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PREFACE

The primary purpose of this book is to develop the theory of systems of
partial differential equations and that of pfaffian systems so as to exhibit clearly
the relation between the two theories. The questions treated concern almost
exclusively the existence of solutions and methods of approximating them
rather than their properties, whose study seems to belong to the theory of
functions.

In writing the book the author has been guided by a desire for generality
in results and conciseness in subject matter and proofs. As a consequence,
the postulational method seemed to force itself upon him. Roughly, the plan
has been to take a few existence theorems as postulates and construct the
theory upon them. A consistency proof is included by proving the postulates
in particular cases. The original plan included extensions of the consistency
proofs, but the pressure of other duties prevented carrying this out.

The ideas and nomenclature of modern algebra, as developed, for instance,
in van der Waerden’s admirable treatise, have been freely used. Some modifi-
cations of certain topics, essential for our purposes, have been included, but
no systematic development of the theory of commutative polynomial rings
has been made. On the other hand, the theory of a certain non-commutative
polynomial ring, called here a Grassmann ring, is developed in detail from the
postulates in Chapter III, which together with Chapter IV develops ideas
introduced by Grassmann and brought to such a high degree of perfection by
Cartan. A combination of Cartan’s notation, the tensor calculus, and modern
algebraic concepts seems very effective. Incidentally, the results about de-
terminants and linear dependence, which are needed, can be proved directly
from the postulates as readily as the manner of stating them in the literature
can be modified to fit the case in hand.

The treatment of the algebraic case is the author’s. Although it has close
connection through the highest common factor with Ritt’s excellent discussion,
which is based on the division algorithm, it differs radically in several respects
from that work because of a difference in purpose and viewpoint. In the first
place, the basis of our method is algebra, rather than analysis. Secondly,
reducibility, which plays such a prominent rdle in Ritt’s developments, is of
little importance in ours. With existence theorems as our chief objective, the
important thing for us is to eliminate multiple roots. A polynomial’s having
two factors, for example, does not prevent the application of the implicit func-
tion theorem, if the factors are distinct, and making that theorem applicable
is the chief purpose of the reduction process. Incidentally, it might be well
to point out that the term ‘‘reducible’” has slightly different meanings in the
two theories. The system 32, which Ritt classes as irreducible, is reducible in

ours.
v
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Another feature of our treatment, which assumes its most elegant and satis-
factory form in the algebraic case, although employed in the whole work, is
the admission of the inequation on an equal footing with the equation. This,
together with the use of resultants of all orders (subresultants), obviates the
necessity of making the preliminary linear transformation of the indeterminates,
which is an essential step in Kronecker’s method of solution of algebraic systems.

Finally, the algebraic case furnishes the model for treating the elimination
problem for systems of functions. This is done in Chapter VIII. The method
is subject to certain limitations. First, there is no algorithm for determining
the zeros of an analytic function in a given region. The difficulty of removing
this restriction can be appreciated if the zeros of the Riemann {-function are
cited. Second, there may exist zeros which are not the centers of regions where
assumption W is true. These zeros may be termed singular. Their determina-
tion and study seem destined to remain for some time a highly complex problem,
only to be solved in special cases by special methods. In this respect they
resemble the solutions of a system of partial differential equations in the
neighborhood of a singular point. In spite of these limitations, the general
method of elimination given here seems to furnish a definite result, which is
perhaps as satisfactory as can be obtained at present.

In addition to bringing Cartan’s existence theorem for pfaffian systems into
the scheme, Chapter IX shows clearly that it has limitations because it does
not give the singular integral varieties unless substantially modified. The
same chapter also gives what is believed to be the only method yet developed
for finding and making a partial classification of the singular integral varieties.
The method ultimately—and it seems essentially—depends on Riquier’s funda-
mental researches.

In order not to interrupt the continuity of the development, the illustrative
examples have been segregated in Chapter XI. The reader may find it con-
venient to study them at the appropriate place in the text.

The author has drawn freely from the work of Cartan, Goursat, and Janet,
but he is particularly indebted to Riquier’s treatise. The book also incorporates
many suggestions made by students in his courses during the past nine years;
the present neat statement of the rule of signs in Theorem 9.1, for example,
was suggested by Mr. Alexander Makarov. The author is even more indebted
to all those who have listened to his lectures for sustaining his interest in the
subject by their sympathetic attention.

J. M. THOMAS

July, 1936
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