ i ~ n. If we define f : Z+ ~ A by f(n) = an,
n = 1,2, ° 00' then f is a one-to-one mapping of Z+ into A.

Section 3.1

1. By (i), d divides both a and b, so by (ii), d divides e. A symmetrical argument shows

that edivides d. Thus Idl ~ lei and lei ~ Idl, so Idl = lei.

2. If e is any positive integer that divides both a and b, then e divides d by definition
of d, so e ~ Idl, and the result follows.

3. qi Si ti Ti

-1 1 0 770
0 0 1 84
1 9 1 -9 14

gcd(770,84) = 14, and 1(770) - 9(84) = 14.

4. qi Si ti Ti

-1 1 0 232
0 0 1 14
1 16 1 -16 8
2 1 -1 17 6
3 1 2 -33 2

gcd(232, 14) = 2, and 2(232) - 33(14) = 464 - 462 = 2.

5. Not unique. If sa + tb = d, then (s + kb)a + (t - ka)b = sa + tb = d, so there are
infinitely many solutions.
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Section 3.2

1. 10561485 == (3)(5)(11 3 )(23)2
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2. N can be written as a product of primes, in particular, N has at least one prime
factor P, which must be one of the Pi. But then P divides Nand P divides PIP2 ... Pk;
hence P divides 1, a contradiction.

3. If N == t(n + I)! + 1, then N + r - 1 == t(n + I)! + r, which is divisible by r for
r == 2,3, ... ,n + 1, which implies that N + r - 1 is composite. Thus N + 1, ... ,N + n
are all composite.

4. If c is any composite number between 1 and n, then c must have a prime factor
P ::; yin (otherwise c == ab where both a and b exceed yin, so c > n, a contradiction).
Thus c will be removed from the list.

5. If pe appears in the prime factorization of a, then by the Unique Factorization The
orem, pke must appear in the prime factorization of ak . Thus all exponents in the prime
factorization of a k (and similarly bk ) are multiples of k, and therefore all exponents in the
prime factorization of n are multiples of k. It follows that ifii is an integer, contradicting
the hypothesis.

6. (a) The least common multiple is m == PI1 ... pfk where gi == max(ei, fi). The
argument is exactly the same as in Theorem 3.2.6, with all inequalities reversed and
divisors replaced by multiples.

(b) In view of part (a) and (3.2.6), we must show that

or equivalently, e + f == min(e, f) + max(e, f). But this is always true (the sum of two
numbers is the smaller plus the larger).

7. If t is any positive integer that is a multiple of both a and b, then by definition of
m, we have mit, so Iml ::; t, and the result follows.

Section 3.3

1. 3(0) == 0, 3(1) == 3, 3(2) == 1 (note 6 == 1 mod 5), 3(3) == 4, 3(4) == 2. Since
3(2) == 1 in 2 5 , the multiplicative inverse of 3 is 2.

2. 1-1 == 1, 2-1 == 3,3-1 == 2,4-1 == 4.
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3. F[X] is a commutative ring because polynomials can be added, subtracted and
multiplied and the result will still be a polynomial. (Formally, axioms (Al)-(A5) and
(Ml)-(M5) must be checked.) In fact F[X] is an integral domain. To see this, suppose
f(X)g(X) = (anxn+ .. ·+ao)(bmxm+ .. ·+bo) = o. If neither f(X) nor g(X) is 0,
then we have nonzero leading coefficients an and bm whose product is 0, contradicting
the fact that F is a field. F[X] is not a field because f(X)/g(X) is in general not a
polynomial (for example, let f(X) = X + 2 and g(X) = X + 1).

4. We obtain the field F(X) of rational functions f(X)/g(X), where f(X) and g(X)
are polynomials with coefficients in F, and g(X) # O. Since the sum, difference, product
or quotient (with nonzero denominator) of rational functions is also a rational function,
F(X) is a field.

Section 3.4

1. As in (3.4.2), we find that 4(37) -7(21) = 1, and it follows that -7 is a multiplicative
inverse of 21 mod 37. We are free to replace -7 by the canonical representative -7+37 =

30.

2. As in (3.4.2), we find that 3(127) - 38(10) = 1, so -38 is a multiplicative inverse
of 10 mod 127, and we can replace -38 by -38 + 127 = 89. If lOx == 7 mod 127, then
x == (10)-1(7) == 89(7) == 115 == -12 mod 127.

3. We have 1 == 1 mod 9, 10 == 1 mod 9, 102 = 10(10) == 1(1) = 1 mod 9, ... ,
10n- 1 == 1 mod 9, so N == al + a2 + ... + an mod 9.

4. We have 1 == 1 mod 11, 10 == -1 mod 11, 102 == (-1)2 = 1 mod 11, 103 ==
(-1)3 = -1 mod 11, ... , 10n- 1 == (_l)n-l mod 11. Thus N == al - a2 + a3 - a4 +

mod 11.

5. We have

N = (al + a2101 + ... + ar10r- 1) + (ar+l10r + ... + anIOn-I)

=A+B,

and since M = 2r and 2 divides 10, M divides B. Thus M divides N if and only if M
divides A, as asserted.

6. Let P be a prime factor of N. Then P cannot be any of the Pi, for if Pi were to divide
N, the equation N = 4Pl ... Pk - 1 implies that Pi divides 1, which is impossible. Since
PI, ... ,Pk constitute all the primes == 3 mod 4, P must be congruent to 1 mod 4. (If
P == 0 mod 4, then 4 divides P, which is impossible because P is prime. If P == 2 mod 4,
then P is even, so that P = 2. This cannot happen because N is an odd number.) Since
the product of numbers congruent to 1 mod 4 is also congruent to 1 mod 4, we have
N == 1 mod 4, a contradiction.
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Section 3.5
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1. The Euclidean algorithm gives 18(1) + 12(-1) = 6, so 18(5) + 12(-5) = 30. Thus
x = 5 is a solution of 18x == 30 mod 12, or equivalently 3x == 5 mod 2. Thus the
general solution is x = 5 + 2u, Y = -5 - 3u. There are 6 distinct solutions mod 12,
corresponding to u = 0, 1, 2, 3, 4, 5.

2. The Euclidean algorithm gives 11(-1) + 6(2) = 1, so x = -1 is a solution of
11x == 1 mod 6, and we may replace -1 by 5 since -1 == 5 mod 6. The general solution
is x == 5 + 6u, Y = -9 - 11u, which is unique mod 6.

3. The given equation is equivalent to 6x + 9y = 3, and from the Euclidean algorithm
we have 6(-1) + 9(1) = 3, with gcd(6,9) = 3. Thus 6x == 3 mod 9 is equivalent to
2x == 1 mod 3, and x = -1, which can be replaced by x = 2, is a solution. The general
solution is x = 2 + 3u, Y = -1 - 2u. There are 3 distinct solutions of 6x == 3 mod 9,
namely, x = 2, x = 5, and x = 8.

4. We have m = 4(5)(9) = 180, YI = 180/4 = 45, Y2 = 180/5 = 36, Y3 = 180/9 =
20. Since 45 == 1 mod 4, 36 == 1 mod 5, and 20 == 2 mod 9, we may take ZI = 1,
Z2 = 1, and Z3 = 5. Thus one solution is given by Xo = 2(45)(1)+1(36)(1)+6(20)(5) =
726 == 6 mod 180. The general solution is x = 6 + 180u, u E Z; the solution is unique
mod 180.

5. If
k

L biYiZi == 0 mod m
i=1

(hence mod mj for all j), then by (12) we have bj == 0 mod mj for all j = 1, ... , k.

Now suppose that (bl, ... ,bk) and (CI, ... ,Ck) both map to xo. Since in (13), Xo is a
linear combination of the bi , it follows that (bl - CI, ... , bk - Ck) will map to Xo - Xo = O.
But then bi -Ci == 0 mod mi, proving that the mapping is injective. Since Zml x· .. X Zmk

and Zm each have m elements, the mapping is surjective by (1.5.2).

Section 3.6

1. (a) 600 == 23 (3) (52), <p(600) = 600(1 - ~) (1 - !) (1 - i) = 160
(b) 841 = 292, <p(841) = 292 - 29 = 812
(c) 6174 = 2(32)(73 ), <p(6174) = 6174(1- ~)(1- !)(1-~) = 1764

2. The residues are 5, 1, 2, 7, 8, 4, a permutation of 1, 2, 4, 5, 7, 8.

3. Let PI, ... ,Pr be the primes occurring in the factorization of m, and let ql, ... , qs

be the primes occurring in the factorization of n. Since m and n are relatively prime,
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Pi =1= qj for all i, j. Thus
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~(mn) =mn(l- :J ... (1- :J (1- :J ... (1- q~) =~(m)~(n).

4. Let n = 4, r = 2. Then (~) = 6, which is not divisible by 4.

5. If P does not divide a, then by Fermat's Theorem, the inverse of a mod P is aP -
2

•

But for large P, the computation becomes very laborious.

6. Let N = 2(Pl-l)"'(Pk- l ) = n + 1. Since PI > 2, PI cannot divide 2 and therefore

Fermat's Theorem implies that 2P1 -1 == 1 mod Pl. Successively raising both sides of this

congruence to the powers P2 -1, ... ,Pk -1, we find that N == 1 mod Pl. Since P2 > 2, P2
cannot divide 2P1 - l , and Fermat's Theorem gives 2(Pl-l)(P2- l ) == 1 mod P2. As above,

we conclude that N == 1 mod P2. Continuing in this fashion, we have N == 1 mod Pi,
i = 1,2, ... ,k. In other words, n = N - 1 is divisible by each Pi, and since the Pi are
distinct primes, the product PI ... Pk divides n (see (3.4.5 (f».

Section 3.7

1. This follows because 17305893 is divisible by 9 = 32 •

2. If m is the product of r distinct primes and n is the product of s distinct primes,
then since m and n are relatively prime, mn is the product of r + s distinct primes. Thus
J.-L(mn) = (_I)T+s = (-I)T (-I)S = J.-L(m )J.-L(n). If m or n has a repeated prime factor,

so does mn, and J.-L(mn) = J.-L(m)J.-L(n) = o.

3. A divisor d of n is of the form d = p~l ... p~k, 0 ~ ri ~ ei. Since f is multiplicative,
f (d) = f (p~l ) ... f (p~k). Thus the terms in the expansion of

correspond to the f(d), din, and the result follows.

4. This follows from Problem 3, since f(n) = nT is multiplicative.

5. By definition, n is perfect if and only if the sum of all its positive divisors is n +n =

2n. Since L:dln d = Sl (n), the result follows.

6. Sl(2n - l ) = 1 + 2 + 2 2 + ... + 2 n
-

l = 2n -1, and since 2n -1 is prime,

Sl(2n
- 1) = 1 + (2 n

- 1) = 2n
.

Thus Sl(X) = (2 n - 1)(2n ) = 2x.
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7. (a) By Problem 5, 31 (x) == 2x, and by Problem 4, 31(x) == 31 (2 h )31 (q). But as in
Problem 6, 3 1 (2 h ) == 2h+ l - 1, and the result follows.

(b) Sl(Q)= 2
h
+

1
>1.

q 2h+ l - 1
(c) By (b), 2h+lq == (2h+l -1)31 (q) == (2h+l -1)(q+r), so 0 == -q+ (2h+l -1)r,

as asserted.
(d) If r > 1, then r is a divisor of q and 1 < r < q. Thus 3 1 ( q) ~ q+ r + 1 > q+ r,

contradicting (c).
(e) By (c) and (d), 3 1 (q) == q + 1, so the only positive divisors of q are q and 1. It

follows that q must be prime.

Section 4.1

1. {I, 2, 4, 12} and {I, 2, 6, 12}

2. If you visualize the ordered pair (a, b) as determined by a vertical line (column) at
x == a and a horizontal line (row) at y == b in an x-y plane, then to compare two pairs,
we first look at columns, and if the columns are equal, we then look at rows. It should be
clear intuitively that we have a total ordering, and the formal details are straightforward.
Let C be a nonempty subset of Ax B. Among all first coordinates a of ordered pairs
(a, b) E C, there is a smallest element ao, and among all second coordinates b of ordered
pairs (ao, b) E C, there is a smallest element bo. If (a, b) E C, then

Case 1: ao < a. Then (ao, bo) < (a, b).
Case 2: ao == a. Then (ao, b) == (a, b) E C, so (ao, bo) ::; (ao, b) == (a, b).

Thus (ao, bo) is the smallest element of C.

3. No, the ordering is not even total, assuming that A and B each have at least two
elements. For if al < a2 and bl < b2, then (aI, b2) and (a2' bl ) cannot be compared.

Section 4.2

1. Assuming Zorn's Lemma, let B be a chain of the partially ordered set A. The
collection C of all chains containing B is nonempty (since B is a chain containing B)
and is partially ordered by inclusion. (See Section 1.6, Problem 7.) Every chain of C has
an upper bound in C, namely the union of all the chains of A that comprise the chain
of C. By Zorn's Lemma, there is a maximal element, in other words, a maximal chain
containing B.

2. If rlVl + ... + rnVn == 0 but not all ri == 0, say rl i= O. Then
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so that VI can be expressed as a linear combination of V2, . .. ,Vn . Conversely, if one of

the Vi can be expressed as a linear combination of the others, move all Vi to the same

side of the equation to conclude that a nontrivial linear combination of the Vi is O.

3. The argument is virtually identical to that of Problem 2.

4. Suppose that the chain consists of the linearly independent sets Li , i E I. Then each

Li is contained in the union of all the Li , so UiEI Li is an upper bound of the chain in C,
provided we can show that it is a linearly independent set. But if rl VI + ... + r n vn == 0

with the Vj E UiEI L i , then for some index k we have all Vj ELk, because the L i form

a chain. (For example, if VI ELI, V2 E L 7 , and L 1 ~ L 7 , then both VI and V2 belong to

L 7 .) Since L k is linearly independent, all ri must be O.

5. By Zorn's Lemma, C has a maximal element, that is, V has a maximal linearly

independent set.

Section 4.3

1. If c E C, there is an element b E B such that g(b) == c, and an element a E A such

that f(a) == b. But then g(f(a)) == c, proving 9 E f surjective.

2. There are many possibilities. For example, let f (x) == x2 on the reals. Then f is not

injective, but if we restrict f to the nonnegative reals, the resulting function is injective.

3. If B :Ss A, then there is an injective map 9 from B into A. The inverse of this

function maps g(B) onto B. If we define f(x) == g(x) for x E g(B), and define f(x) to

be an arbitrary element of B for x E A \ g(B), then f : A ~ B is surjective. Conversely,

if f maps A onto B, then for each y E B there is an element x E A such that f(x) == y.

Choose one such x (Axiom of Choice!) and call it g(y). If x == g(Yl) == g(Y2), then by

definition of g, x is mapped by f to both Yl and Y2, and since f is a function, we must

conclude that Yl == Y2. Thus 9 is an injective map of B into A, so B :Ss A.

4. If B is countably infinite, then there is a bijection between Band N, and if B is

finite, there is an injective map from B to N. Thus B is countable if and only if B :Ss N,

and the result follows from Problem 3.

5. Let A == {aI, ... ,am} and B == {b1, ... ,bn }. If m == n, then ai ~ bi , 1 :S i :S n,

defines a bijection between A and B, so IAI == IBI. If m < n, then ai ~ bi , 1 :S i :S m,

defines an injective map from A to B, so IAI :S IBI. Since m < n, any function from B
to A must map at least two bi's to the same element of A, so there can be no bijection

between A and B. Therefore IAI < IBI, and the result follows.
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Section 4.4
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In Problems 1, 2, and 3, IAI == Q, IBI == (3, ICI == 'Y.

1. AB+C is the set of functions from the disjoint union of Band C to A, and this

set of functions is in one-to-one correspondence with the set of pairs of functions (f, g)
where f : B ---+ A and g : C ---+ A. (If h : B +C ---+ A, take f and g to be the restrictions

of h to Band C, respectively.) Thus IAB+cl == IABIIAcl.

2. (A x B)C is the set of functions f : C ---+ A x B, and f corresponds to a pair (g, h)
with g : C ---+ A and h : C ---+ B. Explicitly, if f(c) == (a, b) then g(c) == a and h(c) == b.
Thus (A x B)C has the same cardinality as ACB C.

3. If f : B x C ---+ A, define fe : B ---+ A as fe(b) == f(b, c). Then f determines a

mapping c ---+ fe from C to A B. Conversely, given the mapping c ---+ fe, we can recapture

f by f(b, c) == fe(b). This establishes a one-to-one correspondence between ABxc and
(AB)c.

4. If B is any infinite set, then B has a countably infinite subset C, as we found in the

proof of (4.4.3(b)). Thus ~o == ICI :S IBI·

5. A real number may be specified by selecting an interval [n, n+ 1) and then choosing

a point in that interval. If Q is the cardinality of the set of reals between 0 and 1, then

each interval [n, n + 1) has cardinality Q, so c == ~oQ. But ~o < Q (see Section 2.4), and
consequently c == Q by (4.4.3(b)).

6. An element of A can be identified with a finite subset of the positive integers. For

example, 01001 has l's in positions 2 and 5, and therefore corresponds to {2,5}. But

we know that there are only countably many finite subsets of the positive integers (see

(2.4.3) and the discussion preceding it, or (4.4.4)).

7. By Problems 5 and 6, 2No == C + ~o, and since ~o < c, we have c + ~o == c by
(4.4.3(a)).

8. By (4.3.7), 2No > ~o, and since ~l is the smallest cardinal greater than ~o, we must

have N1 :S 2No •

Section 5.1

1. The ij element of A(B +C) is Lk aik (bkj +Ckj) == Lk aikbkj +Lk aikCkj, which
is the ij element of AB plus the ij element of AC. The second distributive law is proved

similarly. The key point is that the distributive laws hold for real numbers, in fact for any
field.
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2. The ij element of A(BC) is
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2: aik 2: bkrCrj == 2: (2: aikbkr ) Crj == 2: (AB)irCrj,
k r r k r

which is the ij element of (AB)C. The key points are that multiplication is associative
in any field, and the order of summation of a finite double series can always be reversed.

3. No. For example, let

4. If we apply the row operations represented by E 1 , ... , E k to A in that order, the result
is the product E k E k - 1 ... E 1 A, which is In by hypothesis. But if the row operations are
applied to In, we get E kE k - 1 ... E 1 In == E kE k - 1 ... E 1 == B. Therefore BA == In.

5. Multiply B A == In on the right by A -1 to obtain B == A -1 .

6. A is an elementary row matrix obtained from 12 by adding 3 times row 2 to row 1.
Thus A 2 is obtained from A by adding 3 times row 2 to row 1; the result is

Continuing in this fashion, we have

Ak = [13k] .
o 1 '

in particular,

7. If A is m x n, then At is n x m, so that AAt exists and is m x m. Since (AAt)t =

(At)t At == AAt, it follows that AAt is symmetric.

8. No. As in the text we have aii == -aii so aii + aii = o. In a field of "characteristic
2", in other words a field in which 1 + 1 = 0, it does not follow that aii = O. We have
already met one such field, namely Z2, the field of integers modulo 2.

9. We have A = ~(A + At) + ~(A - At) = symmetric + skew-symmetric.

10. Direct computation shows that A2 has l's in the 1-3 and 2-4 positions, and O's
elsewhere; A3 has a 1 in the 1-4 position, and O's elsewhere; A4 has all zero entries.
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1. Apply the elementary row operations R 2 f- R 2 - 2Rl , R 2 f- -tR2' R l f- R l 
3R2, R3 f- R 3 - R 2, R 3 f- -R3 to 13 to get

[

-1/5 3/5 0]
A-I == 2/5 -1/5 0

2/5 -1/5 -1

2. In Problem 1, the second operation multiplies the determinant by - t, and the fifth
operation multiplies the determinant by -1; the other operations leave the determinant
unchanged. Thus det A == 1/5 == 5. Checking by Laplace Expansion down column 3, we
have (-1)(1 - 6) == 5.

3. If rows i and j are identical, add -1 times row i to row j to produce a row of zeros,
and therefore a zero determinant.

4. If R i == alRi1 + ... + akRik' successively add -al times row i l , ... , -ak times
row ik to row i to produce a row of zeros, and therefore a zero determinant.

5. If a sequence of elementary row operations reduces A to echelon form Q, then the
analogous sequence of elementary column operations will reduce At to Qt. (If BA == Q,
then AtB t == Qt). If Q == 1, then Qt == 1, and if Q has a row of zeros, then Qt has
a column of zeros. Thus the computational procedure for finding the determinant of At
produces exactly the same set of numbers as the procedure for finding the determinant of
A. Therefore det At == det A.

Section 5.3

1. If S is a basis then S spans, so each x E V has an expression of the desired
form. If x has two distinct representations then Ul, ... , Un are linearly dependent, a
contradiction. Conversely, if each x is a linear combination of the Ui, then S spans V. If
al Ul + ... + anUn == 0, then since 0 has the unique representation OUI + ... + OUn, we
have al == ... == an == O.

2. Lining up u, v, and w as columns, we have

A = [~ : ~]
Since the echelon form of A is 13 (equivalently, A is invertible; equivalently, det A :/= 0),
the equations au + bv + cw == 0 have the unique solution a == b == c == O. Therefore u,
v, and w are three linearly independent vectors in ~3, hence a basis.
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3. With A as in Problem 2, we must solve the equations

for a, b, and c. The result is a == 2, b == 3, c == 1.
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4. Assume that one of the bases, say T, is finite. The proof of (5.3.2) applies verbatim,

and shows that 181 ~ ITI. But then 8 is also finite.

5. If j E I but j does not belong to the union of the I (x), then for any x E 8, x depends
on the Yi, i E I (x), but i is never equal to j. Thus the vectors in 8 can be expressed in
terms of T \ {Yj}, a contradiction since T is a basis, hence a minimal spanning set.

6. An element of U{I(x) : x E 8} is determined by selecting a vector x E 8 and then
choosing an index in I (x). Since I (x) is finite, we have II(x) I ~ No. By Problem 5, we
have III == IU {I(x) : x E 8}1, so III ~ 181No, and the result follows.

Section 5.4

1. (a) The first quadrant {(x,y): x ~ °and Y ~ o}.
(b) The union of the fust quadrant and the third quadrant {(x, y) x ~ °and

Y ~ O}.

2. The fourth component of a vector in 8 is twice the first component minus the second
component. This property is maintained under addition and scalar multiplication, so 8 is
a subspace.

3. Let a == 1, b == c == °to get u == (1,0,0,2); let a == 0, b == 1, c == °to get
v == (0,1,0, -1); let a == b == 0, c == 1 to get w == (0,0,1,0). Our choices of a, b, and
c guarantee that u, v, w are linearly independent. If p == (a, b, c, 2a - b) is any vector in
8, then p == au + bv + cwo Thus u, v, and w span and therefore form a basis.

4. If a(u + v) + b(v + w) + c(w + u) == 0, then by linear independence of u, v, w
we have a + c == 0, a + b == 0, and b+ c == 0. These equations have a unique solution
a == b == c == 0, so u + v, v +.w, and w + u are three linearly independent vectors in a
three-dimensional subspace. Thus u + v, v + w, and w + u are a basis.

5. Line up the vectors as columns to obtain
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Elementary row operations yield the echelon form
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If C i is column i, then C1 , C2 , and C3 are linearly independent, and it follows that u, v,
and w are a basis. Since C4 == 3C1 - C2 + 5C3 , we have (1,4,8) == 3u - v + 5w.

6. (a) K will be a subspace, typically a line or a plane through the origin. Then C will
be a translated subspace, in other words, a line or a plane not necessarily through the
origin.

(b) Suppose u+K == v+K. Then u == u+O E u+K == v+K, so u-v E K == N(A).
But then A(u-v) == 0, hence Au == Av. Note also that if u-v E K, then u+K == v+K,
for if w E u + K, then w == u + p, P E K, and also u == v + q, q E K. Thus
w == u + p == v + (p + q) E v + K, so u + K ~ v + K; the reverse inclusion is proved
by a symmetrical argument. This observation will be useful in Problem 7.

7. (a) If Ul +K == U2+K and VI +K == V2+K, then Ul -U2 and VI -V2 belong to K, so
(UI- U2)+(VI-V2) == (Ul +Vl)-(U2+V2) E K. Therefore (Ul +vl)+K == (U2+V2)+K.
Similarly aUI - aU2 == a(ul - U2) E K, so au! + K == aU2 + K.

(b) 1r(a(u + K) + b(v + K)) == 1r(au + bv + K) == A(au + bv) == aAu + bAv
== a1r(u + K) + b1r(v + K).

(c) If 1r(u + K) == 1r(v + K), then Au == Av, so A(u - v) == 0, and therefore
u - v E K. But then u + K == v + K, proving that 1r is injective. Since 1r(u + K) == Au,
which ranges over all of R(A) as u ranges over pn, 1r is surjective.

Section 5.5

1. If u == Tx and v == Ty, then u + v == Tx + Ty == T(x + y), so T- 1 (u + v) ==
x + Y == T- 1u + T- 1v. Also, eu == eTx == T(ex), so T- 1 (eu) == ex == eT-1u, proving
that T- 1 is linear. If the matrix B represents T- 1 then since T- 1

0 T is the identity
transformation, represented by the identity matrix I, we have B A == I, so B == A -1 .

2. New coordinates == P-l(old coordinates), so

Therefore

u == [1/
4

] == ~eland v == [3/
2

] == ~e1 + e2o -! 1 2 .

3. T(l,O) has length 1 and angle B. so T(l~ 0) == (cos 0, sin 0). T(O, 1) has length 1
and angle ~ + 0, so T(O. 1) == (cos"}- I 0) .. sin( ~ + 0)) == (- sin 0, cos 0). The matrix
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of T with respect to the standard basis is

A = [COS 0
sinO

[0
1

4. T(u) = u and T(v) = -v, so B =

[~ ~a]. Then
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- sin 0]
cos 0 .

~1] · The basis-changing matrix is P =

p-1 __1_ [1 a] and B = P-1AP.
- 1 + a2 -a 1

Thus

A = PBP- 1 = _1_ [1 -a
2

2a] .
1 + a2 2a a2

- 1

5. If T is a linear transformation represented by the matrix A with respect to a given
basis, the mapping x ~ Tx corresponds to the matrix calculation c ~ Ac. The image
of T corresponds to R(A), the range of A. If the basis is changed, the same linear
transformation T is represented by a matrix B similar to A, and now the image of
T corresponds to R(B). Therefore R(A) and R(B) have the same dimension, that is,
rank A = rankB.

6. If B = p-1 AP, then B t

Q = (pt )-1.
p t A t (pt )-1 Q-1 AtQ, where

7. Both results follow from (5.5.5): dim(kerT) + dim(imT) = dim V.
(a) If kerT = {O}, then dim(imT) = dim V > dim W, which is impossible since

im T ~ W. Thus ker T contains a nonzero vector, so T is not injective.
(b) If im T = W, then dim(ker T) = dim V - dim W < 0, a contradiction. Thus

the image of T must be a proper subset of W, so that T is not surjective.

Section 5.6

1. Ilx + yl12 = IIxl12+ IIyl12 + 2 Re(x, y);
IIx - yl12 = IIxll 2 + lIyl12 - 2 Re(x, y);

Ilx + iyl12 = IIxl12+ IIyl12 + 2 Re(x, iy);
IIx - iyl12 = IIxl12+ lIyl12 - 2 Re(x, iy).

But Re(x, iy) = Re[-i(x,y)] = Im(x,y), and the result follows.

2. This follows from the last equation in the proof of (5.6.7), with ai = (x, Xi).

3. If z E 8 and x,y E 81.., a, bE C, then (ax + by,z) = a(x,z) + b(y,z) = O. Thus
81.. is closed under linear combination and is therefore a subspace.
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4. By the Projection Theorem (5.6.9), p is the unique vector in S such that x - p is
orthogonal to each Xi. Since the components of Xi will appear in row i of At, we have
At(x - p) == 0, or Atx == Atp. But P == alXl + ... + akXk == al (column 1 of A)
+ ... +ak (column k of A) == Aq, as can be visualized by walking across a row of A and
down the column vector q. Thus Atx == AtAq. If the scalars are allowed to be complex,
the normal equations become A*x == A* Aq, where A* is the conjugate transpose of
A; that is, A * is formed by taking the complex conjugate of each element of A, and
then transposing. (The condition that X - P is orthogonal to each Xi can be expressed as
A*(x - p) == 0; the remainder of the analysis is the same.)

5. We have E == II Y - AX /1
2

, and as the components of X range over all real numbers,
the vectors AX range over the space spanned by the columns of A. Thus we are projecting
Y on the space spanned by the columns of A. The result follows from Problem 4.

6. The vector Y is the same as in Problem 5, but now we have

E= fIYi-aX;-bxi-cI2 and x= [~].
1,=1 C

The matrix A now has three columns. The components of the first column are xi, ... ,x~,
the components of the second column are Xl, ... ,xm , and the components of the third
column are 1, ... , 1.

7. Equality holds if and only if X and yare linearly dependent. For if there is equality,
then by the proof of (5.6.2), X + ay == 0 for some a. (If y == 0, then equality holds, and
X and yare linearly dependent as well, so this case causes no difficulty.) Conversely, if
X and yare linearly dependent, then one is a multiple of the other, say x == cy. Then

I(x, y) I == I(cy, y) I == IcIIIY 11 2 == (I c III y II) II y II == II x II II y II·

Section 5.7

1. If A and B are unitary, then (AB)(AB)* == ABB* A* == AIA* == AA* == I,
proving that AB is unitary. The sum need not be unitary; for example, take B == - A.

2. If Tx == AX, then T 2x == T(Tx) == T(AX) == A(Tx) == A(AX) == A2X. Apply T
successively to get the result.

3. det(A - AI) == (2 - A)2(1 - A), so the eigenvalues are A == 2 (2-fold) and A == 1.
When A == 2, the equations

(A - AI) [~] = 0
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become y == 0, Z == 0, x arbitrary. The eigenspace is only one-dimensional, spanned
by (1,0,0). When A == 1, the equations are x + y == 0, y == 0, Z arbitrary, so the
eigenspace is spanned by (0,0,1). There are only two linearly independent eigenvectors
in a three-dimensional space, so A cannot be diagonalized.

4. A is invertible if and only if det A == det(A - OJ) =J 0, in other words, °is not an
eigenvalue of A.

5. (2,4) and (-7, y) are orthogonal by (5.7.7), so -14 + 4y == 0, y == 7/2.

6. We have A == UDU*, so A* == U** D*U* == UDU* == A.

7. If A is similar to the matrix D == diag(AI' ... , An), then by (5.7.2), det A == det D ==
AI ... An.

8. A2 == PDP- I PDP- I == PD2P- I , and by iteration, A k == PD k P- I • But D k is a
diagonal matrix with entries At, ... ,A~, so A k is relatively easy to compute.

9. q == 3(x2 + ~xy + ~y2) - y2 - ~y2 == 3(x + ~y)2 - ~y2 == 3X2 - ~y2 where

X == x + ~y, y == y. Thus

and by (5.5.6),

Invert p- I to get

The new basis vectors are (1,0) and (-1/3,1).

10. q == 3(x2 + (2y + 6z)x + (y + 3Z)2) - 6y2 + z2 - 3(y + 3Z)2
== 3(x + Y + 3z)2 - 9y2 - 18yz - 26z2;

then proceed to reduce -9y2 - 18yz - 26z2 as in Problem 9.

11. IIUxll 2 == (Ux, Ux) == (Ux)*Ux == x*U*Ux == x*x == (x, x) == IIx1l 2
•

12. Let x be an eigenvector for A. Then Ux == Ax, and by Problem 11, IIUxl1 == Ilxll,
so Ilxll == IIAxl1 == IAlllxll· Therefore IAI == 1.
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Section 6.1
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1. The largest Jordan block has order 3, and in fact there are 2 blocks of order 3.
Since rank(J - AI) = 2 (# of blocks of order 3) + 1 (# of blocks of order 2), there are

7 - 4 == 3 blocks of order 2. The # of blocks of order 1 is

14 - 3 (# of blocks of order 3) - 2 (# of blocks of order 2) == 14 - 6 - 6 == 2.

2. The largest Jordan block must have order 3, and there must be only 1 block of this
order. Therefore the conditions are

rank(J - AI)3 == 0, rank(J - AI)2 == 1

3. In this case, the rank of J - AI must be 0, in other words, J - AI must be the zero

matrix.

4. Look at the 18 by 18 matrix J at the beginning of the section. The determinant of J
is 318, and since det(J - AI) = (3 - A)18, the multiplicity of the eigenvalue 3 is 18. This

argument works in the general case, and the result now follows from the fact that the
Jordan canonical form is a direct sum of matrices J(A), A ranging over all eigenvalues
of A.

Section 6.2

1. J is already in Jordan canonical form, and its characteristic polynomial is c(x) ==
(x - A)T. Thus J has only one eigenvalue A, of multiplicity r. In this case, there is only
one Jordan block, of order r. By (6.2.4), the minimal polynomial of J is m(x) == (X-A)T.

2. By (6.2.6), c(x) == (X-A1)··· (X-An). By (5.7.4), A is diagonalizable, so by (6.2.4)
and (6.2.5), m(x) coincides with c(x). The Jordan canonical form is diag(A1, ... ' An).

3. Case 1: m(x) == c(x). Then corresponding to A1 there is one Jordan block of order
2, and corresponding to A2 there is one Jordan block of order 1. The Jordan canonical
form is

[

A1 1 0 ]
o A1 0 .

o 0 A2

Case 2: m(x) == (x - A1)(X - A2). Then corresponding to A1 there are two blocks
of order 1, and corresponding to A2 there is one block of order 1. The Jordan canonical
form is
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4. Case 1: m(x) = c(x). Then there is only one Jordan block, of order 3, and the Jordan
canonical form is

[~ ~ n·
Case 2: m(x) = (x - .-\)2. There is one block of order 2 and one block of order 1,

and the Jordan canonical form is

[~ ~ ~].
Case 3: m(x) = x - .-\. There are three blocks of order 1, and the Jordan canonical

form is

5. Let A be a 4 by 4 matrix with characteristic polynomial c(x) = (x - .-\)4 and
minimal polynomial m(x) = (x - .-\)2. Then the largest block is of order 2, giving rise
to a submatrix

There can be another Jordan block of order 2, or two blocks of order 1, so the Jordan
form is not determined by simply giving c(x) and m(x).

6. Suppose that c(x) = L:~=o aixi; then L:~=o aiAi = 0 by Cayley-Hamilton (take AO
to be I). If A is known to be invertible, we can multiply both sides of the equation by
A -1 to get aoA-1 +L:~1 aiAi-1 = 0, so that A-I can be expressed in terms of powers

of A. Notice that if ao = 0, then x is a factor of c(x), so that 0 is an eigenvalue of A.
But then A can't be invertible (see Section 5.7, Problem 4).

Section 6.3

1. (x, (T + S)*y) = ((T + S)x, y) = (Tx + Sx, y) = (Tx, y) + (Sx, y)
= (x, T*y) + (x, S*y) = (x, T*y + S*y),

so (T + S)*y = T*y + S*y, that is, (T + S)* = T* + S*.

2. (x, (cT)*y) = ((cT)x, y) = (cTx, y) = c(Tx, y) = c(x, T*y)
= (x,cT*y), so (cT)* = cT*.

3. (x, (TS)*y) = (TSx, y) = (Sx, T*y) = (x, S*T*y), so (TS)* = S*T*.

4. (Tx, y) = (x, T*y) = (T*y, x) = (y, T**x) = (T**x, y), so T** = T.
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5. (x,I*y) == (Ix, y) == (x, y), so 1* == I.

6. Tx == 0 iff (Tx, y) == 0 for all y iff (x, T*y) == 0 for all y.
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7. By Problem 6, the kernel of T* and the image of T** are orthogonal complements.
But by Problem 4, T** == T and the result follows.

Section 6.4

1. A has distinct eigenvalues A == 1 and A == 2, so A is diagonalizable. But AA* i= A *A,
so A is not unitarily diagonalizable.

3. Since the T i are projection operators, this is immediate from (6.3.7).

4. We have T 2 == (A1T1 + ... + AkTk)(A1T1 + ... + AkTk) == AIT1+ ... + A~Tk, and

similarly T m == L:7=1 AiTi for all m. Thus

aoI + alT + ... + anTn

== (ao + alAI + ... + anA~)TI + ... + (ao + alAk + ... + anA"k)Tk,

and the result follows.

5. If T* == g(T), then TT* == Tg(T) == g(T)T == T*T, so T is normal. If T is normal,
write T == A1TI + ... + AkTk as in (6.4.5). By (6.3.5), T* == AITt + ... + AkT: ==

AITI + ... + AkTk by Problem 3. By Problem 2, there is a polynomial 9 such that
g(Ai) == Ai, i == 1, ... , k. Thus T* == g(AI)TI + ... + g(Ak)Tk == g(T) by Problem 4.

6. IfT is unitary, then T is normal by (6.4.1), and the eigenvalues of T have magnitude 1
by Section 5.7, Problem 12. Conversely, assume T normal with IAI == 1 for all eigenvalues
A. Then by (6.4.5) and (6.3.5),

TT* == (AITI + + AkTk) (XITt + + AkT:)

== (A1T1 + + AkTk) (X1TI + + AkTk) by Problem 3

== IAl12TI + + IAkl2Tk == TI + ... +Tk == I by (6.4.5),

proving T unitary.

7. If T is self-adjoint then all eigenvalues of T are real by (5.7.7). Conversely, assume
that all eigenvalues of T are real. Then T == AITI + ... + AkTk and

T* == AITt + + AkT: by (6.3.5)

== AITI + + AkTk by Problem 3

== AITI + + +AkTk since the Ai are real.
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Thus T* == T, so that T is self-adjoint.

8. For each i == 1, ... , k, let fi be a polynomial such that

{
0 i # j

fi(Aj) == 8ij == 1', i==j
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(see Problem 2). By Problem 4,

fi(T) == fi(Al)T1 + ... + fi(Ak)Tk

9. By (6.3.5) and Problems 3 and 4, f(T)* is a linear combination of the Ti, and
therefore by Problem 8, f(T)* is a polynomial in T. By Problem 5, f(T) is normal. The
second statement follows from the representation

(see Problem 4).

10. To find the eigenvalues, we must solve

[

COS VJ - A - sin VJ ] == 0
sin VJ cos VJ - A '

i.e., A2
- 2A cos VJ +1 == O. The eigenvalues are cos VJ ± i sin VJ. When A == cos VJ +i sin VJ,

the equations Ax == AX, with X == (u, v)t, reduce to (-i sin VJ)u- (sinVJ)v == 0, or u == iv.
Thus (i, 1) is an eigenvector. When A == cos VJ - i sin VJ, we get (i sin VJ) u - (sin VJ) v == 0,
so that v == iu. Thus (1, i) is an eigenvector. An orthonormal basis of eigenvectors is

given by (i/V'i, 1/V'i) and (l/V'i,i/V'i).

Section 6.5

1. Near the end of the proof we said ... let A be any eigenvalue of A. We need the
complex numbers to guarantee that A has at least one eigenvalue (see Example 6.4.2). If
A is n by n, the eigenvalues are the roots of det(A - AI), which is a polynomial of degree
n in A. The key point is that every polynomial of degree at least 1 with coefficients in
the field of complex numbers has at least one root. A field in which this property holds
is said to be algebraically closed. It can be shown that the Jordan canonical form exists
over any algebraically closed field.

2. (a) S(Tx) == STx == TSx == T(AX) == A(Tx).
(b) If x E W, then Sx == AX for some A, so by (a), S(Tx) == A(Tx), hence Tx E W.
(c) If mT(x) is the minimal polynomial of T, then mT(T) == 0, in particular,

mT(T) is 0 on W. Thus the minimal polynomial q(x) of Tw divides mT(x) by (6.2.2).
But by (6.2.5), mT(x) is a product of distinct linear factors, hence so is q(x). Again by
(6.2.5), Tw is diagonalizable. If T is unitarily diagonalizable and therefore normal, then
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TT* == T*T; in particular, this holds on W, so that Tw is also normal and therefore
unitarily diagonalizable.

(d) Since S is diagonalizable, there is a basis of eigenvectors of S. By (c), T is
diagonalizable on each eigenspace W of S, so we may choose a basis for W whose
members are eigenvectors of both T and S. If we do this for each eigenspace of S, we
have simultaneously diagonalized the operators.

(e) Proceed exactly as in (d), with "diagonalizable" replaced by "unitarily diagonal
izable" and "basis" by "orthonormal basis".

(0 There is a basis whose members are eigenvectors of both T and S. With respect
to this basis, both T and S are represented by diagonal matrices, which always commute.
Therefore T S == ST.
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maximal element, 21, 72-73
maximum principle, 71
minimal polYnomial, 127ff.
minor, 89
Mobius function, 64
Mobius inversion formula, 65
multinomial theorem, 33
multiple count, 31
multiplication rule, 25
multiplicative function, 67

necessary condition, 2-3
nonhomogeneous linear equations, 100
nonnegative definite, 119
norm, 108
normal equations, 114
normal matrix, 135
normal operator, 134
null space, 100

one-to-one, 15
only if, 2
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onto, 15
ordered pair, 18
ordered samples with replacement, 26
ordered samples without replacement, 26
ordered n-tuple, 19
orthogonal (perpendicular), 109
orthogonal complements, 134, 136
orthogonal diagonalization, 119
orthogonal direct sum, 138
orthogonal matrix, 118
orthonormal basis, 110
orthonormal basis of eigenvectors, 117

parallelogram law, 110
partial ordering, 21, 69
particular solution, 101
partition, 20, 31, 39-40
Pascal's triangle, 34
perfect number, 67~8
permutation, 26
PIE, 34ff.
polarization identity, 113
polYnomial in a linear operator, 114
positive definite, 119
power set, 77
preimage, 16
prime, 48
Principle of inclusion and exclusion, 34ff.
projection, 110
projection operator, 112, 133, 138-139
projection theorem, 112
proof by cases, 9
proofs, 8ff
proper subset, 13.
propositions, 1
Pythagorean theorem, 110

quadratic form, 119
quantifiers, 6

range, 100
rank, 98, 100, 103
rationals are countable, 40
real vector space, 108
reals are uncountable, 40-41
reflexive relation, 20, 21, 69
relations, 18ff.
relatively prime, 37, 56
relatively prime in pairs, 60
residue, 52
residue class, 52
restriction, 75
ring, 52
rotation, 135, 140
row space, 97
row vector, 82

SchrOder-Bernstein theorem, 75
self-adjoint operator, 133
set theory, 69ft.
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sets, 11ff.
sieve of Eratosthenes, 50
similar matrices, 106, 115
simultaneous diagonalization, 143
skew-symmetric matrix, 85
spanning (generating) set, 93
spectral theorem for normal operators, 139
spectral theorem for self-adjoint operators on a real

space, 139
standard basis, 93
stars and bars, 27
Steinitz exchange, 93
stochastic matrix, 145
strong induction, 69-70
strong induction hypothesis, 70
stronger hypothesis, 22
subset, 13
subspace, 97
subspace spanned by a set of vectors, 97
sufficient condition, 2-3
superposition principle, 102
surjective, 15
Sylvester's law of inertia, 121
symmetric relation, 21
symmetric matrix, 85

tautology, 5, 9
total ordering, 21, 69
transfinite induction, 71, 72

transition matrix, 145
transition probabilities, 145
transitive relation, 20, 21, 69
transpose of a matrix, 85
triangle inequality, 109
truth tables, 1

uncountable set, 40
uncountably infinite set, 40
union, 11-12
unique factorization theorem, 49
unit vector, 109
unitary diagonalization, 119
unitary matrix, 118
universal quantifier, 6
unordered samples with replacement, 27
unordered samples without replacement, 26-27
upper bound, 22, 73

vacuously true, 5
vector space, 73, 92
Venn diagrams, 12

weaker hypothesis, 22
well-ordering, 69
well-ordering principle, 70
without loss of generality, 94

zero-dimensional space, 95
zero-divisor, 52
Zorn's lemma, 73
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A Primer of Abstract Mathematics prepares the reader to cope 
with abstract mathematics, specifically abstract algebra. It can 
serve as a text for prospective mathematics majors, as well as for 
those students taking or preparing to take a first course in abstract 
algebra, or those in applied fields who need experience in dealing 
with abstract mathematical ideas.

Learning any area of abstract mathematics involves writing formal 
proofs, but it is equally important to think intuitively about the subject 
and to express ideas clearly and cogently. The author aids intuition 
by keeping proofs short and as informal as possible, using concrete 
examples which illustrate all features of the general case, and 
by giving heuristic arguments when a formal development would 
take too long. The text can serve as a model on how to write math-
ematics for an audience with limited experience in formalism and 
abstraction.

Ash introduces several expository innovations in A Primer of 
Abstract Mathematics. He presents an entirely informal develop-
ment of set theory that gives students the basic results that they will 
need in algebra. The chapter which presents the theory of linear 
operators introduces the Jordan Canonical Form right at the begin-
ning, with a proof of existence at the end of the chapter.
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he learned mathematics on his own, and even-
tually became a mathematician. He taught 
mathematics at the University of Illinois at 
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including: Information Theory, Real Analysis and 
Probability, The Calculus Tutoring Book (with 

Carol Ash), Basic Probability Theory, Topics in Stochastic Processes 
(with Melvin F. Gardner), Introduction to Discrete Mathematics (with 
Robert J. McEliece and Carol Ash), and Real Variables with Basic 
Metric Space Topology.
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