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PREFACE

THE THEORY of algebraic functions has been developed by three dif-
ferent methods which have been designated as transcendental, alge-
braic-geometric, and arithmetic. Two very illuminating comparisons of
these theories have been made by Hensel and Landsberg [28, pages
694-702]* and Emmy Noether [37]. The transcendental method had
its origin in a paper by Abel [1] in 1826, in which he announced the
remarkable generalization of the addition formulas for elliptic integrals
which is now called Abel’s theorem. The theory has been greatly en-
riched by many writers, but especially by Riemann [11]. It is called
transcendental because in it Abelian integrals play the fundamental
role. The algebraic-geometric theory is a theory of algebraic plane
curves. Early expositions were given by Clebsch and Gordan [3] in
1863-66, and by Brill and Noether [17] in 1871. A more recent account
is that of Severi [39, 45] in 1921 and 1926, in which much emphasis is
placed upon the properties of linear families of curves and their inter-
sections. The title “arithmetic” is applied to a group of theories which
differ greatly in detail but which have in common as central features the
construction and analysis of the rational functions which are the inte-
grands of Abelian integrals. One of the earliest suggestions of such a
theory is found in a paper [7] which Kronecker presented to the Berlin
Academy in 1862 but published first in 1881. More elaborate theories
in the arithmetic group are those of Weierstrass [27] in his lectures of
1875-6, of Dedekind and Weber [9] in 1882, and of Fields [30] in 1906.
The method of Weierstrass is an application to algebraic functions of
his theory of analytic functions, and somewhat the same remark would
apply to the method of Fields. Dedekind and Weber, however, empha-
sized the analogies between the theories of algebraic functions and alge-
braic numbers. Their methods have been elaborated and improved by
Hensel and Landsberg in their book on algebraic functions [28] pub-
lished in 1902, and in later memoirs.

In the following pages, after an introductory Chapter I, I have en-
deavored to give in Chapters II and III a concise but readable intro-
duction to the arithmetic theory of algebraic functions. My purpose was

* The numbers in square brackets here and elsewhere in the text refer to the list of refer-
ences at the end of this book.
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iv PREFACE

to attain as directly as possible the proofs of the existence, and the
methods of construction, of the integrands of the three kinds of ele-
mentary integrals, and the theorem of Riemann-Roch. These are funda-
mental results which it has always seemed to me desirable to have avail-
able early, rather than buried deeply, in the text of the theory. The
methods used are those of Hensel and Landsberg with many variations.
I have, for example, discarded almost entirely the nomenclature and
use of the ideals of Dedekind and Weber, which are of great interest,
but which are auxiliary rather than essential in the development of the
theory.

An introduction to the methods of the transcendental theory is
given in Chapters IV, V, and VI, the first of which is devoted to Rie-
mann surfaces and Cauchy’s theorem, the second to the definition and
properties of Abelian integrals, and the third to the famous theorem of
Abel which inaugurated the transcendental theory. An advantage of
this order of presentation of the arithmetic and transcendental theories
is that no preliminary transformation simplifying the singularities of
the fundamental algebraic curve is required.

Chapters VII and VIII are devoted to birational transformations.
In the former, fundamental properties and some simple applications
of such transformations to the reduction of special algebraic curves to
normal forms are explained. Chapter VIII is devoted to two famous
transformation theorems. The first of these states that every algebraic
curve can be reduced by a Cremona transformation to one having no
singular points other than multiple points with distinct tangents, and
the second asserts that by a less special birational transformation every
such curve can be transformed into another having only double points
with distinct tangents. These theorems have been important for the
transcendental and algebraic-geometric methods, because these meth-
ods have a much simpler aspect when the only singularities of the alge-
braic curve under consideration are multiple points with distinct tan-
gents.

The literature of the second of the transformation theorems men-
tioned above is very large. Many of the proofs of the theorem are in-
complete, and very few of them have escaped amplification or criticism.
It has not been generally recognized in the literature that there are
really two theorems involved, one for the function-theoretic and one
for the projective plane. In a paper [43] published in 1923 I have given
a history of the theorem and have emphasized these remarks. In
Chapter VIII below a proof of the theorem for the function-theoretic
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plane is given which was suggested in the paper of 1881 by Kronecker,
and completed in 1902 by Hensel and Landsberg in their book on alge-
braic functions mentioned above [pages 402-9]. The theorem seems to
me distinctly more difficult to prove for the projective plane. In a paper
[41] published in 1922 I showed how the reasoning of Kronecker, and
Hensel and Landsberg, can be extended to apply to the projective case
also. The proof is reproduced in improved form in Chapter VIIL. I find
great differences of opinion among mathematicians concerning the
validity and the advantages of the many different methods of proving
these transformation theorems. The method given here has at any rate
an especial interest from the standpoint of the arithmetic theories of
algebraic functions.

Chapter IX below is devoted to the inversion problem for algebraic
curves of genus zero or unity, and to the relations between the theories
of elliptic functions and the rational functions associated with an alge-
braic curve of genus one. I have regretted the necessity of omitting the
theory of the inversion problem for greater values of the genus. The
presentation of it in a satisfactory manner would require a much larger
book than this.

Tllustrative examples have great value for a reader who is orienting
himself in a mathematical theory for the first time. Chapter X is
devoted to such examples, which may be studied in connection with
the text from Chapter II on. Not all of these examples are merely
exercises. The elliptic and hyperelliptic cases described in Section 70
have of course great importance and many applications. In the final
sections of the chapter the methods of Baur [14, 19] for algebraic equa-
tions f(x, ¥) =0 of the third degree in y are explained in detail. These
have the advantage of requiring for their applications no more complex
algebraic mechanisms than the highest common divisor process. Their
generality is illustrated by the fact that they are applicable also to
equations of the fourth degree in x and y after a suitable transformation.

Following Chapter X is a list of books and memoirs to which refer-
ences are made above and elsewhere by numbers in square brackets. At
the end of each chapter a brief note indicates reading which may be
helpful in connection with the material presented in that particular
chapter.

The book as a whole is introductory in character and not a compre-
hensive treatise. It is an account of lectures on algebraic functions
which I have given at the University of Chicago a number of times, the
most recent one being the Summer Quarter of 1931. In that year I
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prepared for students a mimeographed set of notes from which the
following pages have been developed. In their preparation I have been
ably assisted by Dr. M. R. Hestenes. He has read the manuscript with
care and has made many valuable suggestions. I record here my ap-
preciation of his helpful interest.

In conclusion I wish to acknowledge with gratitude the interest of
the Editors of the Colloquium Publications of the American Mathe-
matical Society, and the assistance of the National Research Council,
which have made possible the publication of this book.

G. A. BLiss

The UniversiTy OF CHICAGO, 1932
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Abelian integrals, Elliptic integrals

Inversion of Abelian integrals, 169ff

Inverse function: when p=0, 171; when
p=1, 172

Irreducible algebraic equations, 78

Jacobi, 176

Klein, 135

Kronecker, iii, v, 155-6

Landsberg, iii, iv, v, 156

Laurent expansion, 9; principal part of, 13, 15

Leading coefticients of a rational function, 74
Logarithm of a rational function, 114

Multiple points with distinct tangents, 40
Multiples of a divisor, 47, 48, 51, 54, 72

Newton, 35
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Noether, iii, 155

Noether, Emmy, iii

Norm: of a rational function, 44; ideal norm
of a divisor, 535

Normal basis for a divisor, 52

Normal form of equation of third degree in y,
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Normal integrals, 110

Ordinary point, 9, 11; ordinary place, 80
Periods: of an Abelian integral, 96ff, 101;

period relations, 100, 105-6; primitive
periods of an elliptic function, 179

INDEX
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Riemann-Roch Theorem, 67ff
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of functions on a Riemann surface, 80; of
Abelian integrals, 94

Special places and rational functions, 71, 73;
special divisor, 71

Surface: connected or simply connected, 82;
connectivity, 87

Trace of a rational function, 44

Transformations: projective, 144ff; see also
Birational transformations, Cremona trans-
formations

Unicursal curves, 139f

Weber, iii, iv
Weierstrass, iii, 176-7



This book, immediately strikine for its conciseness. is one of the most remarkable vworks
ever produced on the subject of algebraic functions and their integrals. The distinguish-
ing feature of the book is its third chaprer, on rational functions, which ¢ives an extremely
brict and clear account of the theory of divisors....

A very readable account is given of the topology of Riemann surfaces and of the ¢eneral
properties of abelian integrals. Abel's theorem is presented. with some simple applica-
tions. The inversion problem is studied for the cases of genus zero and ¢enus unity. The
chapter on the reduction of singularities is very noteworthy.... A final chaprer illustrates
the general theory with some examples. In particular, constructive methods are ¢iven for
treating alecbraic relations which are of the third degree in one of the variables.... The
arithmetic theory of alecebraic functions s a cood thine. In making its study casy. Bliss
has performed a service which swill win him the ¢ratitude of an ever increasing number

of readers.
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