Topology of Manifolds

Raymond Louis Wilder
TABLE OF CONTENTS

Preface .. vii

Introduction to the 1963 Edition xi

Notes to the 1963 Edition xi

Notes to the 1979 Printing xiii

I. Elementary concepts; characterizations of \mathbb{E}^1 and S^1 1
 1. Sets ... 1
 2. Spaces .. 2
 3. Metric spaces 4
 4. Closed and open subsets of a space 5
 5. Mappings; homeomorphisms 6
 6. Historical remarks 10
 7. Connected spaces 16
 8. Components; quasi-components 18
 9. Connected spaces satisfying the 2nd Hausdorff axiom and the weak separation axiom 19
 10. Spaces irreducibly connected about a subset . 21
 11. The simple arc and the 1-sphere 27
 12. Some fundamental lemmas 33

II. Locally connected spaces; fundamental properties of the Euclidean n-sphere 40
 1. Local connectedness 40
 2. Irreducible lc-connexes; recognition of \mathbb{E}^1 and S^1 among lc spaces 42
 3. Some general properties of lc spaces 45
 4. “Phragmen-Brouwer properties” and their equivalence in lc spaces 47
 5. Some topology of the n-sphere 51

III. Peano spaces; characterizations of S^1 and the 2-manifolds 69
 1. Peano continua; mapping theorems 69
 2. Topological characterization of Peano continua 74
 3. Peano spaces 76
 4. Recognition of the 2-sphere 87
 5. Recognition of the closed 2-cell 92
 6. Recognition of the 2-manifolds 94

IV. Non-metric lc spaces, with applications to subsets of the 2-sphere 99
 1. Components of locally compact Hausdorff spaces 99
 2. A characterization of locally compact, connected spaces that fail to be lc 102
 3. Some characterizations of locally compact lc spaces 104
 4. Relations between lc, S and ulc properties 107
 5. Accessibility 110
 6. More properties of the 2-sphere 112
 7. Recognition of Peano continua in S^1 by accessibility properties 116
 8. Remarks 118
TABLE OF CONTENTS

V. Basic Algebraic Topology
1. Complexes .. 120
2. Algebraic apparatus .. 120
3. Chain groups .. 122
4. Homology groups ... 123
5. Important special cases and geometric interpretations 124
6. Some fundamental lemmas 126
7. Čech cycles and homology groups 129
8. Covering lemmas .. 133
9. Vector spaces .. 135
10. Existence theorems ... 138
11. Some applications to connectedness and local connectedness 141
12. Fundamental systems of cycles for a compact metric space 145
13. Alternative definitions .. 146
14. Dual homomorphisms ... 148
15. Cocycles; cohomology groups 149
16. Chain products for a complex 153
17. Extension to topological spaces 156
18. Scalar products and dual pairings 159
19. Applications to homology properties of spaces 167
20. Homologies in non-compact spaces 168
21. Approximate homologies 172

VI. Local Connectedness and Local Co-Connectedness 176
1. Local connectedness in dimension n 176
2. Chain-realizations .. 177
3. Complex-like character of compact lc^s spaces 180
4. Non-compact cases .. 183
5. Fundamental systems of cycles 185
6. Local co-connectedness; local connectivity numbers and local dualities .. 189
7. Property (P, Q)_s ... 193
8. Other types of higher dimensional local connectedness 198

VII. Application of Homology and Cohomology Theory to the Theory of Continua 200
1. Fundamental lemmas .. 200
2. Existence lemmas regarding carriers of cycles and homologies 204
3. Separations of continua by closed subsets 211
4. Non-r-cut and r-avoidable points 218
5. r-extendability ... 224
6. Non-cut-points and avoidable points 227
7. Property S_r .. 234
8. Set-avoidability ... 238
9. An addition theorem .. 241

VIII. Generalized Manifolds; Dualities of the Poincaré and Alexander Type 244
1. General properties .. 244
2. Orientability .. 246
3. The orientable n-gcm ... 250
4. The Poincaré duality for an orientable n-gcm 252
5. The open n-gm .. 254
6. The Alexander type of duality for a closed subset of an n-gcm. First proof .. 261
7. The Alexander type of duality for a closed subset of an n-gcm. Second proof .. 263
8. Linking theorems ... 266
9. A duality for non-closed sets 269
TABLE OF CONTENTS

IX. FURTHER PROPERTIES OF n-GMS; REGULAR MANIFOLDS AND GENERALIZED n-CELLS 271
1. Case \(n = 1 \) .. 271
2. Case \(n = 2 \) .. 272
3. Avoidability properties 272
4. Characterization by means of local linking 274
5. The case \(n = 2 \) without the orientability condition 275
6. The general non-orientable case 280
7. Comparison of the case \(n > 2 \) with the classical case; regular manifolds and generalized n-cells 282

X. SUBMANIFOLDS OF A MANIFOLD; DECOMPOSITION INTO CELLS 290
1. Positional invariants 291
2. Uniform local co-connectedness; duality of \(r \)-ule and \((n - r) \)-coule 292
3. The Jordan-Brouwer separation theorem in an n-gcm, and its converse 294
4. Generalization ... 296
5. Additional positional properties 298
6. The boundary of a \(\text{ule}^{n-2} \) domain in a manifold 304
7. Additional converses of the Jordan-Brouwer separation theorem 307
8. The general \(\text{ule}^{n-2} \) open subset of an n-gcm 309
9. Decomposition of the spherelike n-gcm into two generalized closed n-cells 311

XI. \(\text{Le}^4 \) SUBSETS OF AN n-GM 316
1. Duality of the S properties 316
2. Duality between \(\text{le} \) and S properties 320
3. Duality with S properties in terms of cohomology 327
4. Relation of avoidability properties at a point to S properties of the complement of a closed set 331
5. Weak S properties; recognition of \(\text{le}^4 \) boundaries from properties of the domain 336
6. Weak uniform local connectedness 344
7. \(\text{le} \) sets whose complementary domains are bounded by manifolds 346

XII. ACCESSIBILITY AND ITS APPLICATIONS 353
1. Regular \(r \)-accessibility 353
2. Stronger types of accessibility; their interrelations and topological invariance 361
3. Applications to recognition of submanifolds of a manifold 372

APPENDIX. SOME UNSOLVED PROBLEMS 381
1. Point set problems 381
2. Problems concerning homology 381
3. Dimension theory problems 382
4. Problems concerning generalized manifolds 382

BIBLIOGRAPHY ... 385

INDEX OF SYMBOLS .. 393

INDEX .. 396

AUTHORS CITED .. 402

ERRATA .. 403
This page intentionally left blank
PREFACE

The historical background of this work is sketched in Chapter I, section 6, and need not be repeated here. It should, however, be complemented by certain remarks of a more personal nature, particularly as regards the author's indebtedness to his mathematical colleagues.

It has become more or less apparent to students of cultural evolution that the genesis of a line of thought cannot be fixed either in chronological fashion or bibliographically. If proper evidence were on record, an idea which seems to emanate at a fixed date or in a particular work would be found upon analysis to be only the end product of a collection of prior ideas; the "originator" of the idea being only the medium through which these latter ideas achieve their synthesis. Even the particular individuality of the "originator" is probably not of paramount importance; of importance is the perennial presence of the "creative" mind, ready to receive the stimuli. Can anyone doubt that the calculus would have evolved even though Leibnitz and Newton had taken up farming instead of science? Simultaneous announcement of "discoveries" by contemporaries, often widely separated, is not a rare occurrence.

It is fitting, then, for an author to attempt to place his work in its proper setting amongst past and contemporary influences. This is the object of the historical remarks in Chapter I. But these formal remarks only partially fill in the picture. On the more personal side, I wish to express my indebtedness to Professor R. L. Moore, under whose tutelage I received a thorough grounding in point set theory. It was during my early contacts with him that I came to realize the vacuum in our knowledge of the set-theoretic structure of the n-cell, particularly the lack of a topological characterization. Later, through personal contacts with Professor Paul Alexandroff in 1928, I became convinced (a conviction which he obviously shared) that the problem of the n-cell demanded new tools, especially the extension to general spaces of the theory of connectivity (homology). Acknowledgements are also due to Professor Eduard Čech (whose theory of general homology is used herein), who visited the United States in 1934–35 and from whom I gained much stimulation and personal encouragement. I am also grateful to the Institute for Advanced Study for making possible a year's uninterrupted research in 1933–34, during which the present investigations on manifolds were initiated; and to the John Simon Guggenheim Memorial Foundation for the grant of a fellowship in 1940–41. It was during the latter period that the euclidean form of many of the results given in Chapters X–XII were found.

As regards the end result—the book itself—it cannot be emphasized too strongly that what is presented herewith is only a beginning. It is only those properties of manifolds that can be handled by set-theoretic and homologic
tools that are developed, and even these are not completely treated. Problems concerning homotopy, mappings of manifolds, applications to the study of group manifolds, etc., are all awaiting attention. But I hope that what is done here will serve as a useful basis for an attack on such problems.

The delay in publishing has been due to several factors. Since my delivery of the Colloquium Lectures on "Topology of Manifolds" at Vassar in September, 1942, in which the general outlines of this work were presented, the major part of a war has been fought, and a teacher in American universities need not be told what the attending demands, and the heavy post-war university enrollment of veterans, have done to the time that can be devoted to research. Also, most of the results in the later chapters, published here for the first time, were worked out with the euclidean n-space as locale. Resetting these in the generalized manifolds required not only revamping of proofs but taking advantage of the parallel advances in algebraic topology. New and more powerful tools were developing, such as the theory of cohomology and chain products, whose incorporation necessitated much revision but which justified themselves by the greater simplicity made possible in proofs. In many cases, proofs involving homology which were long and difficult became much simplified through the device of reverting to cohomology.

It also became apparent that the work would have to be topologically self-containing; the reader could not be expected to have previously read works on point set theory, topology of polyhedrals (combinatorial topology) and the newer algebraic topology. On the other hand, it was not possible to write a complete exposition of all these aspects of topology. The plan finally adopted was to develop the program from its simplest elements to its more complicated stages while simultaneously introducing the tools needed. Starting at first with general spaces, sufficient topological properties are introduced to characterize the basic 1-dimensional configurations (arc, 1-sphere). As a consequence, Chapter I is quite elementary. Some of the Schoenflies results in two dimensions are then given as well as some of the more modern plane point set theory—partly to furnish a natural basis and motive for the n-dimensional case and partly to present a unified treatment which takes advantage of the newer methods.

Algebraic topology is not introduced until needed—some topology of polyhedrals enters incidental to the material on the euclidean n-sphere in Chapter II, the more recent algebraic topology not being introduced until Chapter V. Although the treatment of these topics obviously could not be made in such general and complete fashion as in the companion volume by Lefschetz [L] in this series, enough is given to carry through the later chapters. The discerning reader will see many algebraic problems to be solved. Throughout the later chapters only an algebraic field is used as coefficient group, since, for example, the geometric form of the Alexander-Pontrjagin duality forms an important tool (three coefficient groups are usually involved—one to define the manifold, and one each for the homology theory of a subset M and for the complement of M). However, it is impossible to do more in a work of this size than to sketch in the general
picture; the author hopes that other writers will fill in some of the gaps and bring the picture into sharper focus.

In an Appendix, I have pointed out some unsolved problems. Some of these may have very simple solutions; others (as for instance 1.1) are probably quite difficult. Such well-known (and difficult) classical problems as the classification of manifolds, conditions under which the S^2 in S^3 bounds a 3-cell, etc., are omitted.

References to the bibliography are enclosed in brackets, those involving capital letters such as [V] or [Mo] referring to books on topology, and those involving only lower case letters such as [a], [c] referring to miscellanea, mainly journal articles. Page numbers, etc., may be included, as in [a; 20] referring to page 20 of the article cited. Cross-references to items in the text are generally made by citing chapter and section; thus "V 12.2" refers to Chapter V, section 12.2. When a section number alone occurs, such as "12.2", the reference is to the chapter in which the citation occurs. References to formulae are enclosed in parentheses.

Along with the index of terms, there is included for easy reference an index of symbols. Certain symbols which refer to analogous concepts might easily be confused. The latter remark applies particularly to the symbols for homology and cohomology groups. The problem of symbolizing the various types of these groups which are encountered in the present work, and the corresponding Betti numbers, proved a serious one, and it is questionable if it has been satisfactorily solved!

I am grateful to those who have lent their advice, read some of the chapters or assisted in reading proofs; particularly to Professors Miriam C. Ayer, E. G. Begle, S. Kaplan, P. A. White and Gail S. Young; also to Dr. K. E. Butcher, Dr. E. H. Larguier and Messrs. M. L. Curtis and L. F. Hsieh. Aid in preparation of the manuscript was received from the Alexander Ziwet Fund, administered by the Executive Board of the Rackham School of Graduate Studies of the University of Michigan.

I wish to thank the American Mathematical Society for the honor and privilege of publishing this volume in its Colloquium series.

Ann Arbor, Michigan
December, 1948
This page intentionally left blank
INTRODUCTION TO THE 1963 EDITION

This edition represents primarily a reprinting of the original book published in 1949; however, there have been some corrections made in the text and a list of errata has been added at the end of the book. In addition the NOTES which follow this Introduction have been added to this edition. For calling errors to my attention, as well as for assistance with the Notes, I am indebted to both colleagues and former students.

NOTES TO THE 1963 EDITION

Page 193; 7.2 Theorem. The "\((P, Q)_{*,1}\)" condition may be replaced by the weaker condition "\((P, Q, \sim)_{*,1}\)" defined on page 327. For a much simpler proof of this theorem see Theorem VI.2 on page 227 of my paper A certain class of topological properties, Bull. Amer. Math. Soc., vol. 66 (1960), pp. 205–239.

Page 257. After the proof of 5.8 Lemma, insert:

"As a consequence of Theorem V 18.31, Theorem 1.1, and Lemmas 5.6 and 5.8, we can show

5.8a Lemma. With \(P\) and \(Q\) as before,

\[H_{*,1}(S; Q, 0; P, 0) = h^{*-1}(S; Q, P). \]

(This Lemma is needed in 7.2, for instance)"
Page 316; 1.1 Theorem. This theorem is valid for any orientable n-gem (See my paper A certain class of topological properties, loc. cit., especially Theorem II.5 thereof and the “Remark” following it.) A similar observation holds with regard to the following items in Chapter XI:

Page 319; 1.4 Theorem and 2.2 Lemma
Page 319; 1.5 Theorem
Page 320; 2.1 Theorem
Page 321; 2.3 Theorem
Page 325; 2.19 Theorem (although Theorem V.1 of the paper cited above is more general)
Page 326; 2.20 Corollary
Page 326; 2.21 Corollary (this holds for any orientable closed locally euclidean n-manifold S such that \(p_1(S) = 0 \), and M need be only 0-le and have property \((P, Q, \sim)^{-1}\). See Corollary V.1 of the paper cited above)
Page 326; 2.22 Theorem and Corollaries (see Theorem V.2 of the paper cited above)
Page 329; 3.5 Theorem (see Theorem II.4 of the paper cited above)
Page 339; 5.12 Theorem (valid for D any domain such that \(p^{-1}(D) \) is finite, in an orientable n-gem; a like remark holds for Corollary 5.13)
Page 340; 5.15 Theorem
Page 340; 5.16 Theorem
Page 343; 5.26 Theorem
Page 344; all Corollaries 5.27, 5.28, 5.29 and 5.31
Page 345; 6.5 Theorem.

Pages 327, 328; replace 3.3 Theorem and 3.4 Theorem, respectively, by Theorems II.1 and II.2 of the paper cited above.

Page 366; 2.14 Theorem. The weaker condition ‘‘\((P, Q, \sim)\)’’ may be substituted for the le’’ condition in the hypothesis.

Page 381; Problems 1.2 and 2.3. See M. Lubafski, An example of an absolute neighborhood retract, which is the common boundary of three regions in the 3-dimensional euclidean space, Fund. Math., vol. 40 (1953), pp. 29–38. (Notice also footnote 2), ibid., concerning an unpublished result of Gruba in 1937.)

Page 382; Problems 3.1 and 3.2. For solutions for certain types of "homology n-manifolds" over the reals mod 1 or a principal ideal ring, see, respectively, C. T. Yang, Transformation groups on a homological manifold, Trans. Amer. Math. Soc., vol. 87 (1958), pp. 261-283; and F. A. Raymond, Poincaré duality in homology manifolds, Dissertation, University of Michigan, 1958.

ADDITIONAL NOTES FOR THE 1979 PRINTING

For further information concerning the history of generalized manifolds since the publication of the present work, the reader can be referred to the following sources:

BIBLIOGRAPHY

Only books that are of special significance for the text and papers that are specifically referred to therein are included in this bibliography. For papers on manifolds of the classical type, not referred to herein, the reader is referred to the bibliographies in the Colloquium volumes of Lefschetz and the book of Seifert and Threlfall cited below. For additional citations in the general literature of Topology, reference may be made to the works of Lefschetz and Seifert-Threlfall as well as to the bibliographies in the Colloquium volumes of R. L. Moore and G. T. Whyburn cited below.

Books

ALEXANDROFF, P. and HOPF, H.

HAUSDORF, F.

HILBERT, D. and COHN-VOSSEN, S.

HUREWICZ, W. and WALLMAN, H.

KERÉKJÁRTÓ, B. von.

KURATOWSKI, K.

LEFSCHETZ, S.

MENGER, K.

MOORE, R. L.

NEWMAN, M. H. A.

PONTRYAGIN, L.

REIDEMEISTER, K.

SCHENFLIES, A.

SEIFERT, H. and THRELFAH, W.

SIERPINSKI, W.
[S] Introduction to General Topology, Univ. of Toronto Pr., 1934.

TUCKER, A. W.

VEBLEN, O.

WHYBURN, G. T.

WILDER, R. L. and AYRES, W. L., editors

PAPERS, ETC.

ALEXANDER, J. W.
[c] An example of a simply connected surface bounding a region which is not simply connected, Proceedings of the National Academy of Sciences, vol. 10 (1924), pp. 8-10.

ALEXANDROFF, P.
BIBLIOGRAPHY

Begle, E.

Bing, R. H.

Brouwer, L. E. J.

Čech, E.

Chittenden, E. W.

Eilenberg, S.

Frankl, F.

388 TOPOLOGY OF MANIFOLDS

GAWEHN, I.

GEHMAN, H. M.

HAHN, H.

JORDAN, C.

VAN KAMPEN, E. R.

KAPLAN, S.
[a] Homologies in metric separable spaces, Dissertation, University of Michigan, Ann Arbor, 1942.

KNASTER, B. and KURATOWSKI, C.

KURATOWSKI, C.

KLINE, J. R.
[a] Closed connected sets which remain connected upon the removal of certain connected subsets, Fundamenta Mathematicae, vol. 5 (1924), pp. 3-10.

LEBESGUE, H.

LEFSCHETZ, S.

LENNES, N. J.
MAZURKIEWICZ, S.

Menger, K.

Moore, R. L.
[g] On the relation of a continuous curve to its complementary domains in space of three dimensions, Proceedings of the National Academy of Sciences, vol. 8 (1922), pp. 33-38.

Poincaré, H.

Pontjagin, L.

Schönflies, A.

Sierpiński, W.

Steenrod, N. E.

Swingle, P. M.

Tietze, H.

Torhorst, M.
Urysohn, P.

Vaughan, H. E.

Veblen, O. and Alexander, J. W.

Vietoris, L.

Whitney, H.

Whyburn, G. T.

Wilder, R. L.
BIBLIOGRAPHY

[A1]-[A11] These are abstracts of unpublished papers in the Bulletin of the American Mathematical Society with volume, page and abstract no. as follows: A1—35 (1929), 194, 9; A2—43 (1937), 335, 272; A3—52 (1946), 446, 219; A4—52 (1946), 445, 217; A5—46 (1940), 57, 134; A6—52 (1946), 445, 216; A7—46 (1940), 436, 349; A8—52 (1946), 446, 218; A9—47 (1941), 58, 114; A10—47 (1941), 58, 113; A11—47 (1941), 58, 112; A12—42 (1936), 496, 308; A13—53 (1947), 507, 287.

YOUNG, G. S., Jr.

ZIPPIN, L.

This page intentionally left blank
INDEX OF SYMBOLS
(The symbol “f” refers to a footnote; the symbol “ff” to the following page or pages.)

<table>
<thead>
<tr>
<th>Symbol(s)</th>
<th>Pages Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, ⊂, 1</td>
<td><, 178, 222</td>
</tr>
<tr>
<td>C, ⊃, 6</td>
<td>>, 129, 171</td>
</tr>
<tr>
<td>{ }, {] }</td>
<td>≫, 133</td>
</tr>
<tr>
<td>∩, ∪, 1</td>
<td>⟨⟩, 27</td>
</tr>
<tr>
<td>∪, ∪, ∩, ∩, 2</td>
<td>&, 2</td>
</tr>
<tr>
<td>δ, 53 ff, 121</td>
<td>∨, 2</td>
</tr>
<tr>
<td>53, 149</td>
<td>∈, 1</td>
</tr>
<tr>
<td>5, 153, 162, 164, 247 ff</td>
<td></td>
</tr>
<tr>
<td>D, 128</td>
<td>(\bar{R}), 126</td>
</tr>
<tr>
<td>ρ(), 4</td>
<td>(\tau), 177</td>
</tr>
<tr>
<td>σ*, 53, 120</td>
<td>(\pi_{us}), 129</td>
</tr>
<tr>
<td>(\bar{E}), 21</td>
<td>((L^, Q^)), 159</td>
</tr>
<tr>
<td>(E^, \bar{E}^), 31</td>
<td>(M^*, 316)</td>
</tr>
<tr>
<td>F(), see Boundary</td>
<td>(S(x, \epsilon)), 4</td>
</tr>
<tr>
<td>F(x, \epsilon), see Boundary</td>
<td>(S(x, \epsilon, \rho \epsilon)), 147, 151</td>
</tr>
<tr>
<td>F(x), 168</td>
<td>(G_{\epsilon}), 168</td>
</tr>
<tr>
<td>G(x), 168</td>
<td>(S), 106, 339</td>
</tr>
<tr>
<td>U \cap M, 131</td>
<td>(U^*(U; M, P)), 182</td>
</tr>
<tr>
<td>U \cap M, 131</td>
<td>(U^*(U; \mathcal{B}; M, P)), 182</td>
</tr>
<tr>
<td>U \cap \mathcal{B}, 129</td>
<td>(U^*(U; \mathcal{B}; P)), 184</td>
</tr>
<tr>
<td>U \cap \mathcal{B}, 129</td>
<td>(U^*(U; \mathcal{B}; M, P)), 182</td>
</tr>
</tbody>
</table>
CHAIN AND HOMOLOGY GROUPS

Chain groups are designated by the letter "C" followed by suitable symbols; for example, "C'(K)." Cycle groups and groups of bounding cycles are designated similarly by use of the letters "Z" and "B", respectively. Consequently in the table below only the symbols for the homology groups are given; to obtain the corresponding chain, cycle or bounding cycle groups (where they exist), replace "H" by "C," "Z," or "B." Thus the cycle group corresponding to "H'(K)" is "Z'(K)." Hence to look up a group, as "Z'(S; M, L; G)," instead look up "H'(S; M, L; G)" in the index below; the "Z" group desired will be found defined on the page cited.

Betti numbers are generally designated by "p." Thus, to look up the meaning of "p(S; M, L; A, B)," turn to the page designated for "H'(S; M, L; A, B)." Similar remarks hold for the cohomology case. However, some Betti and co-Betti numbers are listed below, particularly where special definitions are required or a letter different from "p" (such as "q") is used.

Individual cycles and cocycles are variously denoted in the text by the letters "\(z\)," "\(z\)'" and "\(z\)" with appropriate indices. Open point sets are denoted below by "\(P\)," "\(Q\)," "\(I\)," "\(V\)," closed point sets by "\(A\)," "\(B\)," "\(J\)," "\(M\)," "\(L\)," a single point by "\(x\)." Also, both below and in the text, the letter "K" denotes a complex, "S" a space, "F" an algebraic field, and "G" an abelian group.

<table>
<thead>
<tr>
<th>(H'(K)), 54</th>
<th>(H'(M; J, 0)), 211</th>
<th>(h^*(U, V)), 235</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H'(U)), 58</td>
<td>(H'(S; M, L; \bar{F})), 136</td>
<td>(h^*(\phi)), 235</td>
</tr>
<tr>
<td>(H'(K; G)), 123</td>
<td>(H'(S), H'(S; \bar{F})), 136</td>
<td>(h'(S)), 246</td>
</tr>
<tr>
<td>(H'(S; G)), 124</td>
<td>(H'(S; M, L; A, B)), 166</td>
<td>(h'(S; Q; P)), 256</td>
</tr>
<tr>
<td>(H'(S; G)), 130</td>
<td>(H'(S)), 188</td>
<td>(\mathfrak{S}(S)), 248</td>
</tr>
<tr>
<td>(H'(M, L; G, \mathbb{U})), 131</td>
<td>(H'(S; S, M)), 261</td>
<td>(\mathfrak{S}(S)), 258</td>
</tr>
<tr>
<td>(H'(S; M, L; G)), 132</td>
<td>(H'(S; M)), 262</td>
<td>(H'(x; P, Q)), 190</td>
</tr>
<tr>
<td>(H'(M, L; G)), 133</td>
<td>(H'(M, \bar{F})), 172</td>
<td>(G'(M; J, 0)), 211</td>
</tr>
<tr>
<td>(H'(M, L)), 133</td>
<td>(h^*_e(P; \bar{F})), 185</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>(H_n(K; G)), 150</td>
<td>(H_n(P, Q), 152)</td>
<td></td>
</tr>
<tr>
<td>(H_n(P, Q; \mathcal{I}, \mathcal{U})), 150 ff</td>
<td>(h_n(S), 248)</td>
<td></td>
</tr>
<tr>
<td>(H_n(S; P, Q; \mathcal{I})), 152</td>
<td>(H_n(S; P, Q; U, V), 166)</td>
<td></td>
</tr>
<tr>
<td>(H_n(S; P, Q), 152)</td>
<td>(\mathcal{H}_n(x; P, Q), 191)</td>
<td></td>
</tr>
</tbody>
</table>

\(p'(K, 2), 55 \)

\(p'(K; \mathcal{I}), 126 \)

\(p'(U, 2), 58 \)

\(p'(S), 163, 319 \) ff

\(p'(S, =), 169 \)

\(p'(x; P), 191 \)

\(p'(x; P, Q), 190 \)

\(p'(x), p''(S, x), 191 \)

\(g'(x; P, Q), 192 \)

\(g'(x; P), 192 \)

\(g''(x), 192 \)

\(q'(S - M, x), 292 \)

\(q'(M; J, 0), 211 \)

\(q'(U, x), 293 \)

\(q'(K; P, Q), 240 \)

\(q'(U, x; G), 296 \)

\(q'(K; P), 240 \)

\(q'(U, x, \sim), 331 \)

\(q'(K), 240 \)

\(p_n(S), 163 \)

\(g(K; G'), 240 \)

\(p_n(x; P), 191 \)

\(p'(U), 290 \)

\(p_n(S, x), 191 \)

\(p'(S - M, x), 291 \)

\(p_n(x), 191 \)

\(p'(U, x), 293 \)

\(p_n(U, x), 293 \)
INDEX

Abstract space, 11, 13
Accessibility, 13
arcwise, 66
by closed and connected sets, 110
by continua, 110
from all sides, 116
local r-, 362
r, 362
regular, 116, 353
regular r, 354
regular r, rel. G^r, 359
semi-r, 368
theorems, 110 ff, 116 ff, XII
uniform semi-r, 377
Acyclic, 85
Addition theorems, 60, 64 ff, 241 ff
Alexander addition theorem, 60
Alexander duality theorem, 14, 63
for an n-gem, 263 ff
Algebraic topology, 12, 52
Analysis situs, 10
Annihilator, 159
Arc, 27
characterizations of, 30 ff, 43 ff
open, 27
Arcwise connected, 81
locally, 81
through a space, 81
Arcwise connectedness of domains of a Peano
space, 81
Augment, 121
Avoidable point, 229
almost r, 231
in the relative sense, r, 281
locally r, 218
r, 218
Avoidable set
almost completely r, 238
almost locally r, 238
Barrier, 216
Base, homology, 136
Base of cycles relative to homology = a set of
cycles consisting of one cycle from each
element of a homology base. Base of
cocycles relative to cohomology is defined
similarly.
Basic set, about which a space is irreducibly
connected, 23
Basis, homology; see Base, homology
Basis, countable (of open sets), 70
Betti group; see Homology group
Betti number, 12
around a point, 291
co-, 163
local, local co-; see Local connectivity
numbers
mod 2, of a euclidean complex, 55
of a space, 163
of K over G, 124
of open subsets of S^n, 58
Boundary
of a set of points, 16 ff. The boundary of a
point set M is denoted by the symbol
$F(M)$; the boundary of an ε-neighborhood
of a point x in a metric space by $F(x, \varepsilon)$.
of a chain, 54, 122
Boundary cell, 52
Boundary chain, 121 ff
Boundary operator, 121
Boundary point, 16-17
Brouwer property, 47
possession of by S^n, 60
Canonical pair of neighborhoods, 192
Canonical sequence of refinements, 145
Cantor-connected ($= C$-connected), 338
Cantor product theorem, 24
Cantor ternary set, 74
Cap product, 153
of compact cycles and infinite cocycles, etc.,
247 ff
of C-cycles and cocycles, 157 ff
special, 154
Carrier
approximate, 205
minimal, 205
of a C-cycle, 204
of a compact cocycle, 248
of a compact cycle, 246 ff
of a homology, 204
Cauchy sequence, 4
C-cycle = Čech cycle
Čech
absolute—cycle, 132
cycles, 130, 148
cycle mod L on M, 132
unrestricted—homology theory, 169

396
INDEX 397

Cell, 11, 15, 120 ff
characterization of closed 2-, 92, 242
closed, 31, 55
closed 2-, 92 ff
n-, 31, 38, 52
c-equivalence, 18
Chain, 12
augmented, 123
cellular, 53
deformation-, 128
group, 54, 122 ff
product, 153
r-, 53, 54, 121 ff
Chain-homotopic, 129
Chain-mapping, 127 ff
Chain-realization, 177
extension of, 177
partial, 177
Character. A point x of a Hausdorff space S has countable character at x if some countable collection of open subsets of S is equivalent to the set of all open sets relative to x. (The obvious generalization to character of type α where α is any cardinal number).
See 73
Closed, 5
Closed cantorian manifolds, 207
Closed curve, 13, 14
quasi-, 32
simple, 31
Closed Jordan curve, 31
Closure of a point set, 5
Coboundary, 150
Cochain realization, 252; may be abbreviated to “co-realization” partial, 252
Co-cycle, 149 ff
compact, 248
fundamental, 250, 255
infinite, 247
of a space, 152
Coefficients (of chains), 12, 121 ff
integral, 12, 125 ff
mod 2, 12, 52 ff, 124 ff
mod p, 12, 126
rational, 12, 126
Cofinal (directed systems), 147
Cohomology, 151
compact—group, 248
group, 149 ff, 166
infinite—group, 247
Combinatorial topology, 11
Compact, 34
countably, 8
locally, 29
locally peripherally countably, 29
Complement, 1
Complete family of coverings, 130
Complete space, 4
Completely normal, 50
Completely r-avoidable, 229
almost, 231
sets, 238
Complex, 11, 53
associated—of a chain, 53
augmented, 121
cone-, 126
deformation-, 128
infinite, 126
n-dimensional, 120
oriented, 121
unrestricted, 120
Component, 18
Condensation, r-dimensional, 356
Connected, 7
in the sense of Cantor, 337
space, 16, 19
strongly, 227
Connectedness, relation of homology to, 141 ff
Connectivity, 11
number, 12, 15, 124 (see Betti number)
umber about a set, 193, 240
Constituant. Defined exactly like component (18) except that two points x and y are called c-equivalent if there exists a compact, connected set containing x and y. (Compare strongly connected).
Continuous curve, 13. See Peano continuum.
Jordan's definition, 69
Continuum = nondegenerate, compact and connected, 36. (Beginning with Chapter IV, a continuum is always a Hausdorff space.)
Convergent sequence of points, 73
Coordinate of a Čech cycle, 130
Countable. A set is called countable if it is empty, finite or denumerable (q.v.)
Countable base of open sets, 70
Cover, To, 33
Covering, 13, 129
neighborhood, 171
regular with respect to a set, 134
theorems, 11, 35, 106, 129, 133 ff, 140, 145, 169 ff, 173, 202
unrestricted, 168
Cut point, 10
Cycle, 12, 54
 absolute, 132
 approximately on a set, 172
 bounding, 12, 54, 123, 130
 compact, 246
 Čech, 130, 148
 essential, 140
 fundamental, 250, 255
 group, 54
 infinite, 248
 non-trivial, 142, 216
 relative, 131
 0-, 54
Cycle, 85
 element, 82
Cyclically connected, 85
Cyclic connectivity theorem, 85

Declinable, r-, 371
Dedekind Cut Axiom, 29. A simply ordered set S is said to satisfy the Dedekind Cut Axiom if for every decomposition $S = A \cup B$ such that $A \neq 0 \neq B$ and $A < B$, either A has a last point and/or B has a first point.

Deformation-chain, 128
Deformation-complex, 128

Dense, 83

Denumerable. A set is said to be denumerable if there exists a (1-1)-correspondence between its elements and the natural numbers $1, 2, \ldots, n, \ldots$. In the terminology of cardinal numbers, a set is denumerable if the cardinal number of its elements is \aleph_0. (See Countable.)

Diameter of a point set $M = \operatorname{lub} \rho(x, y)$, $x, y \in M$. Denoted symbolically by $\delta(M)$.

Diameter
 of a chain, 178
 of a C-cycle, 222
 of a point set in a metric space, 53 ff
 of a point set in general space, 106

Difference of sets, 1

Dimension
 of a chain, 121
 of a covering, 195
 of a space, 195 ff

Directed system, 147

Disconnect, 10
Disjoint, 1
Distance between two point sets, 58 ff

Distance function, 4
Domain = open connected subset of a space, 14 ff, 52 ff

Dot product, 153
 of compact cycles and infinite cocycles, etc., 247 ff
 of Čech cycles and cocycles, 162
Dual bases, 161, 164 ff
Dual homomorphism, 148 ff
Dual pairings, 162
 orthogonal, 162

Duality
 simple local, 274
Duality theorems
 between homology and cohomology groups of a space, 163, 166, 247 ff, 256 ff
 between \mathcal{L} and avoidability properties, 340
 between \mathcal{L} and S properties, 320 ff
 between \mathcal{L} and weak S properties, 339, 343ff
 between \mathcal{L} and wulf properties, 344ff
 between S and avoidability properties, 331 ff
 between S properties, 316 ff, 327 ff
 between \mathcal{L} and coule, 294
 for a complex, 161 ff
 for local Betti numbers, 191, 193, 291 ff
 for S' in S', 61 ff
 Poincaré type of, 253, 259
 Pontrjagin type of (linking), 266 ff, 302
 relation to separation of space by closed sets, 212 ff, 225 ff

End point
 of an arc, 27
 of a Peano continuum, 82

Equivalent neighborhood systems, 3
relative to a set, 72

Euclidean plane, topological characterization of, 280

Extendible, r-, 224
 in the relative sense, 281

Face, 11, 53, 120

Flat, 136

Fundamental parallelopiped of Hilbert space, 71

Fundamental system of cycles, 145, 186 ff
 metric, 218
 of infinite r-cycles, 258
 of infinite r-cocycles, 260

Generalized closed manifold, 244
Generalized closed n-cell, 287
Generalized manifold of dimension n, 244
Generalized manifolds, 15
Generalized n-cell, 287
Geometria situs, 10
Group
of n-chains of K over G, 123
of n-cycles of K over G, 123

Hausdorff axioms
First, 2
Second, 5
Third, 6
Fourth (separation axiom), 69
First countability axiom, 73

Hausdorff space, 69
Homeomorphic, homeomorphism, 8
Homologous cycles, 124
Homology, 11, 14, 55, 124
base, 136
relation, 55, 124
relative, 131
unrestricted, 169

Homology group, 123 ff
approximately on a set, 172
Čech, 130, 147
compact, 246
examples of mod 2, mod m, etc., 124 ff
infinite, 248
infinite fundamental, 258
invariance of, for a complex, 125, 146
mod L on M, 132, 166
of a euclidean complex, 55
of an open subset of Sn, 58
of K over G, 123
relative, 131

Homotopic to zero, 287
Homotopy
local connectedness, 199
manifolds, 287

Imbed, 9
In (as applied to chains being in an open set), 150
Incidence number, 121
Incident, 11, 120
Indexed systems, 147
Infinite fundamental homology group, 258
Infinite manifold,
characterization of 2-dimensional, 280
Interior, 17
point, 17
Intersection of sets, 1
Inverse systems, 147
Irreducible continuum, 209

Irreducible le-connexe about a point set, 42
Irreducible membrane, 209
Irreducible
relative to carrying a non-bounding r-cycle, 207
relative to carrying an r-cycle non-bounding on M, 207
Irreducibly connected, 21
Isomorphic complexes, 89 f

Join, 127
Jordan-Brouwer separation theorem, 14 ff, 52, 63, 217, 294
Converse of, 296 ff, 307 ff
Jordan curve, 31
Jordan Curve Theorem, 13 ff, 44, 52, 63, 68, 88, 211, 214, 217, 286, 290, 353
Converse of, 67, 298
Klein bottle, 125, 246
Kronecker index (= Ki), 56 f, 122

Limit point, 2
Limit superior (= Lim sup), 102
Lindelöf theorem, 72
Linear graph, 11
Linear independence
relative to homology (= lirh), 55, 124, 126, 136
relative to cohomology (= lircoh), 165
Linear isomorphism of vector spaces, 136
Link, 62, 266
of a simple chain of sets, 33
irreducibly, 296
Linking integral, 10
Linking, theorems on, 266 ff
Local co-connectedness, 189 ff
characterization of, 192
Locally connected spaces,
characterizations of, 102, 104, 106 ff, 224, 227, 234, 318, 320 ff, 339 ff
Local connectedness, 12, 40
Local connectedness in higher dimensions, 176
characterizations of, 178, 193, 197, 210, 229 ff, 233, 238
Local connectivity numbers, 190, 192, 291 ff, 296
Local non-r-cut point, 228
Local separating point, 276
Locally arcwise connected, 81
Locally r-avoidable, 218
almost, 231
sets, 238

INDEX 399
Locally orientable, 281
Locally peripherally countably compact, 29
Locus of concentration, 205

Manifolds. The various types are listed according to descriptive

terms, such as “generalized,” “regular,” etc.; see also
15, 16
2-Manifold, 94 ff
characterizations of, 95, 221 ff, 225, 272,
280, 286, 349, 374 ff.
closed, 95
infinite, 95
Mappings, 5 ff
bicontinuous, 8
closed, 70
continuous, 7
topological, 8
Metric space, 4, 13
Metzrizable, 71
Metrization theorem (Urysohn), 72

Neighborhoods
defining system of, 3
equivalent systems of, 3
equivalent systems of relative to a point
set, 72
of a point, 2
Non-cut point, 10
Nondegenerate set, 2
Non-r-cut point, 218
almost, 231
local, 228
Norm of a chain-realization, 178
Normal, 49
completely, 50
Normal sequence of refinements, 218
Nucleus, 129

On (as applied to chains on a point set), 131
Open
arc, 27
set, 5
Order of a covering, 195
Orientable, 125, 246, 249
Orientability, 249
Orientation, 11, 120

Pair, 234
Peananian = having the properties of a Peano
space (q.v.)
Peano continuum, 13, 69, 76
See “Locally connected spaces”
INDEX

Simple chain of sets, 33
Simple chain theorem, 33
Simple closed curve, 31
\(\eta\)-alteration of, 115
Simplex, 120
Homology groups of, 127
Simplicial mapping, 127
Homomorphisms induced by, 128
Simply \(n\)-connected, 168
Smooth, 369
Space, 2
Irreducibly connected about a subset, 21
Space-filling curve problem, 12
Span, 88
1-Sphere
Characterization of, 31 ff, 43 ff, 67, 114 ff,
221 ff, 225, 271, 298, 307, 365, 376
2-Sphere, 87 ff
Characterization of, 88, 220 ff, 280, 307,
365, 374, 376 ff
\(n\)-Sphere, 31, 38
open subsets of, 58
subdivision of, 52
Spherelike, 244
Spherical neighborhood, 4
Star-finite, 122
Star, 120
Subdivision
derived, 52
elementary, 52
of a chain, 58
of a euclidean complex, 57
Subspace, 3
Successor, 138

Topological invariant, 8
Topological property, 8

Topology, 8
algebraic, 12, 52
combinatorial, 11
Torhorst theorem, 114, 119, 325, 333, 340
Torsion, 125
coefficient of, 125
totally disconnected, 13
Triangulation theorem, 98
Two-sidedness, 126

Unicoherence, 47
of the \(n\)-sphere, 60
Uniform local co-connectedness \((= r\text{-coulc})\),
190, 292 ff
Uniform local connectedness
in dimension \(r\) \((= r\text{-ulc})\), 65, 292
in the sense of Čech, 178
in set-theoretic sense \((= ulc)\), 65, 109
of domains complementary to a \(k\)-sphere in
the \(n\)-sphere, 66
of domains complementary to submanifolds of a manifold, \(X\)
of neighborhoods in a Peano space, 77
of open subsets of a manifold, \(X\)
weak \((= r\text{-wulc})\), 344
Union of sets, 1
Universal coefficient group, 126

Vector space, 135
Vertex
of a covering, 129
of a simplex, 120

Weak Hausdorff space, 41
Weak separation axiom, 17
Weakly locally connected, 40
AUTHORS CITED

Alexander, 12, 14, 52, 67, 95, 125, 199, 270, 312, 315, 383
Alexandroff, 14, 34 f, 36 f, 39, 68, 98, 125, 207, 209, 243, 269, 270, 272, 315, 353 ff, 371, 377, 383
Ayres, 119
Begle, 199, 251, 269, 270, 315, 383
Bernstein, F., 9
Betti, 11 f
Bing, 98
Brouwer, 13 ff, 68, 244, 294, 315
Butcher, 199
Cantor, G., 10, 11, 188, 337
Cauchy, 10, 188
Čech, 15, 129 ff, 146, 175, 199, 224, 243, 269, 270, 289, 315, 383
Chittenden, 13
Cohn-Vossen, 125, 246
Eilenberg, 175
Euler, 11
Frankl, 14, 270
Fréchet, 8 f, 36 f
Gauss, 10
Gawehn, 286
Gehman, 26 f, 27 f, 39
Hahn, H., 12, 67, 69, 98, 99
Hausdorff, 2, 10, 16, 39, 67, 100, 188
Hilbert, 125, 246
Hurewicz, 382
Jordan, C., 12, 69
van Kampen, 67, 98, 243, 244, 245, 282, 283, 286
Kaplan, S., 175, 199, 243, 270
Kerekjártó, 94, 125 ff, 246
Kirchhoff, 11
Klein, F., 8 f, 125
Kline, 33 f, 119, 243
Knaster, 20 f, 27 f, 39, 119
Kronecker, 122
Kuratowski, 9 f, 20 f, 27 f, 39, 67, 119, 316
Lebesgue, 196
Lefschetz, 12, 15, 39, 126, 175, 199, 244, 269, 270, 283, 289
Lennes, 39
Listing, 10
Mazurkiewicz, 12, 68 ff, 98, 99
Meray, 10, 188
Menger, 286, 382
Mullikin, 68
Nöbeling, 382
Peano, 12, 69, 98, 99
Poincaré, 11, 12, 125, 245, 269, 383
Pontrjagin, 269, 270, 315
Riemann, 11, 12, 15 f
Schoenflies, 12 ff, 39, 67 ff, 116, 245, 316, 323, 353, 377
Seifert, 245
Sierpinski, 9 f, 119, 238
Steenrod, 126
Swingle, 68
Tait, 11
Threlfall, 245
Tietze, 12, 125
Torhorst, 119, 325
Tucker, 125, 246
Urysohn, 18, 34 f, 36 f, 98, 229 ff, 234, 243
Vaughan, 199, 280, 289
Veblen, 12, 125, 246, 269
Vietoris, 14, 188, 199
Wallace, 175
Wallman, 382
Weber, 11 f
Whitney, 175, 243
Young, G., 98
Zippin, 88, 92

402
ERRATA

In each instance, the first number refers to the page. “Line –n” refers to the
nth line from the bottom of the page.

62 Line 23. Insert “of $|Z^{n-2}|$” after “($n-r$)-cells”
76 Line –21. Change “Lemma 2.4” to “Lemmas 2.3 and 2.4”
128 Line 17. Insert “as in 6.3” after “K”
158 Line 20. Insert “and C-cycle z” after “$H_v(S)$”
180 Line 15. Insert “(\mathbb{R}^n)” after second “z” as well as before “P”
191 Lines 5 and 7. After “all” insert “arbitrarily small”
206 Line 1. Before “then” insert “such that for some closed set K containing $M,$
$\gamma' \sim 0 \mod K$”; and before “such” insert “and contained in K”
237 Line –10. Before “base” insert “interior (relative to the xy-plane) of the”
283 Line 23. Insert “small enough” before “neighborhood”
292 Line –13. The exponent of “g” should be “$n-r-1$”
303 Line 8. Insert “ulc” before “open”
304 6.1 Lemma. Insert “compact” before “space”
327 3.1 Definition; 3.2 Definition. Insert “and \bar{Q} is compact” before comma.
368 Line 1. Before the second period insert “and $M_0 = \{(0, 0, z) | 0 < z \leq 1\}”
389 Between “Moore, R. L.” and “Poincaré, H.” insert
“MULLIKIN, A.
[a] Certain theorems relating to plane connected point sets, Transactions of
the American Mathematical Society, vol. 24 (1922), pp. 144–162”