The Logarithmic Potential: Discontinuous Dirichlet and Neumann Problems

Griffith Conrad Evans
The Logarithmic Potential: Discontinuous Dirichlet and Neumann Problems

Griffith Conrad Evans
Library of Congress Cataloging-in-Publication Data
Evans, Griffith Conrad, 1887–
The logarithmic potential, discontinuous Dirichlet and Neumann problems.
p. cm. — (American Mathematical Society Colloquium publications, ISSN 0065-9258 ; v. 6)
II. Colloquium publications (American Mathematical Society) ; v. 6.

QA425.E8 vol. 6 28028410

Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy a chapter for use
in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Requests for such
permission should be addressed to the Acquisitions Department, American Mathematical Society,
201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by
e-mail to reprint-permission@ams.org.

Reprinted by the American Mathematical Society, 2008
Printed in the United States of America.

∞ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 13 12 11 10 09 08
to

VITO VOLterra
This page intentionally left blank
PREFACE

This small treatise is an outgrowth of a study of Stieltjes integrals and potential theory which the author published in the 1920 volume of the Rice Institute Pamphlet, and a needed revision and development of the last part of that essay in the direction indicated by three notes which appeared in 1923, in the Comptes rendus des séances de l'Academie des Sciences. Two of these were written in conjunction with my colleague, Professor H. E. Bray. The work gives a unified treatment of the basis of the theory of Laplace's equation in two dimensions, suitable, it is hoped, for graduate students of a moderate degree of advancement, and is intended to be of service in the development of the theory of partial differential equations of elliptic type. These developments are generating a compound of two of the most important elements of modern analysis—the concepts of Lebesgue on the one hand, and of Volterra on the other.

An earlier form of part of the treatise was given in lectures at the Rice Institute in the academic year 1924-25, in connection with a course in the theory of functions of a real variable, and at the University of Chicago during the Summer Quarter of 1925. Chapter VII furnished the substance of an invited discourse at the meeting of the Southwestern Section of the American Mathematical Society in November, 1926.

The author is much indebted to Professor O. D. Kellogg, who has seen a large portion of the manuscript, and aided with kindly criticism, to Professor Bray, who has read the proof sheets, and, finally, to the American Mathematical Society, through whose generosity the publication is possible.

Houston, Texas.
June, 1927.

Griffith C. Evans.
This page intentionally left blank
TABLE OF CONTENTS

I. Preliminary Concepts. Stieltjes Integrals and Fourier Series ... 1

II. Functions Harmonic within a Circle 26

II. Necessary and Sufficient Conditions. The Dirichlet Problems for the Circle 46

IV. Potentials of a Single Layer and the Neumann Problem .. 55

V. General Simply Connected Plane Regions and the Order of their Boundary Points	71
28. Conformal transformations and general regions.	
29. Invariant forms of conditions (i), (ii) etc.	30. Invariant forms of conclusions.
33. Special cases of the condition (ii). The continuous boundary value problem.	34. A new continuous boundary value problem.
35. The generalized Neumann problem in the general region.	

VI. Plane Regions of Finite Connectivity	86
36. Functions harmonic outside a circle.	37. The multiply connected region bounded by \(n + 1 \) distinct circles.
40. General regions of finite connectivity. Isolated point boundaries.	41. Annular regions. Determination of the functions \(F_0(\theta) \) and \(F_1(\theta) \).
42. Uniqueness of the representation of Theorem 3 for \(S \).	

VII. Related Problems	121
43. A simple discontinuous boundary value problem.	
44. Continuous boundary value problems.	45. Regions with continuous boundaries.
46. Regions with rectifiable boundaries.	47. Regions of infinite connectivity.
48. Remarks on necessary and sufficient conditions.	49. Convergence in the mean of positive order less than one.
50. Integro-differential equations of Böcher type.	
This page intentionally left blank
INDEX

Absolute continuity, 12; uniform, 13
Accessible boundary points, 74; order of, 75
Bocher, 91, 111, 145
Borel, 7, 12, 22
Born, 122
Bouligand, 123, 136, 145, 146
Bray, 14, 51, 138; Helly-Bray theorem, 15, 16, 60, 100
Capacity, 135
Caratheodory, 74, 75, 128
Cauchy, 9, 109; integral formula of, 65
Conformal transformation, 1, 26, 69;
of finitely connected regions, 107
Courant, 74; Hurwitz - Courant,
Funktionentheorie, 74, 107
Daniell, 79, 105
Dirichlet problem, 1, 46, 54, 73, 78,
100, 108, 116, 125, 131
Discard, 62
Fatou, 22, 43, 131
Fejer, 24, 30, 64, 126
Fischer-Riesz theorem, 68
Fredholm, 115, 123
Function, of limited variation, 1, 79;
of limited variation on E, 5;
negative variation, 3; positive variation, 2, 5; summable, 12;
total variation, 3, 39
Goursat, Cours d'analyse, 121, 123
Green's function, 71, 93, 104, 122
Hadamard, 109, 125, 147
Harmonic function, 26; of physical character, 59
Harnack, 124
Helly, 14; see Bray
Hilbert, 123
Hobson, Real variable, 68, 139
Hurwitz, see Courant
Integral of Lebesgue, 12; Poisson, 30, 43, 87, 88; Poisson-Stieltjes, 35, 88; Riemann-Stieltjes, 8;
Stieltjes, 1, 7
Kellogg, 43, 50, 111, 123
Laplace's equation, 26, 145
Law of the mean, 8, 10, 11, 17
Lebesgue, 12, 86, 104, 109, 123,
136, 145
Le Roux, 123
Lichtenstein, 85, 93, 124
Lusin, 130
Mandelbrojt, 147
Multiple boundary point, 75
Neumann, C, 123
Neumann problem, 1, 55, 58, 84,
108, 117, 131
Noaillon, 50, 138, 144
Osgood, 12, 30, 74, 82, 124; and Taylor, 74; Funktionentheorie,
56, 69, 71, 90, 95, 96, 124, 136
Phillips, see Wiener
Plancherel, 132
Plemelj, 55
Poincare, 110, 123
Poisson's equation, 146
Potential, of double layer, 1, 60;
of single layer, 1, 55
Primenden, 78
INDEX

Priwaloff, 130
Rademacher, 22
Raynor, 111
Riemann, 123
Riemann surface, 94, 95, 99, 106, 107, 127
Riesz, see Fischer-Riesz theorem
Robinson, 21
Schwarz, 123, 126
Semi-continuous, 81
Stieltjes integral equations, 101, 113, 118

Summability of series, 22
Taylor, see Osgood
Vallee Poussin, de la, 13, 14, 34, 78, 141, 143
Vitali, 7, 61, 62
Vivanti, 115
Volterra, 59
Wide sense, 39
Wiener, 79, 135, 136; Phillips and, 123
Zaremba, 121, 123, 124, 136, 145, 146
This book studies fundamental properties of the logarithmic potential and their connections to the theory of Fourier series, to potential theory, and to function theory. The material centers around a study of Poisson's integral in two dimensions and of the corresponding Stieltjes integral. The results are then extended to the integrals in terms of Green's functions for general regions. There are some thirty exercises scattered throughout the text. These are designed in part to familiarize the reader with the concepts introduced, and in part to complement the theory. The reader should know something of potential theory, functions of a complex variable, and Lebesgue integrals. The book is based on lectures given by the author in 1924–1925 at the Rice Institute and at the University of Chicago.