Linear Transformations in Hilbert Space and Their Applications to Analysis

Marshall Harvey Stone
Linear Transformations in Hilbert Space and Their Applications to Analysis

Marshall Harvey Stone
2000 Mathematics Subject Classification. Primary 47-XX.

International Standard Serial Number 0065-9258
International Standard Book Number 0-8218-1015-4
Library of Congress Catalog Card Number 33-2746

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.

Copyright © 1932 by the American Mathematical Society
Printed in the United States of America.

The American Mathematical Society retains all rights except those granted to the United States Government.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

Visit the AMS home page at URL: http://www.ams.org/
FOREWORD

When I began in the summer of 1928 to study the theory of linear transformations in Hilbert space, it was my intention to present the results in some of the current journals. Various circumstances have led, however, to the preparation of this volume, in which I have attempted to include not only my own independent contributions but also a substantial portion of the existing material bearing on the subject. The lack of English-language works dealing with the theory of Hilbert space appeared to be an adequate reason for planning a detailed treatment which would start with the foundations and carry the development as far as possible in every direction. It has accordingly been my object to provide a treatise of this character, with serious claims to completeness—one which will be, if my hopes are realized, a useful handbook both for the student and for the investigator. In carrying out this plan, I have confined myself strictly to the theory of Hilbert space, arbitrarily excluding any reference to the various related and similar theories of other types of space. The adoption of this course was merely an unfortunate consequence of the necessity of keeping the length of this book within reasonable limits, and does not imply any personal view or judgment concerning the interest and importance of other theories. I should be the first to urge the reader to consult discussions of such cognate topics.* Considerations of space have also

* For mathematical and bibliographical information, see Volterra, The Theory of Functionals and Integro-Differential Equations, London, 1930; —Hildebrandt, Bulletin of the American Mathematical Society, 37 (1931), pp. 185–212. There are several books in preparation which will be of interest in this connection: Mrs. Pell-Wheeler will contribute a volume to this Collo-
led to the omission of two chapters for which provision had originally been made. One of these, dealing with groups of transformations in Hilbert space, was completed in May, 1930, and will appear separately in the course of time. The other, outlining the remarkable applications of the abstract theory developed in the present volume to modern atomic physics, was never written. Although this chapter would have been purely expository in nature, I regret that it could not be included, since the point of view which it would have set forth in some detail has already proved so fruitful in the study of the atom and promises still more profound results in the future.*

The existence of the splendid article by Hellinger and Toeplitz in the Encyklopädie der Mathematischen Wissenschaften, 2nd, has spared me the exacting labor of preparing a bibliography of the voluminous literature prior to 1924. I have taken some pains, however, to give references to the major contributions since that date.† While I have concerned myself very little

quium Series (compare the synopsis of her Colloquium Lectures, Bulletin of the American Mathematical Society, 33 (1927), pp. 664-665); in the Introduction to his book, Les espaces abstraits, Paris, 1928, Fréchet has promised a second volume dealing with functional analysis; and, I am informed, the researches of E. H. Moore and his school, which have long been practically unavailable to the mathematical public, will soon be presented in book form. A French translation of Banach’s Teorja Operacij, Tom I: Operacje liniowe, Warszawa, 1931, is about to appear.

† The recent paper of J. v. Neumann, Annals of Mathematics, (2) 33 (1932), pp. 294-310, came to my attention too late to be cited. This paper throws a great deal of light on Theorems 2.9, 2.10, 2.26, 8.18, 9.5, 10.10 and Definition 8.3. For instance, the hypothesis of Theorem 2.26 can be weakened to read “If T is a transformation whose domain is 8 and if its adjoint T* has domain everywhere dense in 8”; an independent proof of the modified theorem was communicated to me by Professor J. D. Tamarkin.
with questions of history or of priority, I wish to acknowledge in the most cordial spirit my scientific debt to J. v. Neumann. The initial impetus of my interest came from reading some of v. Neumann's early and still incomplete work, which was described in the Göttinger Nachrichten, 1927, pp. 1-55, footnotes 12 and 27, to which I had access, but which was never published. Thereafter, I worked independently, the results announced in the Proceedings of the National Academy of Sciences, 15 (1929), pp. 198-200, pp. 423-425, and 16 (1930), pp. 172-175, being obtained without further knowledge of his progress along the same or similar lines. I have been only too glad to improve the final presentation of my own investigations by the continual use of v. Neumann's various memoirs on the theory of transformations in Hilbert space. While it is scarcely necessary to point out that this recent work is a natural continuation of that begun by Hilbert and his school, I wish to emphasize the important rôle played by the contributions of F. Riesz in preparing the ground for a successful consideration of non-bounded transformations. The concepts which Riesz developed in his book, Les systèmes d'équations linéaires à une infinité d'inconnues, Paris, 1913, marked the introduction of a new point of view and of new methods, without which progress might well have been retarded; their influence can be traced throughout the development of the theory given in these pages.

With a view to making the book useful as a work of reference, I have adopted the practice of stating all important definitions and theorems in italics and numbering them serially by chapters: thus Theorem 5.12 is the twelfth theorem in Chapter V, Definition 8.2 the second definition in Chapter VIII. At the same time, I have avoided, so far as possible, any elaborate system of cross-references in either the text or the foot-notes, so that the reader need not correlate a mass of widely scattered material when he is interested in a particular topic. The table of contents and the index are designed to serve as adequate guides to the various subjects treated. In order to compress the material into the compass of six hundred
odd pages, it has been necessary to employ as concise a style as is consistent with completeness and clarity of statement, and to omit numerous comments, however illuminating, which will doubtless suggest themselves to the reader as simple corollaries or special cases of the general theory.

It is a great pleasure to express my gratitude to the many friends who have encouraged or aided me in the task of preparing this book. I wish, above all, to thank Professor J. D. Tamarkin of Brown University, whose interest fostered the project from its inception and whose patient criticism, freely and unselfishly given, has guided it to maturity. More formal thanks are owed to the administrators of the Milton Fund of Harvard University, who, during my connection with the University, granted moneys for the preparation of the manuscript; and to the Committee on Colloquium Publications of the American Mathematical Society, who have generously honored my work by applying to it the policy of publishing material which has not been presented in the form of Colloquium Lectures before the Society.

New Haven, Connecticut, April, 1932.
M. H. Stone.
CONTENTS

CHAPTER I

ABSTRACT HILBERT SPACE AND ITS REALIZATIONS

§ 1. The Concept of Space .. 1
§ 2. Abstract Hilbert Space 2
§ 3. Abstract Unitary Spaces 16
§ 4. Linear Manifolds in Hilbert Space 18
§ 5. Realizations of Abstract Hilbert Space 23

CHAPTER II

TRANSFORMATIONS IN HILBERT SPACE

§ 1. Linear Transformations 33
§ 2. Symmetric Transformations 49
§ 3. Bounded Linear Transformations 53
§ 4. Projections .. 70
§ 5. Isometric and Unitary Transformations 76
§ 6. Unitary Invariance 83

CHAPTER III

EXAMPLES OF LINEAR TRANSFORMATIONS

§ 1. Infinite Matrices .. 86
§ 2. Integral Operators 98
§ 3. Differential Operators 112
§ 4. Operators of Other Types 124

CHAPTER IV

RESOLVENTS, SPECTRA, REDUCIBILITY

§ 1. The Fundamental Problems 125
§ 2. Resolvents and Spectra 128
§ 3. Reducibility ... 150

CHAPTER V

SELF-ADJOINT TRANSFORMATIONS

§ 1. Analytical Methods 155
§ 2. Analytical Representation of the Resolvent 165
§ 3. The Reducibility of the Resolvent 172

vii
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 4.</td>
<td>The Analytical Representation of a Self-Adjoint Transformation</td>
<td>180</td>
</tr>
<tr>
<td>§ 5.</td>
<td>The Spectrum of a Self-Adjoint Transformation</td>
<td>184</td>
</tr>
</tbody>
</table>

CHAPTER VI

THE OPERATIONAL CALCULUS

| § 1. | The Radon-Stieltjes Integral | 198 |
| § 2. | The Operational Calculus | 221 |

CHAPTER VII

THE UNITARY EQUIVALENCE OF SELF-ADJOINT TRANSFORMATIONS

§ 1.	Preparatory Theorems	242
§ 2.	Unitary Equivalence	247
§ 3.	Self-Adjoint Transformations with Simple Spectra	275
§ 4.	The Reducibility of Self-Adjoint Transformations	288
§ 5.	Reduction to Principal Axes	294

CHAPTER VIII

GENERAL TYPES OF LINEAR TRANSFORMATIONS

§ 1.	Permutability	299
§ 2.	Unitary Transformations	302
§ 3.	Normal Transformations	311
§ 4.	A Theorem on Factorization	331

CHAPTER IX

SYMMETRIC TRANSFORMATIONS

§ 1.	The General Theory	334
§ 2.	Real Transformations	357
§ 3.	Approximation Theorems	365

CHAPTER X

APPLICATIONS

§ 1.	Integral Operators	397
§ 2.	Ordinary Differential Operators of the First Order	424
§ 3.	Ordinary Differential Operators of the Second Order	448
§ 4.	Jacobi Matrices and Allied Topics	530

Index | 615 |
INDEX

Numbers refer to the appropriate pages. Under the heading Symbols will be found references to those places where notations which are continually employed are first introduced.

Absolutely continuous function, 424.
Adjoint transformations, 41.
Almost everywhere with respect to a function of bounded variation, 204; — with respect to a self-adjoint transformation, 227; — with respect to a complex resolution of the identity, 315; — with respect to a normal transformation, 324.
Approximant to an infinite continued fraction, 559–560.
Approximation to a symmetric transformation, 165–172, 365–396; — to a self-adjoint transformation, 165–172; — to a maximal symmetric transformation, 386–387.
Baire classes, 234–240.
Banach, iv, 214.
Berry, 105.
Bessel's inequality, 8, 403, 408.
Birkhoff, 119.
Böcher, 114, 117, 457, 470.
Borel measurability, 203–204, 205, 253–254, 294, 426.
Bound of a linear transformation, 56; upper (lower) — of a linear symmetric transformation, 56.
Bounded linear transformation, 56–65; resolvent of a —, 147–150; resolvent set of a —, 147–150; spectrum of a —, 147–150; factorization of a —, 331–333.
Bray, 162.
Bush, 447.
Carleman, 100, 155, 162, 365, 401, 422, 553, 614.
Cayley, 303.
Characteristic element, 129; normalized —, 129; orthogonality of —s of a symmetric transformation, 142; orthogonality of —s of a unitary transformation, 302–303; orthogonality of —s of a normal transformation, 325–327.
Characteristic manifold, 129.
Characteristic value, 129; multiplicity of a —, 129.
Closed linear transformation, 38–39; reduction of a — by a closed linear manifold, 150; reducible —, 151; irreducible —, 151.
Closed transformation, 38.
Complex resolution of the identity, 314–315; measurability with respect to a —, 315; null set with
Congruence of elements in Hilbert space modulo a linear manifold, 340.

Conjugation, 357–360.

Continued fraction, 532, 559–562; approximant to an infinite —, 559–560; generalized approximant to an infinite —, 559–560.

Continuous spectrum, 129.

Continuous transformation, 38, 53–56. See also Bounded linear transformation.

Convergence in the mean, 26.

Correspondence between self-adjoint transformations and resolutions of the identity, 176–184; — between self-adjoint and unitary transformations, 304–311; — between normal transformations and complex resolutions of the identity, 316–332; — between symmetric and isometric transformations, 335–337.

Courant, 440.

Deficiency-index of an isometric transformation, 81; — of a symmetric transformation, 338; — of a real symmetric transformation, 361–365.

Definite symmetric transformation, 56; existence of a definite self-adjoint extension of a —, 387–390.

Differential equation, 128; existence theorems for —, 453–457, 498–501. See also Differential operator.

Differential system, 116; adjoint —, 116; self-adjoint —, 116. See also Differential operator.

Dimension number of a linear manifold, 19; — determined by a set, 341; — determined by a set modulo a linear manifold, 341.

Dirac, iv.

Dirichlet, 119.

Domain of a transformation, 33.

Equation, differential, 128; integral —, 127–128; linear — in infinitely many unknowns, 125–126; Schrödinger —, 453.

Essentially self-adjoint transformation, 51.

Factorization of a maximal normal transformation, 329; — of a bounded linear transformation, 331–333.
INDEX

FISCHER, 25.
Form, completely continuous, 126.
FOURIER - PLANCHEREL theorem, 104-109.
FRANCES, 162.
FRÉCHET, iv, 1, 2, 38, 63, 201, 614.
FREDHOLM, 100.
FREDHOLM resolvent kernel, 141.
FROBENIUS, 97, 303.
Function of bounded variation, 157, 313; measurability with respect to a —, 206-221, 268-272, 313; integration with respect to a —, 158-165, 206-221, 268-272, 314; — in normal form, 158, 313.
Functions equivalent with respect to a self-adjoint transformation, 227; — a complex resolution of the identity, 315; — a normal transformation, 324; — a function of bounded variation, 205, 313.
Generalized approximant to an infinite continued fraction, 559-560.
GRAM, 13.
GRAY, 530.
GREEN's function, 120.
HAHN, 242, 247.
HAMBURGER, 614.
HANKEL transformation, 110.
HAUSDORFF, 1, 2, 19, 131, 614.
HEAVISIDE operational calculus, 198, 445-446.
HELLINGER, iv, 61, 98, 100, 126, 142, 155, 183, 242, 247, 614.
HELLY, 165.
HELLY's theorem, 165, 392.
HERGLOTZ, 571.
HERMITE polynomials, 284.
HILB, 530.
HILBERT, v, 2, 23, 71, 97, 100, 126, 440.
HILBERT space, postulates for, 3; null element in —, 3; distance in —, 5; convergence in —, 6; limit in —, 6; coordinates in —, 15; concrete realizations of —, 14, 23-32, 67, 208-209; the — S_0, 14; the — S_2, 23-29; the — L_m, 29-30; the — F_5, 67; the — $F_{3}(e)$, 208-209.
HILDEBRANDT, iii, 162.
HOBSON, 158, 162, 217.
Integral equation, 127. See also Integral operator.
Integral, LEBESQUE-STIELTJES, 29.
Integral, POISSON's, 164, 571.
Integral, RADON-STIELTJES, 29, 198-221, 267-272, 312-314.
Integral, STIELTJES, 158-165, 501-503.
Integration with respect to a function of bounded variation. See STIELTJES,LEBESQUE-STIELTJES, RADON-STIELTJES integral.
Inverse of a transformation, 38, 40, 43-44, 51-53, 124-129, 142-143. See also Resolvent.
Irreducible closed linear transformation, 151.
Isometric transformation, 76-83; maximal —, 80; deficiency-index of an —, 81; isometric extensions of an —, 80-83; — corresponding to a symmetric transformation, 335-337.
JACOBI matrix, 282-288, 295, 530-614; reduced —, 531; polynomials associated with a —, 287, 531, 531-536, 536-541, 545-553, 583; sequence of constants associated with a —, 532, 536, 546, 555, 559, 560, 607; symmetric transformation defined by a —, 282-288, 546-554, 581-582, 583, 584-586, 590-592; transformation X associated with a —, 545-554, 559, 562, 577, 581-582, 583; monotone-increasing functions associated with a —, 532, 546, 555, 559, 577, 583, 585-586, 590-592, 610-611; continued fractions associated with a —, 532, 559-562; — corresponding to a given moment problem, 606-613.

KELLOGG, 121.
Kernel, 99; HILDEBRAND-SCHMIDT —, 101; CARLEMAN —, 101; FREDHOLM resolvent —, 141.
KLEIN, 76.

LAGRANGE’s formula, 114, 457-458, 459-460.
LAGUERRE polynomials, 440.
LANGER, 119.
LAPLACE operator, 119.
LEBESGUE, 29, 162, 165, 414.
LEBESGUE-STIEIITZ integral, 29.
LEVITI, B., 257.
Linear equations in infinitely many unknowns, 125-126.
Linear manifold, 7, 18-23, 340-341; — determined by a set, 7; closed — determined by a set, 7; orthogonal — s, 7; intersection of — s, 19; dimension number of a —, 19; orthogonal complement of a closed —, 20; operations upon — s, 20-22; projection on a closed —, 23; permutable closed —, 73; reduction of a closed linear transformation by a closed —, 150; linear independence of — s, 340; congruence of elements modulo a —, 340.
Linear transformation, 39-43. See also other headings, such as Bounded linear transformation, Symmetric transformation, and so forth.
LIOUVILLE, 470.
LIOUVILLE’s transformation theory for differential operators, 450-452.

Manifold. See Linear manifold.
Matrix, infinite, 86-98; algebraic operations, 88; adjoint of an —, 88; bounded —, 93; (Hermitian) symmetric —, 88; unitary —, 95; norm of an —, 96; — of finite norm, 196; — in diagonal form, 127, 295; JACOBI —, 282-288, 295, 530-614.
Measurability with respect to a function of bounded variation, 201-205; — a self-adjoint transformation, 227; — a complex resolution of the identity, 312-314; — a normal transformation, 324.
MILNE, 530.
Moment problem, 606-613.
Monotone-increasing functions associated with a JACOBI matrix, 532, 546, 555, 559, 577, 583, 585-586, 590-592, 610-611.
MONTGOMERY, 162, 164.
MOORE, E. H., iv.
Multiplicity of a characteristic value, 129; — of a number with respect to the continuous spectrum of a self-adjoint transformation, 267.
a —, 73; — of finite norm, 75; sequences of —, 74.

RADON, 29, 201, 208, 216.
Range of a transformation, 33.
Real transformation, 360, 357–365; spectrum of a —, 360–361; numerical range of a —, 360–361; adjoint of a —, 360–361.
Realizations of HILBERT space, 14; 23–32, 67, 208–209.
Reciprocal theorems, 104–111; FOURIER-PANChEREL theorem, 104–109; Hankel transformation, 110.
Reduction of a self-adjoint transformation to principal axes, 294–298.
Regularizing transposition, 250.
Residual spectrum, 129.
Resolution of the identity, 174; — corresponding to a self-adjoint transformation, 176–184; point of constancy of a —, 184; point of continuity of a —, 184; point of discontinuity of a —, 184; — corresponding to a differential operator of the second order, 501–530.
Resolvent of a transformation, 137–141.
RIESZ, F., v, 25, 156, 613.
RIESZ, M., 583, 614.
RIESZ-FISCHER theorem, 25–27.
ROBERTSON, H. P., iv.
ROSENTHAL, 192.

SCHEIDT, E., 13, 100.
SCHRÖDINGER equation, 453.
SCHWARZ’s inequality, 5, 514, 519.
Self-adjoint transformation, 50; resolvent of a —, 140–147, 172–176.
Sequence of transformations, 37; convergence of a — of transformations, 37; limit of a — of transformations, 37; — of projections, 74; — of symmetric transformations, 365–396; — of symmetric transformations approximating a symmetric transformation, 366; — of self-adjoint transformations approximating a symmetric transformation, 367–396.
INDEX

SHOHAT, 614.
Simple spectrum, 275.
Spectrum, 129; point —, 129; continuous —, 129; residual —, 129; unitary invariance of —, 130; relation of — of a transformation to those of associated transformations, 134-143; — of a linear symmetric transformation, 142-147; — of a self-adjoint transformation, 142-147, 185; — of a bounded linear transformation, 147-150; — of a unitary transformation, 309-309; — of a normal transformation, 325-327, 331; — of a real transformation, 360-361; simple —, 275.
STIELTJES, 155, 156, 162, 613.
STIELTJES integral, 158-165, 501, 503.
STONE, v, 131, 284, 530.
STURM, 470.
Symbols: Φ, 3; (,), 3; $\{\}$, 3; Φ_0, 14; φ, 15, 214, 221; \mathcal{D}, 19; Θ, 20; τ, 21; Θ_*, 21; Ξ, 23; \mathcal{D}_x, 29; O, 36, 88; I, 36, 88; \mathcal{D}, 36-37; T^*, 42; T, 43; T_0, 45; $<$, 73; $T; (A)$, 90; $T_0; (A)$, 90; $A(T)$, 129; $B(T)$, 129; $C(T)$, 129; $D(T)$, 129; $S(T)$, 129; $W(T)$, 130; \mathcal{D}, 156; $V_\mathcal{D}(q)$, 156; $V(q; A)$, 156; \mathcal{B}, 157; \mathcal{B}^*, 158; \mathcal{B}, 180; \mathcal{H}, 181; A_x, 184; B_x, 184; D_x, 184; $>$, 214, 221; $\mathcal{L}_x(q)$, 208; \circ, 209; $T(F)$, 221, 315; $M(f)$, 226; $F(H)$, 241; \mathcal{W}, 304; \mathcal{U}, 307; \mathcal{H}, 307; \mathcal{D}, 318; \mathcal{S}, 318; \mathcal{S}, 335; \mathcal{F}, 335; D^*, 341; \mathcal{D}, 341; \mathcal{E}, 344, \mathcal{C}^*, 344; \mathcal{C}, 344; \mathcal{V}, 344; $\mathcal{V}^*(x_1, \ldots, x_n)$, 503.

Symmetric transformation, 49; maximal —, 50, 339-340, 349-357; bounds of a —, 56; definite —, 56; positive definite —, 56; non-negative definite —, 56; numerical range of a —, 133; spectrum of a —, 142-147; point spectrum of a —, 142; self-adjoint transformation, 50; essentially self-adjoint transformation, 51; — corresponding to an isometric transformation, 335-337; deficiency-index of a closed linear —, 338, 357, 341-349, 361; maximal symmetric extensions of a —, 50-53, 337-340; self-adjoint extensions of a —, 339; determination of all maximal —, 351-364; irreducible maximal —, 355-356; elementary —, 349-350, 355-356, 447-448; approximation to a — by a sequence of —, 365-396; approximation to a maximal — by a sequence of —, 386-387; existence of a definite self-adjoint extension of a definite —, 387-390; — defined by a JACOBI matrix, 289-288, 550-614; real —, 361-365; maximal symmetric extensions of a real —, 361-365.

TAMARKIN, iv, vi.
TITCHMARSH, 106.
TOEPLITZ, iv, 61, 98, 100, 126, 131, 142, 155, 614.
Transformation, 33; domain of a —, 33; range of a —, 33; equality of —s, 34; identity of —s, 34; algebraic operations with —s, 35; sequences of —s, 37; adjoint —s, 41; the adjoint of a —, 43; extension of a —, 36; inverse of a —, 38; transform of a —, 83; closed —, 38.
continuous —, 38; linear —, 39; bounded linear —, 56; isometric —, 76; projection, 70; symmetric —, 49; self-adjoint —, 50; essentially self-adjoint —, 51; unitary —, 76; norm of a —, 66; — of finite norm, 66; spectrum of a —, 129; continuous spectrum of a —, 129; point spectrum of a —, 129; residual spectrum of a —, 129; resolvent set of a —, 129; resolvent of a —, 134; characteristic element of a —, 129; normalized characteristic element of a —, 129; characteristic manifold of a —, 129; characteristic value of a —, 129; numerical range of a —, 130; examples of linear —s, 86-124; linear — in L^2, 111; real —, 360; conjugation, 357-360; normal —, 311-331; reducible —, 151; irreducible —, 151. See also Operator.

Transposition, regularizing, 250.

Tychoff, 2.

Unitary invariance, 83-85; — of spectra, 130; — of numerical range, 130.

Unitary spaces, n-dimensional, 16-18.

Unitary transformation, 76-83, 302-311, 331; spectrum of a —, 302-303; resolvent set of a —, 302-303; characteristic elements of a —, 302-303; characteristic values of a —, 302-303; — corresponding to a self-adjoint transformation, 304-311.

Vallée Poussin, de La, 29, 165, 201, 208, 235, 257, 414.

Variation of a function over an interval, 156; inner (outer) — over a point set, 201-205; — over a point set, 201-205.

Vedenisoff, 2.

Vitali’s theorem, 164.

Volterra, iii.

Watson, 110, 111.

Weyl, iv, 17, 18, 26, 122, 469, 484, 530.

Wiener, N., 446, 447.

Wileński, 216.

Wintner, 98, 131, 155, 162, 328.

Young, G. C., 25.

Young, W. H., 25.